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Abstract—This paper introduces a novel enhancement for unsupervised learning of conditional Gaussian networks that benefits from 
feature selection. Our proposal is based on the assumption that, in the absence of labels reflecting the cluster membership of each 
case of the database, those features that exhibit low correlation with the rest of the features can be considered irrelevant for the 
learning process. Thus, w e suggest performing this process using only the relevant features. Then, every irrelevant feature is added to 
the learned model to obtain an explanatory model for the original database which is our primary goal. A simple and, thus, efficient 
measure to assess the relevance of the features for the learning process is presented. Additionally, the form of this measure allows us 
to calculate a relevance threshold to automatically identify the relevant features. The experimental results reported for synthetic and 
real-world databases show the ability of our proposal to distinguish between relevant and irrelevant features and to accelerate learning; 
however, still obtaining good explanatory models for the original database. 

1 INTRODUCTION 

/^^\NE of the basic problems that arises in a great variety of 
V _ X fields, including pattern recognition, machine learning, 
and statistics, is the so-called Aia cZzMermg problem [1], [2], 
[10], [11], [18], [22]. Despite the different interpretations and 
expectations it gives rise to, the generic data clustering 
problem involves the assumption that, in addition to the 
observed variables (also referred to as predictive attributes 
or, simply, features), there is a W & M variable. This last 
unobserved variable would reflect the cluster membership 
for every case in the database. Thus, the data clustering 
problem is also referred to as an example of learning from 
¿MCOMzpkfe Aia due to the existence of such a hidden 
variable. Incomplete data represents a special case of 
missmg ¿aía where all the missing entries are concentrated 
in a single variable: The hidden cluster variable. That is, w e 
refer to a given database as incomplete when all the cases 
are unlabeled. 

From the point of view adopted in this paper, the data 

clustering problem m a y be defined as the inference of the 

generalized joint probability density function for a given 

database. Concretely, w e focus on learning coWifioW 

Gawssiam mefworks for data clustering [25], [26], [27], [36], 

[37]. Roughly speaking, a conditional Gaussian network is a 

graphical model that encodes a coWifiofwzZ GawssiaM ¿isfnbw-

HoM [25], [26], [27] for the variables of the domain. Then 

when applied to data clustering, it encodes a multivariate 

normal distribution for the observed variables conditioned 

on each state of the cluster variable. 

As w e aim to automatically recover the generalized joint 
probability density function from a given incomplete 
database by learning a conditional Gaussian network, this 
paper is concerned with the understanding of data 
clustering as a descnpfioM task rather than a praficfioM task. 
Thus, in order to encode a description of the original 
database, the learned model must involve all the original 
features instead of a subset of them. W h e n unsupervised 
learning algorithms focus on prediction tasks, yWwre 
sekcfioM has proven to be a valuable technique to increase 
the predictive ability of the elicited models. In this paper, 
w e demonstrate that, even when focusing on description, 
feature selection (also known as ¿zmeMszofWzh/ rafwciiofz) can 
be a profitable tool for improving the performance of 
unsupervised learning. 

The general framework that w e propose to show h o w 
unsupervised learning of conditional Gaussian networks 
can benefit from feature selection is straightforward and 
consists of three steps: 1) identification of the relevant 
features for learning, 2) unsupervised learning of a 
conditional Gaussian network from the database restricted 
to the relevant features, and 3) addition of the irrelevant 
features to the learned network to obtain an explanatory 
model for the original database. According to this frame­
work, feature selection is considered a preprocessing step 
that should be accompanied by a postprocessing step to 
fulfill our objective. This postprocessing step consists of the 
addition of every irrelevant feature to the learned model to 
have a final model that encodes the generalized joint 
probability density function for the original data. 

To completely define the framework, one should decide on 
the automatic dimensionality reduction scheme to identify 
the relevant features for learning. This paper introduces a 
simple rekz%mce measure to assess the relevance of the features 
for the learning process in order to select a subset of them 
containing the most salient ones. Additionally, w e propose a 
heuristic method to automatically qualify every feature as 



completely relevant or irrelevant for the learning process. 
This is carried out by the automatic calculation of a rekz%mce 
ikresWd". Those features with relevance measure values 
higher than the relevance threshold are considered relevant 
for the learning process, whereas the rest are qualified as 
irrelevant. 

The experimental results reported in this paper show 
that the framework depicted above provides us with good 
explanatory models for the original database reducing the 
cost of the learning process as only relevant features are 
used in this process. In addition to its effectiveness, the 
simplicity of the automatic dimensionality reduction 
scheme that w e propose represents a valuable advantage 
as it allows the framework to reduce the dimensionality of 
the database where to perform learning very efficiently. 
Besides, our scheme is not tied to any particular learning 
algorithm and, therefore, it can be adapted to most of them. 

The remainder of this paper is organized as follows: In 
Section 2, w e introduce conditional Gaussian networks for 
data clustering. Section 3 is dedicated to explaining in detail 
our automatic dimensionality reduction scheme. W e present 
a new relevance measure as well as h o w to automatically 
discover the relevant and irrelevant features through the 
calculation of a relevance threshold. This section also 
presents h o w to fit our proposal into the unsupervised 
learning of conditional Gaussian networks under the frame­
work already outlined. Some experimental results showing 
the ability of our proposal to identify the relevant features 
and to accelerate the learning process are compiled in Section 
4. Finally, w e draw conclusions in Section 5. 

2 CONDITIONAL GAUSSIAN N E T W O R K S FOR D A T A 

CLUSTERING 

This section starts introducing the notation used throughout 
this paper. Then, w e give a formal definition of conditional 
Gaussian networks. W e also present the Bayesiam SírucfwnzZ 
E M aZgonfW [13], which is used for explanatory purposes 
as well as in our experiments presented in Section 4 due to 
its good performance in unsupervised learning of condi­
tional Gaussian networks. 

2.1 Notation 

W e follow the usual convention of denoting variables by 
uppercase letters and their states by the same letters in 
lowercase. W e use a letter or letters in boldface uppercase to 
designate a set of variables and the same boldface lowercase 
letter or letters to denote an assignment of a state to each 
variable in a given set. The generalized joint probability 
density function of X is represented as p(x). Additionally, 
p(x | y) denotes the generalized conditional probability 
density function of X given Y = y. If all the variables in X 
are discrete, then p(x) = p(x) is the joint probability mass 
function of X Thus, p(x | y) denotes the conditional 
probability mass function of X given Y = y. O n the other 
hand, if all the variables in X are continuous, then p(x) = 
/(x) is the joint probability density function of X Thus, 
/(x | y) denotes the conditional probability density function 
of X given Y = y. 

2.2 Conditional Gaussian Networks 

As w e have already mentioned, when facing a data 

clustering problem w e assume the existence of a random 

variable X partitioned as X = (Y, C) = (%,...,%%, C) into a 

M-dimensional continuous variable Y and a unidimensional 

discrete hidden cluster variable C. X is said to have a 

conditional Gaussian distribution [25], [26], [27] if the 

distribution of Y, conditioned on each state of C, is a 

multivariate normal distribution. That is, 

/(y | C = c) = ¿(y) = Af(y;/i(c),Z(c)) (1) 

whenever p(c) = p(C = c) > 0. Given C = c, /i(c) is the 

M-dimensional mean vector, and 2(c), the n x n variance 

matrix, is positive definite. 

W e define a conditional Gaussian network (CGN) for X 

as a graphical model that encodes a conditional Gaussian 

distribution for X [25], [26], [27], [36], [37]. Essentially, 

C G N s belong to a class of mixed graphical models 

introduced for the first time by Lauritzen and Wermuth 

[27] and further developed in [25], [26]. This class groups 

models in which both discrete and continuous variables can 

be present and for which the conditional distribution of the 

continuous variables given the discrete variables is re­

stricted to be multivariate Gaussian. More recently, C G N s 

have been successfully applied to data clustering [36], [37]. 

Concretely, a C G N is defined by a directed acyclic 

graph s (model structure) determining the conditional 

(in)dependencies among the variables of Y, a set of local 

probability density functions, and a multinomial distribu­

tion for the variable C. The model structure yields to a 

factorization of the generalized joint probability density 

function for X as follows: 

X*) = Xy,c)=p(c)/(y |c) 

= P(c)/c(y) = P(c) H /=(% I Pa(s)i)' 

where pa(s)¡ denotes the configuration of the parents of Y¿, 

Pa(s)¿, consistent with x. The local probability density 

functions and the multinomial distribution are those in the 

previous equation and w e assume that they depend on a 

finite set of parameters 0, € 8g. Therefore, (2) can be 

rewritten as follows: 

X % | 0,) = Xy, c | %) = y(c I %)/(y I c, 0,) 

= P(c I %)/c(y | %) = P(c I 0,) n /=(% I P*(s)i, % ) , 
¿=1 

(3) 

where 0^ = (0[,..., 0%) denotes the parameters for the local 

probability density functions when C = c. 

If s^ denotes the hypothesis that the conditional (in­

dependence assertions implied by s hold in the true 

generalized joint probability density function of X , then 

w e obtain from (3) that: 
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Fig. 1. Structure, local probability density functions, and multinomial distribution for a CGN with three continuous variables and one binary cluster 

variable. 

p(x | 0«, s") = p(y, c | 0„ s") = p(c | 0„ s")/(y | c, 0«, s") 

= p(c|^,s")/,(y|0:,s") 

= Xc|^,s")n/c(%/<|pa(s)„^,s"). (4) 

In order to encode a conditional Gaussian distribution for 
X, each local probability density function of a C G N should 
be a linear-regression model. Thus, when C = c: 

/c(%|pa(s)i,%,s")=M%;mf+ ^ 6^(% 
*Gpa(s), 

(5) 

where A/"(̂ ;/̂ , cr̂ ) is a univariate normal distribution with 
mean ¿6 and standard deviation cr (cr > 0). Given this form, a 
missing arc from Y? to ̂  implies that K- = 0 in the linear-
regression model. W h e n C = c, the local parameters are 
^ = (m^, b^, ^ ) , 2 = 1,...^, where b^ = (%,..., ̂ _ij' is a 
column vector. 

The interpretation of the components of the local 
parameters 0̂ , 2 = 1,... ,72,, is as follows: Given C = c, m^ 
is the unconditional mean of Y¡, ̂  is the conditional 
variance of ̂  given Pa(s)., and ¿̂ ., j = 1,...,% - 1, is a 
linear coefficient reflecting the strength of the relationship 
between Y? and Y¡. See Fig. 1 for an example of a C G N with 
three continuous variables and one binary cluster variable. 

Note that the model structure is independent of the value 
of the cluster variable C, thus the model structure is the 

same for all the values of C. However, the parameters of the 
local probability density functions do depend on the value 
of C and they may differ from the distinct values of the 
variable C. 

2.3 Learning CGNs from Incomplete Data 

One of the methods for learning C G N s from incomplete data 
is the well-known Bayesian Structural E M (BS-EM) algorithm 
developed by Friedman in [13]. Due to its good performance, 
this algorithm has received special attention in the literature 
and has motivated several variants of itself [32], [34], [35], 
[41]. W e use the BS-EM algorithm for explanatory purposes 
as well as in our experiments presented in Section 4. 

W h e n applying the BS-EM algorithm in a data clustering 
problem, w e assume that w e have a database of TV cases, 
d = {xi,... ,Xj\r}, where every case is represented by an 
assignment to the n, observed variables of the n, + 1 variables 
involved in the problem domain. So, there are 
(72, + 1)7V random variables that describe the database. Let 
O denote the set of observed variables, that is, the ?%7V 
variables that have assigned values. Similarly, let H denote 
the set of hidden or unobserved variables, that is, the TV 
variables that reflect the unknown cluster membership of 
each case of d. 

For learning C G N s from incomplete data, the BS-
E M algorithm performs a search over the space of C G N s 
based on the well-known E M ¿zfgonfW [7], [29] and direct 
optimization of the Bayesian score. As shown in Fig. 2, the 



loop ¿ = 0,1,... 

1. Run the E M algorithm to compute the M A P parameters #s, for s¿ given o 

2. Perform search over model structures, evaluating each model structure by 

Score(s : s,) = E[logXh,o,s^) | o, 0s,,s^] = EhP(h I o, ^,s^logXko,s^) 

3. Let s¿+i be the model structure with the highest score among these encountered in the search 

4. if 5core(s¿ : s¿) = ^core(s/+i : s/) then return (s¿, 0gj 

Fig. 2. A schematic of the BS-EM algorithm. 

BS-EM algorithm is comprised of two steps: A n optimiza­
tion of the C G N parameters and a structural search for 
model selection. Concretely, the BS-EM algorithm alternates 
between a step that finds the maximum a posteriori (MAP) 
parameters for the current C G N structure usually by means 
of the E M algorithm, and a step that searches over 
C G N structures. At each iteration, the BS-EM algorithm 
attempts to maximize the expected Bayesian score instead 
of the true Bayesian score. 

As w e are interested in solving data clustering 
problems of considerable size, the direct application of 
the BS-EM algorithm as it appears in Pig. 2 may be an 
unrealistic and inefficient solution. In our opinion, the 
reason for this possible inefficiency is that the computation 
of Score(s : s¿) implies a huge computational expense as it 
takes account of every possible completion of the 
database. It is common to use a relaxed version of the 
presented BS-EM algorithm that just considers the most 
likely completion of the database to compute Score(s : s¿) 
instead of considering every possible completion. Thus, 
this relaxed version of the BS-EM algorithm is comprised 
of the iteration of a parametric optimization for the 
current model and a structural search once the database 
has been completed with the most likely completion by 
using the best estimate of the generalized joint probability 
density function of the data so far (current model). That is, 
the posterior probability distribution of the cluster variable 
C for each case of the database, p(c|y^,^,s^), is 
calculated. Then, the case is assigned to the cluster where 
the maximum of the posterior probability distribution of C 
is reached. W e use this relaxed version in our experiments 
of Section 4. 

To completely specify the BS-EM algorithm, w e have to 
decide on the structural search procedure (step 2 in Pig. 2). 
The usual approach is to perform a greedy hill-climbing 
search over C G N structures considering all possible 
additions, removals, and reversals of a single arc at each 
point in the search. This structural search procedure is 
desirable as it exploits the decomposition properties of 
C G N s and the factorization properties of the Bayesian score 
for complete data. However, any structural search proce­
dure that exploits these properties can be used. 

The log margnW ZzMz/zcW of the expected complete data, 
logp(d | s^), is usually chosen as the score to guide the 
structural search. W e make use of it in our experiments. 
According to [15], under the assumptions that 1) the 
database restricted to the cluster variable C, d^, is a 
multinomial sample, 2) the database d is complete, and 
3) the parameters of the multinomial distribution of C are 

independent and follow a Dirichlet distribution; w e have 
that: 

TV 

TV 

= YJp(q |xi,...,xz_i,s^)/(yz | q,xi,...,xz_i,s^) 
TV 

= p(d^|s")r¡/(y,|q,yi,...,yz-i,4 

= pK|s") H /c(dY.c|s"), 

(6) 

where d ^ is the database d restricted to the continuous 
variables Y and to cases where C = c, and T/a¿(C) is the set 
of values that the cluster variable C can take. The term 
p(d^ | ŝ ) corresponds to the marginal likelihood of a trivial 
Bayesian network having only a single node C. It can be 
calculated in closed form under reasonable assumptions 
according to [5]. Moreover, each term of the form 
/c(d^ | s^), for all c E V W ( C ) , represents the marginal 
likelihood of a domain containing only continuous variables 
under the assumption that the continuous data is sampled 
from a multivariate normal distribution. Then, these terms 
can be evaluated in factorable closed form under some 
reasonable assumptions according to [15], [16], [19]. 

3 AUTOMATIC DIMENSIONALITY REDUCTION IN 

UNSUPERVISED LEARNING OF C G N S 

This section is devoted to the detailed presentation of a new 
automatic dimensionality reduction scheme applied to 
unsupervised learning of CGNs. The section starts with 
an introductory revision on the general problem of feature 
selection and a brief discussion on some of the problems 
that appear when adapting supervised feature selection to 
the unsupervised paradigm. 

3.1 From Supervised to Unsupervised Feature 
Selection 

In many data analysis applications, the size of the data can 
be large. The largeness can be due to an excessive number 
of features, the huge number of instances, or both. For 
learning algorithms to work efficiently and even sometimes 
effectively, one may need to reduce the data size. Feature 
selection has proven to be a valuable technique to achieve 
such a reduction of the dimensionality of the data by 



selecting a subset of features on which to focus the attention 
in the subsequent learning process. 

In its general form, feature selection is considered a 
problem of searching for an optimal subset of the original 
features according to a certain criterion [3], [23], [28]. The 
criterion specifies the details of measuring the goodness of 
feature subsets as well as the relevance of each feature. The 
choice of a criterion is influenced by the purpose of feature 
selection. However, what is shared by the different purposes 
is the desire of improving the performance of the subsequent 
learning algorithm usually in terms of the speed of learning, 
the predictive ability of the learned models, and/or the 
comprehensibility of the learned models. 

Roughly speaking, feature selection involves an algo­
rithm to explore the space of potential feature subsets and 
an evaluation function to measure the quality of these 
feature subsets. Since the space of all feature subsets of 
M features has size 2", feature selection mechanisms 
typically perform a nonexhaustive search. One of the most 
popular techniques is the use of a simple hill-climbing 
search known as seoweMfiaZ sekcfiorz which m a y be either 
y b n o W or Z m c W W [3], [23], [28]. In the former, the search 
starts with an empty set of selected features and, at each 
time, it adds the best feature among unselected ones 
according to the evaluation function. The process stops 
when no further improvement can be made. Similarly, 
backward sequential selection begins with the full set of 
features and, at each time, it removes the worst feature 
based on the evaluation function until no improvement is 
found. As it is addressed by Doak [9], feature selection 
mechanisms based on sequential selection can require a 
great deal of processing time in databases with a large 
number of features. Also, more complex and effective 
search algorithms can be used to explore the space of 
potential feature subsets. The main advantage of these 
algorithms over sequential selection is that they avoid 
getting stuck in local maxima by means of randomness. 
However, these approaches usually involve a huge compu­
tational effort. One of the recent works in the field is 
reported in [20]. In this paper, the authors propose 
exploring the space of feature subsets according to an 
evolutionary, population-based, randomized search algo­
rithm which represents an instance of the Estimation of 
Distribution Algorithm (EDA) approach [24]. 

In [23], the authors distinguish two approaches to the 
evaluation function for feature selection: wrapper and /Hfer. 
The wrapper approach implies a search for an optimal 
feature subset tailored to the performance function of the 
subsequent learning algorithm. That is, it considers feed­
back from the performance function of the particular 
subsequent learning algorithm as part of the function to 
evaluate feature subsets. O n the other hand, the filter 
approach relies on intrinsic properties of the data that are 
presumed to affect the performance of the learning 
algorithm but they are not a direct function of its 
performance. Then, the filter approach tries to assess the 
merits of the different feature subsets from the data, 
ignoring the subsequent learning algorithm. 

W h e n applied to supervised learning, the main objective 
of feature selection is the improvement of the classification 

accuracy or class label predictive accuracy of the models 
elicited by the subsequent learning algorithm considering 
only the relevant features for the task. Independently of the 
approach used, both filter and wrapper approaches require 
the class labels to be present in the data in order to carry out 
feature selection. Filter approaches evaluate feature subsets 
usually by assessing the correlation of every feature with 
the class label by using different measures [3], [28]. O n the 
other hand, wrapper approaches rely on the performance of 
the learning algorithm itself by measuring the classification 
accuracy on a validation set to evaluate the goodness of the 
different feature subsets [3], [23], [28]. There is some 
evidence from supervised feature selection research that 
wrapper approaches outperform filter approaches [21]. 

Although feature selection is a central problem in data 
analysis as suggested by the growing amount of research in 
this area, the vast majority of the research has been carried 
out under the supervised learning paradigm (swperpisaf 
feature selection), paying little attention to unsupervised 
learning (wMswperDisaf feature selection). Only a few works 
exist addressing the latter problem. In [6], the authors 
present a method to rank features according to an 
unsupervised entropy measure. Their algorithm works as 
a filter approach plus a backward sequential selection 
search. Devaney and R a m [8] propose a wrapper approach 
combined with either a forward or a backward sequential 
selection search to perform conceptual clustering. In [39], 
Talavera introduces a filter approach combined with a 
search in one step and a wrapper approach combined with 
either a forward or a backward sequential selection search 
as feature selection mechanisms in hierarchical clustering of 
symbolic data. The filter approach uses the feature 
dependence measure defined by Fisher [11]. Whereas the 
performance criterion considered in [39] is the wWfzpk 
pWzcfzce accuracy measured by the average accuracy of 
predicting the values of each feature present in the testing 
data, [40] applies the mechanism comprised of a filter 
approach and a search in one step presented in [39] to 
feature selection in conceptual clustering of symbolic data 
considering the class label predictive accuracy as perfor­
mance criterion. 

In our opinion, two are the main problems to translate 
supervised feature selection into unsupervised feature 
selection. First, the absence of class labels reflecting the 
membership for every case in the database that is inherent 
to the unsupervised paradigm makes impossible the use of 
the same evaluation functions as in supervised feature 
selection. Second, there is not a standard accepted perfor­
mance task for unsupervised learning. Due to this lack of a 
unified performance criterion, the meaning of optimal 
feature subset may vary from task to task. A natural 
solution to both problems is proposed in [39] by interpret­
ing the performance task of unsupervised learning as the 
multiple predictive accuracy. This seems a reasonable 
approach because it extends the standard accepted perfor­
mance task for supervised learning to unsupervised 
learning. Whereas the former learning comprises the 
prediction of only one feature, the class, from the knowl­
edge of many, the latter aims the prediction of many 
features from the knowledge of many [12]. O n the other 



hand, [6], [8], [40] evaluate their unsupervised feature 
selection mechanisms by measuring the class label pre­
dictive accuracy of the learned models over the cases of a 
testing set after having performed learning in a training set 
where the class labels were masked out. The speed of 
learning and the comprehensibility of the learned models 
are also studied in [8], [39], although they are considered 
less important performance criteria. 

3.2 How Learning C G N s for Data Clustering 
Benefits from Feature Selection 

Our motivation to perform unsupervised feature selection 
differs from the motivation of the previously referred papers 
due to our distinct point of view over the data clustering 
problem. W h e n the learned models for data clustering are 
primarily evaluated regarding their multiple or class label 
predictive accuracy, as it occurs in [6], [8], [39], [40], feature 
selection has proven to be a valuable technique for reducing 
the dimensionality of the database where learning is 
performed. This usually pursues an improvement of the 
performance of the learned models considering only the 
relevant features for the task. However, when the main goal of 
data clustering, as it happens in this paper, is description 
rather than prediction, the learned models must involve all 
the features that the original database has in order to encode a 
description of this database. 

It is well-known that unsupervised learning of C G N s for 
solving data clustering problems is a difficult and time 
consuming task, even more so when focusing on descrip­
tion as all the original features are usually considered in the 
learning process. With the aim to solve these handicaps, w e 
propose a framework where learning C G N s for data 
clustering benefits from feature selection. The framework 
is straightforward and consists of three steps: 1) identifica­
tion of the relevant features for learning, 2) unsupervised 
learning of a C G N from the database restricted to the 
relevant features, and 3) addition of the irrelevant features 
to the learned C G N for obtaining an explanatory model for 
the original database. Thus, feature selection is considered a 
preprocessing step that should be accompanied by a 
postprocessing step to achieve our objective. The postpro­
cessing step consists of the addition of every irrelevant 
feature to the elicited model as conditionally independent 
of the rest given the cluster variable. 

To make the framework applicable for unsupervised 
learning of C G N s , w e should define relevance. However, 
the meaning of relevance depends on the particular 
purpose of dimensionality reduction due to the lack of a 
unified performance criterion for data clustering. In our 
concrete case, the objective of reducing the dimensionality 
of the databases when learning C G N s for data clustering is 
to decrease the cost of the learning process while still 
obtaining good explanatory models for the original data. 
The achievement of such a goal can be assessed by 
comparing, in terms of explanatory power and runtime of 
the learning process, a C G N learned from the given original 
database and a C G N elicited when using dimensionality 
reduction in the learning process. 

Such an assessment of the achievement of our objective 
leads us to make the following assumption on the considera­
tion of a feature as either relevant or irrelevant for the learning 

process: In the absence of labels reflecting the cluster 
membership of each case of the database, those features that 
exhibit low correlation with the rest of the features can be 
considered irrelevant for the learning process. Implicitly, this 
assumption defines relevance according to our purpose to 
perform dimensionality reduction. It is important to note that 
the assumption is independent of any clustering of the data, 
so, it can be readily applied without requiring a previous 
clustering of the database. 

The justification of the previous assumption is straight­
forward. Features low correlated with the rest are likely to 
remain conditionally independent of the rest of the features 
given the cluster variable when learning a C G N from the 
original database. Thus, a C G N elicited from the original 
database restricted to features highly correlated with the 
rest is likely to encode the same set of conditional 
dependence assertions as a C G N learned from the original 
database. The parameters for the local probability density 
functions of the features that appear in both C G N s should 
be similar as well. Furthermore, if low correlated features 
are added to that C G N elicited from the restricted database 
as conditionally independent of the rest given the cluster 
variable, then this final C G N is likely to encode the same set 
of conditional dependence and independence assertions as 
the C G N learned from the original data. Thus, the 
explanatory power of both C G N s should be almost the 
same as the models are likely to be very similar. 

Some other works that have successfully made use of a 
similar assumption are [11], [39], [40]. Although the three 
works present the assumption in its general form, they only 
validate it for conceptual clustering of symbolic data. Our 
paper is the first, to our knowledge, that verifies it for 
continuous domains. 

3.2. Y Re/eyance Measure 
In order to assess the relevance of Y¿, %=1,...,M, for 
learning, w e propose evaluating the following simple and, 
thus, efficient relevance measure: 

where m is the number of features in the database, TV is the 
number of cases in the database, and r^re^ is the sample 
partial correlation of Y¿ and Y, adjusted for the remainder 
variables. This last quantity can be expressed in terms of the 
maximum-likelihood estimates of the elements of the 
inverse variance matrix as r̂ ireat = —^-(il^il^)"* [43]. 

Then, the relevance measure value for each feature Y¿, 
% = 1,..., M, is calculated as the average likelihood ratio test 
statistic for excluding an edge between % and any other 
feature in a graphical Gaussian model [38]. This means that 
those features likely to remain conditionally independent of 
the rest given the cluster variable as learning progresses 
receive low relevance measure values. Thus, this measure 
shows a reasonable behavior according to our definition of 
relevance. 

3.2.2 Re/evance TrwesWd 

After having calculated the relevance measure value for 
every feature of the database, a decreasing relevance 



Evaluate the relevance measure for each feature Y¡, % = 1,... ,n 

Calculate the relevance threshold 

Let Y^* be the feature subset containing only the relevant features 

loop 7 = 0,1,... 

1. Run the E M algorithm to compute the M A P parameters 0^, for s ^ given o ^ 

2. Perform search over model structures, evaluating each model structure by 

3core(s^ = s^) = E[logp(h,o^\s^^) | o^\ 0^,s^^] 

= ZhP(h I o ^ , ^.,s^")logXh,o^,s^") 

3. Let ŝ fj be the model structure with the highest score among these encountered in the search 

4. exit loop when Score(s^ = g^) = 5core(s^ : s^) 

Let sŷ az be the final model obtained after adding the irrelevant features to s ^ 

Calculate the M A P parameters 0ĝ .̂ , for s/̂ aZ 

| Return (sy^¿, ̂ _ J | 

Fig. 3. A schematic of how to fit our automatic dimensionality reduction scheme into the BS-EIV1 algorithm under the framework presented. 

ranking of the features can be obtained. Now, we would 
like to know how many of them are needed to perform 
learning appropriately, that is, we would like to identify, in 
the relevance ranking, the relevant features for the learning 
process. If we knew that only /c features were needed, we 
could simply choose the first /c features in our relevance 
ranking, namely, those /c features with the highest relevance 
measure values. However, to have this kind of knowledge is 
not at all usual. W e propose a novel and automatic solution 
for this problem. 

The relevance measure value for each feature Y¿, 
2 = 1,...,?!, can be interpreted as the average value of the 
likelihood ratio test statistic for excluding a single edge 
between Y¡ and any other feature in a graphical Gaussian 
model. Thus, we propose the following heuristic: The 
relevance threshold is calculated as the rejection region 
boundary for an edge exclusion test in a graphical 
Gaussian model for the likelihood ratio test statistic (see 
[38] for details). This heuristic agrees with our purpose to 
perform dimensionality reduction as it qualifies as irrele­
vant those features likely to remain conditionally indepen­
dent of the rest given the cluster variable as learning 
progresses. As shown in [38], the distribution function of 
the likelihood ratio test statistic is as follows: 

^(%) = cx%) - ̂ (2n + l ) z ^ L a r W * A r \ (8) 
J V27T 

where (̂ (a;) is the distribution function of a A^ random 
variable. Thus, for a 5 percent test, the rejection region 
boundary (which is considered our relevance threshold) is 
given by the resolution of the following equation: 

0.95 = G ^ M -^(2^ + l)^^^-W^7V-\ (9) 
2 V27T 

By a simple manipulation, the resolution of the previous 
equation turns into finding the root of an equation. The 
Newton-Raphson method, used in our experiments, is only 
an example of suitable methods for solving the equation. 
Only those features that exhibit relevance measure values 

higher than the relevance threshold are qualified as relevant 
for the learning process. The rest of the features are treated 
as irrelevant. 

3.2.3 F/ff/ng y4ufomaf/c D/mens/ona/Ay ñeducf/on 
/nfo Z_eam/ng 

In this section, we present how to fit our automatic 
dimensionality reduction scheme into the BS-EM algorithm 
under the general framework previously introduced. How­
ever, it should be noticed that our scheme is not coupled to 
any particular learning algorithm and it could be adapted to 
most of them. 

Fig. 3 shows that, after the preprocessing step that consists 
of our automatic dimensionality reduction scheme, the BS-
E M algorithm is applied as usual but restricting the original 
database to the relevant features, Y ^ , and the hidden cluster 
variable C. That is, the database where learning is performed 
consists of TV cases, d ^ = {x{^,..., x ^ } , where every case 
is represented by an assignment to the relevant features. So, 
there are (r + 1)7V random variables that describe the 
database, where r is the number of relevant features 
(r = |Y^|). W e denote the set of observed variables 
restricted to the relevant features and the set of hidden 
variables restricted to the relevant features by O ^ (|0^| = 
WV) and H (|H| = TV), respectively. Obviously, in Fig. 3, s ^ 
represents the model structure only when the relevant 
features are considered in the learning process, and s ^ 
denotes the hypothesis that the conditional (in)dependence 
assertions implied by s ^ hold in the true joint probability 
density function of Y ^ . 

Learning ends with the postprocessing step that com­
prises the addition of every irrelevant feature to the model 
returned by the BS-EM algorithm as conditionally indepen­
dent of the rest given the cluster variable. This results in an 
explanatory model for the original database. The local 
parameters for those nodes of the final model associated to 
the irrelevant features can be easily estimated after 
completing the original database d with the last completion 
of the restricted database d^. 



Fig. 4. Example of a TANB model structure with seven predictive attributes. 

4 EXPERIMENTAL EVALUATION 

This section is dedicated to showing the ability of our 
proposal to perform an automatic dimensionality reduction 
that accelerates unsupervised learning of C G N s without 
degrading the explanatory power of the final models. In 
order to reach such a conclusion, w e perform two sorts of 
experiments in synthetic and real-world databases. The first 
evaluates the relevance measure introduced in Section 3.2.1 
as a means to assess the relevance of the features for the 
learning process. The second evaluates the ability of the 
relevance threshold calculated as it appears in Section 3.2.2 
to automatically distinguish between relevant and irrele­
vant features for learning. 

As w e have addressed, w e use the BS-EM algorithm as our 
unsupervised learning algorithm. In the current experiments, 
w e limit the BS-EM algorithm to learning Tree A w g m m W 
Nmix; Bayas (TANB) mofMs [14], [30], [36]. This is a sensible 
and usual decision to reduce the otherwise large search space 
of CGNs. Moreover, this allows us to efficiently solve data 
clustering problems of considerable size as it is well-known 
the difficulty involved in learning densely connected C G N s 
from large databases and the painfully slow probabilistic 
inference when working with these. 

T A N B models constitute a class of compromise C G N s 
defined by the following condition: Predictive attributes 
may have, at the most, one other predictive attribute as a 
parent. Fig. 4 shows an example of a T A N B model 
structure. T A N B models are C G N s where an interesting 
trade-off between efficiency and effectiveness is achieved, 
that is, a balance between the cost of the learning process 
and the quality of the learned C G N s [36]. 

4.1 Databases Involved 

T w o synthetic and two real-world databases are involved in 
our experimental evaluation. The knowledge of the C G N s 
used to generate the synthetic databases allows us to assess 
accurately the achievement of our objectives. Besides, the 
real-world databases provide us with a more realistic 
evaluation framework. 

To obtain the two synthetic databases, w e constructed 
two T A N B models of different complexity to be sampled. 
The first T A N B model involved 25 predictive continuous 
attributes and one three-valued cluster variable. The first 15 
of the 25 predictive attributes were relevant and the rest 
irrelevant. The 14 arcs between the relevant attributes were 
randomly chosen. The unconditional mean of every 
relevant attribute was fixed to zero for the first value of 
the cluster variable, four for the second, and eight for the 
third. The linear coefficients were randomly generated in 

the interval [-1,1] and the conditional variances were fixed 
to one (see (5)). The multinomial distribution for the cluster 
variable C was uniform. Every irrelevant attribute followed 
a univariate normal distribution with mean zero and 
variance one for each of the three values of the cluster 
variable. 

The second T A N B model involved 30 predictive con­
tinuous attributes and one three-valued cluster variable. 
The first 15 of the 30 predictive attributes were relevant and 
the rest irrelevant. The 14 arcs between the relevant 
attributes were randomly chosen. The unconditional mean 
of every relevant attribute was fixed to zero for the first 
value of the cluster variable, four for the second, and eight 
for the third. The linear coefficients were randomly 
generated in the interval [-1,1]/ and the conditional 
variances were fixed to two (see (5)). The multinomial 
distribution for the cluster variable C was uniform. Every 
irrelevant attribute followed a univariate normal distribu­
tion with mean zero and variance five for each of the three 
values of the cluster variable. This second model was 
considered more complex than the first due to the higher 
degree of overlapping between the probability density 
functions of each of the clusters and the higher number of 
irrelevant attributes. 

Erom each of these two T A N B models, w e sampled 
4,000 cases for the learning databases and 1,000 cases for the 
testing databases. In the forthcoming, the learning data­
bases sampled from these two T A N B models will be 
referred to as synthetic! and synthetic2, respectively. 
Obviously, w e discarded all the entries corresponding to 
the cluster variable for the two learning databases and the 
two testing databases. 

Another source of data for our evaluation consisted of two 
well-known real-world databases from the UCI repository of 
Machine Learning databases [33]: 

# Waveform which is an artificial database consisting 
of 40 predictive features. The last 19 predictive 
attributes are noise attributes which turn out to be 
irrelevant for describing the underlying three 
clusters. W e used the data set generator from the 
UCI repository to obtain 4,000 cases for learning 
and 1,000 cases for testing. 

# Pima which is a real database containing 768 cases 
and eight predictive features. There are two clusters. 
W e used the first 700 cases for learning and the last 
68 cases for testing. 

The first database was chosen due to our interest in working 
with databases of considerable size (thousands of cases and 



tens of features). In addition to this, it represented an 
opportunity to evaluate the effectiveness of our approach as 
the true irrelevant features were known beforehand. The 
second database, considerably shorter in both the number 
of cases and the number of features, was chosen to get 
feedback on the scalability of our dimensionality reduction 
scheme. Obviously, w e deleted all the cluster entries for the 
two learning databases and the two testing databases. 

4.2 Performance Criteria 

There exist two essential purposes for focusing on the 
explanatory power or geMeWzzaMzfy of the learned models. 
The first purpose is to summarize the given databases into 
the learned models. The second purpose is to elicit models 
which are able to predict unseen instances [28]. Thus, the 
explanatory power of the learned C G N s should be assessed 
by evaluating the achievement of both purposes. The log 
marginal likelihood, SC_final, and the multiple predictive 
accuracy, L(test), of the learned C G N s seem to be sensible 
performance measures for the first and the second purpose, 
respectively. The multiple predictive accuracy is measured 
as the logarithmic scoring rule of Good [17]: 

L(test) = — L - ^ ] log/(y | 6„s"), (10) 

where d^t is a set of test cases and |d^| is the number of 
test cases. The higher the value for this criterion, the higher 
the multiple predictive accuracy of the learned CGNs. Note 
that L(test) is not the primary performance measure but one 
of the two measures to assess the explanatory power of the 
learned CGNs. W h e n focusing on description, L(test) is 
extremely necessary to detect models that, suffering from 
overfitting, have high SC_final values although they are not 
able to generalize the learning data to unseen instances. 

It should be noted that (10) represents a kind of 
probabilistic approach to the standard multiple predictive 
accuracy understanding the latter as the average accuracy of 
predicting the value of each feature present in the testing 
data. W h e n the data clustering problem is considered as the 
inference of a generalized joint probability density function 
from the learning data via unsupervised learning of a C G N , 
the probabilistic approach presented in (10) is more 
appropriate than the standard multiple predictive accuracy. 
This can be illustrated with a simple example. Let us 
imagine two different C G N s that exhibit the same standard 
multiple predictive accuracy but different multiple predic­
tive accuracy measured as the logarithmic scoring rule of 
Good. This would reflect that the generalized joint prob­
ability density functions encoded by the two C G N s are 
different. Moreover, this would imply that one of the two 
C G N s generalizes the learning data to unseen instances 
better (i.e., the likelihood of the unseen instances is higher) 
than the other, although their standard multiple predictive 
accuracy is the same. Thus, the standard multiple predictive 
accuracy would not be an appropriate performance criterion 
in this context as it would be unable to distinguish between 
these two models. Some other works that have made use of 
the logarithmic scoring rule of Good to assess the multiple 
predictive accuracy are [31], [34], [36], [37], [41]. 

The runtime of the overall learning process, runtime, is 
also considered as valuable information. Every runtime 
reported includes the runtimes of the preprocessing step 
(dimensionality reduction), learning algorithm, and post­
processing step (addition of the irrelevant features). 

All the results reported are averaged over 10 indepen­
dent runs for the synthetic!, synthetic2, and waveform 
databases, and over 50 independent runs for the pi m a 
database due to its shorter size. The experiments are run on 
a Pentium 366 M H z computer. 

4.3 Results: Relevance Ranking 

Fig. 5 plots the relevance measure values for the features of 
each of the four databases considered. Additionally, it 
shows the relevance threshold (dashed line) for each 
database. In the case of the synthetic databases, the 10 true 
irrelevant features of the synthetic! database and the 15 of 
the synthetic2 database clearly appear with the lowest 
relevance measure values. 

In the case of the waveform database, it m a y be 
interesting to compare the graph of Fig. 5 with other 
graphs reported in [4], [40], [42] for the same database. 
Caution should be used as a detailed comparison is not 
advisable due to the fact that relevance is defined in 
different ways depending on the particular purpose of each 
of these works. Moreover, the work by Talavera [40] is 
limited to conceptual clustering of symbolic data, then, the 
original waveform database was previously discretized. 
However, it is noticeable that the 19 true irrelevant features 
appear plotted with low relevance values in the four 
graphs. Although the shape of the graphs restricted to the 
21 relevant features varies for the three works reported ([4], 
[40], [42]), these agree with our graph and consider the first 
and last few of these relevant features less important than 
the rest of the 21. The shape of our graph is slightly closer to 
those that appear in [4], [42] than to the one plotted in [40]. 

Then, w e can conclude that the relevance measure 
proposed exhibits a desirable behavior for the databases 
where the true irrelevant features are known as it clearly 
assigns low relevance values to them. The following section 
evaluates if these values are low enough to automatically 
distinguish between relevant and irrelevant features 
through the calculation of a relevance threshold. 

Fig. 6 shows the log marginal likelihood (sc_final) and 
multiple predictive accuracy (L(test)) of the final C G N s for 
the four databases considered as functions of the number of 
features selected as relevant for learning. In addition to this, 
Fig. 7 reports on the runtime needed to learn the final C G N s 
as a function of the number of features selected as relevant 
for learning. The selection of t features as relevant means 
the selection of the t first features of the decreasing 
relevance ranking obtained for the features of each concrete 
database according to their relevance measure values. Thus, 
in this first part of the experimental evaluation, w e do not 
perform an automatic dimensionality reduction. Instead, 
w e aim to study performance as a function of the number of 
features involved in learning. This allows us to evaluate the 
ability of our relevance measure to assess the relevance of 
the features for the learning process. 

In general terms, Fig. 6 confirms that our relevance 
measure is able to induce an effective decreasing relevance 
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Fig. 5. Relevance measure values for the features of the databases used. The dashed lines correspond to the relevance thresholds. 

ranking of the features of each database considered. That is, 
the addition of the features that have low relevance 
measure values (last features of the rankings) does not 
imply a significant increase in the quality of the final 
models, even in some cases, it hurts the explanatory power. 
Thus, this figure confirms that the assumption that low 
correlated features are irrelevant for the learning process 
works very well on the continuous domains considered. O n 
the other hand, the addition of these irrelevant features 
tends to increase the cost of the learning process measured 
as runtime (see Fig. 7). 

Particularly interesting are the results for the synthetic 
databases where the original models are known. The 
selection of true irrelevant features to take part in learning 
does not produce better models but increases the runtime of 
the learning process. Also, it is known that the last 19 of the 
40 features of the waveform database are true irrelevant 
features. According to the relevance measure values for the 
features of the waveform database (see Fig. 5), all the 19 true 
irrelevant features would appear in the last 21 positions of 
the decreasing relevance ranking. Furthermore, it can be 
appreciated from Fig. 6 that the addition of these 
19 irrelevant features does not significantly increase the 
explanatory power of the final C G N s . The results obtained 
for the pi m a database, where there is no knowledge on the 
existence of true irrelevant features, share the fact that using 
all the features in the learning process degrades the quality 
of the final models as well as makes the learning process 
slower. Thus, the explanatory power of the final C G N s 
appears to be not monotonic with respect to the addition of 
features as relevant for learning. Hence, the need for 
automatic tools for discovering irrelevant features that 
m a y degrade the effectiveness and enlarge the runtime of 
learning. 

4.4 Results: Automatic Dimensionality Reduction 

Fig. 5 shows the relevance threshold (dashed line) calcu­

lated as it appears in Section 3.2.2 for each of the databases 

considered. Only those features that exhibit relevance 

measure values higher than the relevance threshold are 

qualified as relevant. The rest of the features are considered 

irrelevant for learning. 

It is interesting to notice that, for the two synthetic 

databases, all the true irrelevant features are identified 

independently of the complexity of the sampled model. It 

should be remembered that the synthetic2 database was 

sampled from a model more complex than the one used to 

generate the synthetic! database. The results obtained for 

the waveform database are also specially appealing as the 

19 true irrelevant features are correctly identified. More­

over, our scheme considers eight features of the remainder 

21 features also as irrelevant. This appears to be a sensible 

decision as these eight features correspond to the first four 

and the last four of the 21 relevant features. Remember that 

[4]/ [40], [42] agree in this point: The first and last few of the 

21 relevant features are less important than the rest of 

relevant features. 

Table 1 compares, for the four databases considered, the 

performance achieved when no dimensionality reduction is 

carried out and the performance achieved when our auto­

matic dimensionality reduction scheme is applied to learn 

C G N s . The column relevant indicates the number of relevant 

features automatically identified by our scheme for each 

database (see Fig. 5). It clearly appears from the table that our 

scheme is able to automatically set up a relevance threshold 

that induces a saving in runtime but still obtains good 

explanatory models. The application of our scheme as a 
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Fig. 6. log marginal likelihood (scjinal) and multiple predictive accuracy (L(test)) of the final CGNs for the databases used as functions of the 
number of features selected as relevant from a decreasing relevance ranking. 

preprocessing step for the BS-EM algorithm (Fig. 3) provides 

us with a saving of runtime over the original BS-EM algorithm 

that achieves 22 percent for the synthetic! database and 30 

percent for the synthetic^ database. Moreover, the explana­

tory power of the C G N s elicited from the original synthetic 

databases and the C G N s obtained w h e n using the automatic 

dimensionality reduction scheme is exactly the same. 

For the waveform database, our automatic dimensionality 

reduction scheme proposes a reduction of the number of 

features of 68 percent: Only 13 out of the 40 original features 

are considered relevant. This reduction induces a gain in 

terms of runtime of 58 percent, whereas our scheme does not 

significantly hurt the quality of the learned models. O n the 

other hand, the C G N s learned with the help of our automatic 
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Fig. 7. Runtime needed to learn the final CGNs for the databases used as a function of the number of features selected as relevant from a 
decreasing relevance ranking. 

dimensionality reduction scheme from the pi m a database 

exhibit, on average, a more desirable behavior than the C G N s 

elicited from the original pima database: Higher log marginal 

likelihood and multiple predictive accuracy, whereas the 

runtime of the learning process is shortened. 

5 C O N C L U S I O N S 

The main contribution of this paper is twofold. First, the 

proposal of a novel automatic scheme to perform 

unsupervised dimensionality reduction comprised of 1) a 

simple and efficient measure to assess the relevance of 

every feature for the learning process and 2) a heuristic to 

calculate a relevance threshold to automatically distinguish 

between relevant and irrelevant features. Second, to 

present a framework where unsupervised learning of 

C G N s benefits from our proposed scheme in order to 

obtain models that describe the original databases. This 

framework proposes performing learning taking into 

account only the relevant features identified by the 

automatic dimensionality reduction scheme presented. 

Then, every irrelevant feature is incorporated into the 

learned model in order to obtain an explanatory C G N for 

the original database. 

Our experimental results for synthetic and real-world 

domains have suggested great advantages derived from the 

use of our automatic dimensionality reduction scheme in 

unsupervised learning of CGNs: A huge decrease of the 

runtime of the learning process and an achievement of final 

models that appear to be as good as and, sometimes, even 

better than the models obtained using all the features in the 

learning process. Additionally, the experimental results 

have proven that the assumption that w e made, once 

relevance was defined according to our purpose to perform 

TABLE 1 
Comparison of the Performance Achieved when Learning CGNs from the Original Databases 

and when Our Automatic Dimensionality Reduction Scheme Is Applied 

database 

synthetic! 

synthetic2 

waveform 

pima 

features 

original 

25 

30 

40 

8 

relevant 

15 

15 

13 

7 

original dimensionality 

sc.final 

-75240 

-123248 

-120913 

-9182 

L(test) 

-15.89 

-26.43 

-25.90 

-11.89 

runtime 

64 

94 

245 

6 

dimensionality reduction 

sc.final 

-75240 

-123248 

-121154 

-9096 

L(test) 

-15.89 

-26.43 

-25.93 

-11.68 

runtime 

50 

66 

104 

4 



dimensionality reduction, works fairly well in the contin­

uous domains considered. 

This paper has primarily focused on the gain in 

efficiency without degrading the explanatory power of the 

final models derived from the use of the referred scheme as 

a preprocessing for the learning process. However, it is 

worth noticing that the identification of the relevant and 

irrelevant features for the learning process allows us to 

reach a better comprehensibility and readability of the 

problem domains and the elicited models. 

Few works have addressed the problem of unsupervised 

feature selection as a preprocessing step [6], [8], [39], [40]. 

However, all of them differ from our work. Whereas w e 

focus on the description of the original database, [6], [8], 

[40] are interested in the class label predictive accuracy and 

[39] in the multiple predictive accuracy. This impossibilities 

a fair comparison between these different approaches. 

Moreover, our automatic dimensionality reduction scheme 

offers a series of advantages over the other existing 

mechanisms. In addition to its simplicity and efficiency, 

our scheme is not coupled to any particular learning 

algorithm and it could be adapted to most of them. O n 

the other hand, the existing unsupervised feature selection 

mechanisms based on wrapper approaches are tailored to 

the performance criterion of the particular subsequent 

learning algorithm (see [8], [39]) and, thus, usually require 

a great deal of processing time for large databases. 

Furthermore, [6], [40] propose feature selection mechanisms 

based on filter approaches that only provide the user with a 

ranking of the features leaving open the problem of 

determining how many features should be used to perform 

a proper learning. Our scheme is able to automatically 

distinguish between relevant and irrelevant features in the 

relevance ranking. Then, one line of future research could 

be the extension of our current contribution to categorical 

data in order to overcome the problem of determining the 

number of features to be used by the subsequent learning 

algorithm. 

W e are aware that the contribution presented in this paper 

is unable to deal properly with domains where re¿MM(&ZMí 

features exist (i.e., features whose values can be exactly 

determined from the rest of the features). The reason is that 

the relevance measure introduced in Section 3.2.1 scores each 

feature separately instead of as groups of features. Thus, 

redundant features would be considered relevant although 

they would not provide the learning process with additional 

information over the true relevant features. To detect these 

features is necessary because they have an effect on the 

runtime of the learning process. One of the lines of research 

that w e are currently exploring is concerned with the 

extension of the general framework depicted in this paper 

to the case where redundant features exist. Our current work 

is focused on the derivation of a new relevance measure to 

assess the gain in relevance of each feature in relation to the 

features considered relevant so far. 
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