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Minimal Projective Reconstruction
Including Missing Data

Fredrik Kahl,
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Abstract—The minimal data necessary for projective reconstruction from image
points is well-known when each object point is visible in all images. In this paper,
we formulate and propose solutions to a new family of reconstruction problems for
multiple images from minimal data, where there are missing points in some of the
images. The ability to handle the minimal cases with missing data is of great
theoretical and practical importance. It is unavoidable to use them to bootstrap
robust estimation such as RANSAC and LMS algorithms and optimal estimation
such as bundle adjustment. First, we develop a framework to parameterize the
multiple view geometry needed to handle the missing data cases. Then, we
present a solution to the minimal case of eight points in three images, where one
different point is missing in each of the three images. We prove that there are, in
general, as many as 11 solutions for this minimal case. Furthermore, all minimal
cases with missing data for three and four images are catalogued. Finally, we
demonstrate the method on both simulated and real images and show that the
algorithms presented in this paper can be used for practical problems.

Index Terms—Structure recovery, projective reconstruction, structure from
motion, projective geometry, missing data.
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1 INTRODUCTION

RECONSTRUCTING the 3D scene geometry from a number of images
is one common goal in computer vision. Recently, reconstruction
methods have been successfully extended to projective reconstruc-
tion within an uncalibrated framework [4], [7], [9], [16], [8]. Using
image measurements, it is only possible to recover the 3D scene
geometry (“structure”), camera poses (“motion”), and internal
camera calibration up to an unknown 3D projective transformation
[4]. With additional scene, motion, or calibration constraints, it is
possible to upgrade the projective reconstruction to a (scaled)
Euclidean one. In particular, several methods using constraints on
the internal camera calibration (so-called autocalibration methods)
have been developed, e.g., [20], [10], [12].

Solving minimal cases to perform reconstruction of 3D points
from their 2D images is of both theoretical and practical
importance, whereby, a minimal case is meant that omission of
one point in one image gives an infinite number of solutions. It is
common to use the solutions obtained from the minimal cases to
either bootstrap a robust estimation algorithm such as RANSAC or
LMS schema [6], [19], [22] or an optimal estimation algorithm such
as bundle adjustment [1]. The minimal data necessary for
projective reconstruction is well-known. In the two-view case,
the minimum number of points is 7, cf. Sturm’s method [17]
reintroduced into computer vision in [5], [4], [13]. For three views,
the minimum number of points is 6, cf. [15], [9]. The solutions to
these problems rely on solving a cubic equation and, thus, there
are, in general, up to three solutions. It is no coincidence that the
number of solutions is equal for the two problems. In fact, they are
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dual to each other in the Carlsson duality sense, cf. [2]. However,
these minimal cases do not allow the possibility of missing data. In
practice, the missing data cases are frequent. The more images we
have, the higher possibility that missing data occur. One typical
example is illustrated in Fig. 1 in which no matter how we locate
the cameras, one of the eight corners will not be visible. Even more,
the missing point changes with the viewing position. Three
possible camera positions are indicated in the figure that may
result in three different missing corners in the images.

This motivates us to formulate a new family of minimal
reconstruction problems containing missing data. First, we will
develop a framework for efficiently parameterizing the multiple
view geometry. Then, we will concentrate on the typical minimal
case of eight points in three images, where one different point is
missing in each of the three images. We will show that, not
surprisingly, the algorithms for missing data cases are generally
more complicated than the nonmissing counterparts. The typical
minimal case described above has 11 solutions. Finally, a catalogue
of the different minimal cases for three and four images will be
provided. Although the algebraic solutions are complicated, we
demonstrate that the solutions are stable enough for dealing with
real image sequences.

Previous work on reconstruction with missing data has been
primarily concentrated on solely handling the redundant data
cases. For example, the “hallucination” of Tomasi and Kanade [18],
the closure constraints in the projective case of Triggs [21], and in
the affine case of Kahl and Heyden [11]. The ability to deal with
both a minimal case and missing data is, to our knowledge, new to
the computer vision community.

The paper is organized as follows: In Section 2, we first
formulate the minimal missing data problem for reconstruction.
Then, we solve the minimal case of eight points in three
images with one missing point in each image in Section 3.
Next, we summarize all known minimal missing data cases for
three and four images in a catalogue in Section 4. After that,
we evaluate the performance of the solutions on both simulated
and real images in Section 5. Finally, some concluding remarks
are given in Section 6.

2 PROBLEM FORMULATION

Throughout the paper, vectors are denoted in lower case boldface
and matrices in upper case boldface. Scalars are any plain letters or
lower case Greek.

We assume a perspective projection (uncalibrated pin-hole
camera) as the camera model. Thus, the object space may be
considered as embedded in P* and the image space embedded in
P2 The camera performs a projection from P? to P? and can be
represented by a 3 x 4 matrix P3,4 of rank 3 whose kernel is the
projection center. The relation between an object point x in P* and
an image point u in P* can be written

Au = P3><4X. (1)

It is well-known that both the problem of reconstructing six
points from three images, see [15], [9], as well as seven points from
two images, see [17], [5], have, in general, three different solutions.
However, these minimal cases do not allow the possibility of
having missing data in any of the images. For practical applica-
tions, it is important to be able to deal with the minimal cases
which may contain missing data in some of the images. For two
images, there are no minimal cases with missing data since a point
visible in only one image does not give any constraint on the
viewing geometry. So, the minimum number of images in which
we are interested is three.
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Fig. 1. A frequent practical example of missing data. A cube with eight corners
where (in general) only seven corners will be visible in each image. Three possible
camera positions resulting in three different missing points are indicated by
arrows.

For each point in each image, two quantities are measured (z-
and y-coordinates). Thus, given six points visible in three images,
6 - 3 - 2 = 36 constraints (or equations) are obtained. The unknowns
are the 3D point coordinates and the camera matrices modulo
the projective coordinate frame, in total, 3-6+3-11 — 15 =36
unknowns. This is a minimal case without missing data as

H#unknowns = #equations = 36.

Starting with the above minimal case, i.e., six points in three
images and removing the sixth point from the third image
gives, of course, less equations than unknowns. However,
trying to add a seventh point visible in images one and three
results in 5-3-242-2-2 =38 (five points in three images and
two points in two images) equations and 7-3 +3-11 — 15 =39
(seven points and three camera matrices up to the projective
transformation) unknowns. This is still underdetermined as
H#unknowns > #equations.

By further adding a point in images two and three, we obtain
5:3-243-2-2 =42 (five points in three images and three points
in two images) equations and 8 -3 + 3 - 11 — 15 = 42 (eight points
and three camera matrices) unknowns, i.e., a minimal case since
#unknowns = #equations = 42. This incidence relation can be
visualized by the following matrix, where 0 in row 7 and column j
means that point j is missing in image ¢ and x means visible:

X X X X X
X X X X X

0
X . (2)
X X X X X X

o X X
X © X

The three images of a cube indicated in Fig. 1 may result in the
above incidence relation. We conclude the discussion with a formal
problem statement.

Problem 1. Reconstruct the object and the camera matrices (structure
and motion) from eight points and three images, where one different
point is missing in each image and determine the number of different
solutions.

3 PROBLEM SOLUTION

In this section, we will first outline a parameterization framework
for handling the geometry of multiple cameras. Then, a solution to
Problem 1 will be derived. As we are working within an
uncalibrated projective setting, all quantities are determined only
up to an unknown projective transformation, therefore, we may,
without restriction,® introduce a projective coordinate system such
that the first five points in space are assigned to the canonical
projective coordinates

1. We are implicitly assuming that the first five object points are
projectively independent as well as the first four points in each image.
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[x1 X2 X3 x4 X3]=
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and the first four image points in each image are assigned to

o = O

1 0 1
[ w uw w]=10 0 1
0 1 1

Using this choice of coordinates, it is not hard to see that we get the
following special form of camera matrices

a 0 0 ¢
P=|0 3 0 ¢

0 0 v ¢
This reduced camera matrix using canonical projective coordi-
nates has been successfully applied by many researchers [4],
[15], [91, 2]

By further using the fact that the fifth basis point in space

(1,1,1,1) projects onto the fifth point in each image as (us, v5, ws),
we obtain

)\5u5:a+(5
)\5U5Zﬂ+5
A5w5:'y+6.

Observe that both the left side and the right side are only
determined up to an unknown scale factor. This means that we can
fix the scale factors consistently by putting A; = 1, which gives a
natural scale to the camera matrix, inherited from the homo-
geneous coordinates (us,vs, ws). We will assume that this fixation
of scales already has been made in the sequel. This leads to the
following reduced camera matrix:

/115—6 0 0 6
P=| 0 wu-6 0 & (3)
0 0 ’LU5—(S 6

It is important to observe that this reduced camera matrix only
contains one unknown parameter 6. We are now ready to state our
main theorem of the section.

Theorem 1. There are, in general, 11 algebraic solutions to Problem 1.
The solutions may include complex and not physically feasible
solutions.

Proof. Without restrictions, we can make projective changes of
coordinates in the object space as well as in the images. Then,
we arrive at the reduced camera matrix parameterized by only
one unknown ¢ as in (3). For a set of three images, we have
three unknowns 6, & and ¢".

Consider the subconfiguration of six points that are visible
in both the first and second image. If the first five points are
chosen as a projective basis, then the image of the sixth point in
the first image is given by

Ug Us — 6 0 0 6 6
/\6 Vg = 0 V5 — [ 0 [ Zﬁ 3
we 0 0 ws—68 &§]|°°
t
and, in the second image, by

ug ug — & 0 0 & xé
X | v | = 0 v =& 0 § 1%
w 0 0 wy—6 & Z,}
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Note that they are both homogeneously linear in g, ys, 26, t6, As,
and ) and can be rewritten together as

us — 0 0 0 6 —ug 0 T
0 V5 — 6 0 6 —Vg 0 Yo
0 0 ws—6 6 —wg 0 2% |
U/5 - 0 0 & 0 —UIG t()' B 0’ (4)
0 vy — & 0 & 0 —vj A6
0 0 wy—8 & 0 —wg| | N
or more compactly denoted as
M6><6(X67 )\67 )\g)T =0. (5)

Since the vector (xg, As, Aj) does not vanish, the 6 x 6 matrix M
has to be singular, i.e.,, detM =0. The vanishing of the
determinant can be expressed as

"
Ug F12u6 = 0,

where Fiy = [diag(us) — 6I)[6uj — 8'us], [diag(u}) — §'T] is the
fundamental matrix relating image 1 and image 2. Here, [u],
denotes the skew symmetric matrix for the vector u such that
[u], v =uxv, where x denotes the cross product. Expanding
the above equation in the unknowns 6,6, results in a
polynomial equation p;2(8,6’) = 0, where

P12 = a16°8 + 0266 + a36” + ay68 + a56'* + agd + az8’.  (6)
The coefficients are

ay = detlug, us, ug), a = — det[uy, us, ug),

a3 = — det[ug, uf, diag(u;)ug),

ay = det[ug, us, diag(u)us] — det[diag(us)ug, uf, ug),

a5 = det[diag(us)ug, us, ug),

ag = det[diag(us)ug, uy, diag(ug)ug) and

a7 = — det[diag(us)ug, us, diag(u )ug).

Exactly the same analysis can be done for the seventh point in
images 1 and 3, which leads to

Méﬁxﬁ(xﬂ/\ﬂ)\g)T =0 (7)
and for the eighth point in images 2 and 3,
ngﬁ‘(x& )‘gb )‘g)T =0. (8)

The vanishing of the determinants |M'| and |M"| gives the
two polynomial equations p;3(6,6”) =0 and po3(8,6") =0,
where pi3 and py3 are given as

P13 = b16%6" + by88"% + by6? + by86" + b5 + bgd + br8"  (9)

and

paz = 16878 4+ 288" + 36 4+ 468" 4+ ¢56"* + 68’ + 26", (10)

The coefficients b; are polynomial expressions in us, u?, uy,
" 3 ! " ! "
and u/ and the ¢; in uj,uf,uj, and ug, analogously to the
formulas given for a; above.
Now, we have to solve the polynomial system of equations

p12(6, 5’) = 0,
pi3(6,6") = 0,
p3(8,8") = 0,

for the three unknown camera parameters 6, &', and ¢”. Since
each equation is cubic in the unknowns, there may be as many
as 3 -3 -3 = 27 different solutions in view of Bezout’s theorem,
see [3]. However, as the polynomials are not dense—the

monomials 6%, §% and the constant are missing in pj—we
could expect to have much less than 27 possible solutions.

Computing the resultant (see [3]), which we denote by p},, of
p13 and py3 with respect to §” yields a polynomial equation in §
and & of degree 7 with coefficients that are polynomial
expressions in the image coordinates. Next, taking the resultant
of the polynomials p, and p;» with respect to ¢, one obtains a
polynomial equation in § of degree 15.

At this stage, one might (mistakingly) conclude that there
are 15 solutions. However, in the derivation, we have
introduced spurious solutions, which are independent of the
image data. These solutions are identified by carefully inspect-
ing the matrix Mgy¢ in (5). If 6 = u5 and & = uj, then the first
column of the matrix M is a zero vector, resulting in the
singularity of the matrix M. The same is true for M’ and M” in
(7) and (8), respectively. In summary, all three matrices M, M/,
and M” contain a zero column, hence, singular if

6,8,8") = (us,ut,ul),
( y Uy s U5y Un )y
(6,0,8") = (vs,v5,2%),
(6’ 6/76N) = (wfnw{")vwg )

or
(67 6,1 6”) = (07 07 0)

These solutions imply, in turn, that the camera center one of the
three cameras is located at

(1,0,0,0),(0,1,0,0),(0,0,1,0) or (0,0,0,1).

For instance, § = u; gives the first camera center at (1,0,0,0) as
ker(P) = (1,0,0,0). This means that the camera center coin-
cides with the first object point in the projective basis. These
four solutions are obviously not a general situation and can be
easily singled out from the final 15th degree polynomial
equation. This concludes the proof that we can have at most
11 = 15 — 4 solutions. ]

Remark. The special choice of coordinates can also be used to solve
the minimal cases of seven points visible in two images and its
Carlsson dual six points visible in three images.

4 A CATALOGUE OF MINIMAL CASES
WITH MISSING DATA

Having solved one minimal case with missing data, we now
systematically look for all other possible cases. First, however, we
can already apply Carlsson duality [2] to the problem we have
solved. Recall that Carlsson and Weinshall demonstrated the
following remarkable result:

Theorem 2 (see [2]). The projective reconstruction with n points and
m images is equivalent to that with m+4 points and n —4
images. The n points and m images is said to be dual to m + 4
points and n - 4 images.

For instance, the case of seven points in two images is
equivalent to six points in three images. So, knowing that
six points in three images has, in general, three solutions, it
follows directly by the Carlsson duality that seven points in
two images also has three solutions.

Now dualizing Theorem 1 for the minimal case of eight points
in three images with one point missing, we obtain another minimal
case with seven points in four images where one point is missing
in one of the four images.



Corollary 1. There are, in general, 11 different solutions to the projective
reconstruction for seven points in four images where one different
point is missing in three of the four images.

The procedure of dualizing can also be demonstrated for the
incidence relationship in (2). Start by removing the first four
columns corresponding to four base points of the duality. Then,
transpose the remaining matrix and add the four base columns
again. After that, we obtain the following dualized incidence
relation corresponding to Corollary 1.

(11)

X X X X
X X X X
X X X X
X X X X
o X X X
X © X X
X X © X

4.1 Three Images
We can now find all other minimal cases for three images.

Let ny and n3 denote the number of points which appear
simultaneously in only two and three images, respectively. Clearly,
ng < 6, otherwise, we have the case of (at least) six points in three
images.

The number of unknowns for the three-view geometry is 3 - 11 for
the three cameras and 3-(ny +ng) — 15 for the ny +ng points
modulo a projective transformation, while the number of equations
is 4-ny 4 6 - n3. By equating the number of unknowns and the
number of equations, we have necessary conditions for minimal

cases,
4ny + 6ng = 33 + 3(ng + n3) — 15,
ie.,
ng + 3ns3 = 18.

This is a Diophantine equation whose solution is

n2:3k
TL3=6*]C

for 0 < ng < 6, as ng > 6 leads to the trivial nonmissing data case.

kE=1,...,6.

The solution & = 1 gives ny = 3 and n3 = 5 which may result in
the following two incidence relations (not symmetric over three
images) in addition to the one that we have solved in Theorem 1:

X X X X X X X X

X X X x x x x 0], (12)
X x X x x 0 0 x
or
X X X X X X X X
X X X X X X X X (13)

X X X x x 0 0 0

In general, equating the number of equations and unknowns
gives only necessary conditions. It is not sufficient to guarantee a
finite number of solutions. For the incidence relation (12), the first
two images have seven points in common, so it could be solved by
Sturm’s method resulting in up to three solutions. For each of these
three solutions, we need to determine the geometry of the third
camera. The constraint for the eighth point, visible in images one
and three, is given by p;3 in (9). This is a second degree equation in
the remaining unknown ¢”. Note that ¢ is already solved for using
images one and two. Hence, there are up to two possibilities for the
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third camera. In total, there might be up to six possible solutions
for this case.

For the case described by the incidence relation (13), the
geometry of the first two cameras is generally uniquely determined
as they have eight points in common, which is overconstrained,
while there are infinitely many possibilities for the third camera,
since it is underconstrained.

The other values for k£ > 1 can be handled in a similar manner
using resultants to eliminate the unknown variables. However, the
reduced camera matrices cannot directly be used since there are
not five points visible in all images. The resulting polynomial
equations are of very high degree and, therefore, hard to solve.
One probably needs to rely on numerical computations.

4.2 Four Images

Let n, p=2,3,4 denote the number of points which appear
simultaneously in p images. Equating the number of unknowns
and the number of constraints gives the following Diophantine
equation:

dny + 6ng + 8ny = 44 + 3(ng + ng +ny) — 15

ng + 3ns + dny = 29.

There are many solutions to the above equation. The complete
catalogue for four images consists of all solutions to the above
equation. We discuss a few of the cases below for small ny and n3,
for which the solutions are obtainable with symbolic calculations
in, for example, Maple without requiring waste computer

resources.

e ny=2>5, ng=mny=1. This is the dual of the incidence
relation shown in (12),

X X X X
X X X X
X X X X
X X X X
X X X X
S X X X
X © O X

So, in general, there are six solutions.

e 1y =5,n3 =0, ny = 4. If the four points visible in only two
images are symmetrically distributed such that no subset
of seven points is common in two images, i.e.,

X X X X
X X X X
X X X X
X X X X
X X X X
o O X X
o X © X
X © X ©
X X © O

then one can show, in the same way as in the proof of
Theorem 1, that there are up to 27 solutions! The dual case
consists of five images and eight points.
e ny =4,n3 =3,ny =0. This is the dual of Theorem 1 whose
solution is given in Corollary 1 with incidence relation (11).
The list of cases continues, but they occur less frequently in
practice, and often the complexity of the involved polynomials is
too high in order to solve with symbolic computations.

5 EXPERIMENTS

The algorithm for eight points in three images described in this
paper has been implemented in Maple. We first demonstrate the
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Fig. 2. The three original images used for the experiment.

algorithm in the popular sequence of images of a wooden house
(cf. Fig. 2), which has been previously used for different projective
reconstruction algorithms by many researchers. Three views
covering about a 45° rotation of the camera around the wooden
house are taken. The point features are first detected as the
maximum of curvatures of the B-Spline approximation of the edge
chains, then automatically tracked for the three images. The
location of point features is also optimized by a nonlinear subpixel
corner detector. The minimal missing data is shown in Fig. 3. The
first five points are visible in all three images and the sixth point is
considered missing in the first, the seventh is missing in the third,
and the eighth missing in the second image. Note that the seventh
point is indeed missing in the third image as the side face is
becoming tangent to the camera view. As more points are available
in this sequence, a traditional method based on bundle adjustment
has first been applied using all available 54 points. This
3D reconstruction is used as ground truth. The distance between
the first and fifth point (which are farthest apart) is 30 units.

We start by computing the real solutions of 6,, and ¢ for the
projection matrices with the Maple implementation of the
algorithm. For each real solution of projection matrices, we
compute the projective structure of the set of eight points. The
projective reconstruction is then transformed into its Euclidean
representation by applying a space collineation calculated with the
five known reference points from the ground truth. Finally, the
root mean square (RMS) error is computed for the reconstructed
sixth, seventh, and eighth point w.r.t. their known Euclidean
coordinates. So, the unit for the RMS error is relative to the
Euclidean 3D point positions of the ground truth.

In this real image case, very interestingly, up to the maximum
of 11 real solutions are obtained! The lowest RMS solution is
considered as the true solution. The other 46 matched points across
the three images are also reconstructed in space for this solution.
The final reconstruction of all points by the minimal missing data
algorithm is superimposed with the reconstruction results ob-
tained by a bundle adjustment. The result is illustrated in Fig. 4.

Fig. 3. The minimal missing data consisting of eight points are illustrated. The first
five points are the common reference points and the last three points are the
“missing” points.

The reconstruction is remarkably good, only in the side view, we
can see the error is more pronounced for the farther points such as
those on the cup. The readers can also compare with that presented
in [14] using six points in three images.

We also check the stability of the algorithm by running on
simulated data with the following set-up. We use three real camera
matrices similar to the previous real image case, typically, obtained
from a bundle adjustment algorithm. A set of eight known points
are selected and projected by these projection matrices onto the
synthesized images. Then, the projected positions of the points in
the images are perturbed by varying levels of noise of a Gaussian

20 -20

oo

Fig. 4. A general, front and side view of two superimposed reconstructions: The
points reconstructed from the minimal missing data are marked as diamonds and
the points from bundle adjustment solution are marked as crosses.
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Fig. 5. RMS errors of 3D reconstruction vs. standard deviation of image noise, for
the best and second best solutions of the eight point algorithm, and the best
solution for the six point algorithm. The unit for the RMS error is relative to the
ground truth, where the distance between the first and fifth point (which are
farthest apart) is 30 units.

distribution. The realism of the simulation is preserved in this way
and the image noise can be quantatively controlled as well in order
to observe its influence. From the perturbed image points, the same
computation procedure as for the previous real image case is
performed. In addition, with the same data, the eight points were
reconstructed using the six point algorithm (where all points are
visible), resulting in three solutions. For each of these solutions, the
seventh and eighth point were reconstructed using the obtained
camera matrices. The reconstruction errors are graphed in Fig. 5,
for both algorithms. In Fig. 6, the number of real solutions and the
number of solutions with all points having positive depths are
illustrated.

We note that the solutions degrade very smoothly with
increasing noise level. The behavior of the eight point algorithm
is similar to the performance of the six point algorithm. Even if
there are several real solutions, we see that there are at most one
solution with all points in front of the camera. It can also be seen in
the experiment, there may be no positive depth solution due to the
high level of noise. In other scenarios, there could possibly be
several positive depth solutions. If such a case occurs, further
information is necessary in order to discriminate among the
solutions.

The results suggest that the algorithm presented in this paper
are of practical importance even if a high degree polynomial
equation has to be solved.

6 CONCLUSIONS

A new family of projective reconstruction problems using the
minimal data from multiple uncalibrated images has been
formulated and solved. Instead of the minimal data available in
all images, we allow that the minimal data could be partly missing
in some of the images. These minimal cases are undoubtedly of
theoretical importance in order to understand the geometry of
multiple views. But, also, they are of practical importance for both
robust and optimal reconstruction. We first proposed a general
framework to parameterize the geometry of the multiple cameras.
Then, we solved the first problem of eight points in three images
with one different point missing in each of the three images,
proving that this problem can have as many as 11 algebraic
solutions including complex and negative depth solutions. We

" Real solutions
B Positive depth solutions

Number of solutions

2 3 4 5
Noise

Fig. 6. The number of real solutions and solutions with all points having positive
depths vs. standard deviation of image noise, for the eight point algorithm.

have also shown that the minimal cases with missing data for
reconstruction is generally more complicated than those without
missing data. Though we have to solve very high degree
polynomial equations, the actual Maple implementation of the
algorithms presented in this paper demonstrated remarkable
reconstruction results. The accuracy and stability of algebraic
solutions with missing data are comparable with those obtained
without missing data. It suggests that these algorithms can be
practically used for bootstrapping robust and optimal reconstruc-
tion. A complete catalogue of the minimal missing data cases for

three and four images has also been provided.
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