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AbstractÐWe study a discrete contextual stochastic (CS) model for complex and

variant patterns like handwritten Chinese characters. Three fundamental problems

of using CS models for character recognition are discussed and several practical

techniques for solving these problems are investigated. A formulation for

discriminative training of CS model parameters is also introduced and its practical

usage investigated. To illustrate the characteristics of the various algorithms,

comparative experiments are performed on a recognition task with a vocabulary

consisting of 50 pairs of highly similar handwritten Chinese characters. The

experimental results confirm the effectiveness of the discriminative training for

improving recognition performance.

Index TermsÐOffline recognition of handwritten Chinese characters, contextual

stochastic model, discriminative training, Markov random field.

æ

1 INTRODUCTION

OFFLINE recognition of handwritten Chinese characters is known
as a challenging pattern recognition problem, mainly because of
the large vocabulary size, complex character shapes, many
confusable subsets of characters with slightly different shapes,
and great variations of character samples written by the same or
different writers. In the past several decades, a great deal of efforts
have been made towards solving this problem (e.g., [1], [2], [3], [4],
[5], and the references therein). A statistical pattern recognition
approach (including artificial neural network) remains one of the
most popular approaches being adopted to construct character
recognizers in practice. Many recognition systems adopt a
maximum discriminant function-based approach (e.g., [6]) with
some simple discriminant functions derived from the metrics such
as the Euclidean distance, the Mahalanobis distance, the posterior
probability of a hypothesized class given the pattern to be
recognized, etc. Inspired by the success of hidden Markov model
methodology (HMM) in the automatic speech recognition (ASR)
field (e.g., [7]), in the past decade, there have been also many
research efforts that use HMM in both online handwriting
recognition and the offline character recognition. Although quite
encouraging results have been achieved by using these approaches
in various character recognition tasks, offline recognition of
handwritten Chinese characters remains largely an unsolved
problem that requests more researches. This fact encourages us
to explore new modeling techniques for attacking this difficult
problem. Among many possibilities, one direction to pursue is to
appropriately model the contextual information of a character.

Contextual or, more generally, structural information manifests
itself under a wide variety of guises. One possibility is to use a
syntactic pattern recognition approach which identifies the strokes of
each character template and recognizes an unknown image by
matching it against every template by means of stroke matching.
However, it is well-known that strokes are difficult to identify
robustly. Another possibility is to adopt a statistical pattern
recognition approach as people currently do in ASR area. A
number of statistical approaches aimed at exploiting the contextual
information had appeared in the pattern recognition literature
(e.g., [8], [9], [10]). In the past two decades, a significant amount of
research activities in image modeling with a special emphasis on
Hidden Markov Random Field (HMRF) which can be viewed as a
2D counterpart of HMM in modeling 2D signals like images (e.g.,
[11], [12], [13], [14], [15], [16], [17], and the references therein) has
been witnessed. The HMRF interprets the observed image as a
partly observed version of a complete data and can be used to
model and exploit the contextual information in an image. The
MRF technique has been applied to many applications such as
texture analysis, image restoration, classification, and segmenta-
tion. Some researchers in the OCR (optical character recognition)
field adopted causal HMRFs for character modeling (e.g., [18], [19])
where an asymmetric local dependence structure of the hidden states
(regions) is assumed as in causal MRFs (e.g., [17]). Motivated by
the developments of MRF techniques in the image processing field,
we also became interested in MRF theory and tried to use HMRF in
some pattern recognition applications. From the very first
beginning, we intend to model the local dependence structure of
the hidden states in a symmetric manner. At the same time, we
want to develop computationally efficient algorithms so that they
can be applied to practical pattern recognition problems. This
prevents us from directly using the relevant techniques in the
MRF literature and we need to develop our own solution.
Consequently, several simplified models which take into account
heuristically the local contextual dependence information were
developed and first applied to speech recognition application [20],
[21]. Interestingly, not much performance improvement was
achieved in comparison with conventional HMM techniques.
One possible explanation could be that for a temporal signal-like
speech, HMM with an assumption of a casual local dependence
structure for hidden states, might be good enough to capture the
contextual dependence information. Considering the spatial nature
of character images, it is natural to believe that omnidirectional
information of spatially contextual dependence might be useful for
character recognition if a model similar to HMRF is used to model
a character. One of the techniques, called contextual vector
quantization (CVQ), developed in [20], [21] was then applied to
handwritten Chinese character recognition [22]. The same techni-
que was later employed in implementing an offline recognizer
supporting a vocabulary of 4,616 Chinese characters as well as
alphanumeric and punctuation symbols, where a similar
CVQ technique is also used for language modeling [23]. In order
to avoid the possible confusion caused by using the term VQ which
usually has slightly different meanings in different research areas,
from now on, a new term, namely, contextual stochastic (CS) model
is adopted to refer to this technique.

Although strongly motivated by the MRF theory, strictly
speaking, our model cannot be called an HMRF model because
we are not following the theoretical rigor implied in the
MRF theory due to the practical difficulties arisen from the
assumption of the noncasual local dependence structure of the
hidden states. Instead, we are using the principle of maximum
discriminant decision rule [6] to guide us to design our character
model and the discriminant function. In this paper, we shall discuss
in detail how the idea of contextual stochastic modeling for
Chinese character recognition is formulated and developed under
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this framework. Several new training and recognition algorithms
will also be introduced and investigated.

2 CS MODELS FOR THE OFFLINE RECOGNITION OF

HANDWRITTEN CHINESE CHARACTERS

The discrete CS modeling framework for character recognition can
be outlined as follows: Given an original binary image of a
character, each character can be abstracted into a matrix of feature
vectors O � �oi;j� with oi;j being �i; j�th feature vector. The
meaning of oi;j depends on what feature extraction method and
sampling scheme are used. In [22], [23], and this study as well, five
features at each pixel are extracted to form a feature vector. So, oi;j
represents a 5D feature vector indexed by �i; j� (also called site
�i; j�) which happens to have the same index as the pixel in the
original character image. More specifically, the features employed
are the so-called cellular features [1], namely, the total number of
contiguous black pixels along the upwards and downwards
directions from the pixel under consideration and the number of
strokes encountered along the upwards, downwards, left, and
right directions from the pixel to the image boundary. One can
imagine that each character can be partitioned into a set of regions.
The concept of regions here is quite general which can correspond
to any intrinsic structure of a character under certain criterion.
Unlike strokes, there are many ways of partitioning a character
into such-defined regions. Z � �zi;j� represents a region map,
where zi;j can take one of K qualitative values fG1; G2; � � � ; GKg
each of which corresponds to a unique region label. The structural
information of a character image in terms of the contextual
relationship between its regions can be characterized statistically by
using the overall prior region distributions and the directional
region to region conditional probability distributions as detailed in
the following: One can imagine that for each unique region, there is
a unique distribution for observed feature vectors belonging to the
region. So, one can view oi;j as a realization of a random vector
observable in a region with label zi;j. Because one cannot observe
fzi;jg directly, regions are referred to as being hidden. For the
readers who are familiar with the HMM framework, it becomes
clear that the hidden region concept here corresponds to the hidden

state concept in HMM. The terms region and state will be used
interchangeably hereinafter. Elements of a CS model can now be
formally defined.

A CS model is characterized by the following:

1. K is the number of regions in the model. The collection of
all regions are denoted as G � fG1; G2; � � � ; GKg and the
region at site �i; j� is denoted as zi;j.

2. T is the number of distinct observation symbols, i.e., the
discrete alphabet size. Individual symbols are denoted as
V � fv1; . . . ; vTg so that any oi;j is one such observation
symbol.

3. � � f�k � Pr�zi;j � Gk�g is a collection of prior region
distributions, where �k measures the relative size in terms
of the number of feature vectors belonging to a region
labeled as Gk.

4. A � fam;nkl � Prm;n�zi�m;j�n � Gljzi;j � Gk�g is the set of
directional region to region conditional probability dis-
tributions which supply the contextual information be-
tween a feature vector and its immediate 4-neighbors.
Here, �m;n� 2 f�ÿ1; 0�; �1; 0�; �0;ÿ1�; �0; 1�g, each of which
corresponds to one of the four directions: up, down, left,
and right, respectively. For each direction �m;n�, am;nkl

denotes the conditional probability from region Gk to
region Gl along that direction.

5. B � fbk;t � bk�vt� � Pr�oi;j�vtjzi;j � Gk�g is a collection of
region output probability distributions. For each region,

there is a discrete output probability distribution. bk;t refers
to the probability of observing discrete symbol vt at a site
in region Gk. This is why the current model is named
discrete CS model.

For convenience, the compact notation � � ��;A;B� is used to

indicate the complete parameter set of the model. In order to

use this model for character recognition, three basic problems

similar to what were discussed in HMM (e.g., [7]), must be

solved. They are:

Problem 1. Given an observation matrix O � �oi;j� and a model �, how

can one choose a corresponding region map Z � �zi;j� which is optimal

in some meaningful sense? It will be seen later that the solution of this

problem is important in answering the following two questions as

well.

Problem 2. Given an observation matrix O � �oi;j� and a model �, how

can one appropriately define and efficiently compute a similarity

measure g�O; �� between the observation O and the given model � so

that it can be used to serve as a discriminant function for recognition

purposes with a maximum discriminant decision rule?

Problem 3. Given a set of training observations fOg, how can one

estimate the model parameters � under certain meaningful criteria?

In order to develop a methodology of region labeling and

parameter estimation for a CS model, the following two assump-

tions are made:

Assumption 1. Let �i;j be the immediate 4-neighbor neighborhood of the

site �i; j� and ��i;j be the union of �i;j and �i; j�. Given z��i;j , the random

feature vectors oi0 ;j0 s, with �i0; j0� 2 ��i;j, are conditionally indepen-

dent. That is,

Pr�oi;j; o�i;j jzi;j; z�i;j � �
Y

�i0 ;j0�2��i;j
Pr�oi0 ;j0 jzi0 ;j0 �: �1�

Assumption 2. Given zi;j and the �i;j defined as above, the zi0 ;j0s, with

�i0; j0� 2 �i;j, are conditionally independent. That is,

Pr�z�i;j jzi;j� �
Y

�i0 ;j0�2�i;j
Prm;n�zi0 ;j0 jzi;j�; �2�

where m � i0 ÿ i and n � j0 ÿ j.

This assumption was made to simplify the relevant derivations to

be discussed in the next section. Readers are referred to [8] for

discussions on its heuristic justification.
In the next section, some solutions to the above three

fundamental problems of CS modeling will be presented. One

will see that the three problems are linked together tightly under a

probabilistic framework.

3 SOLUTIONS TO THE THREE BASIC PROBLEMS OF

CS MODELS

3.1 Solution to Problem 1

Ignoring any context, observation oi;j can be classified to the region

Gk by choosing

Gk � argmax
zi;j

Pr�zi;jjoi;j�: �3�

If one wants to take contextual information into account in labeling

an observed feature vector, depending on the criterion used, one

has many ways to perform contextual labeling.
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3.1.1 Individual Contextual Labeling

As discussed in [20], one way to obtain an optimal region map for

an observed O is to individually consider the labeling of the

observed feature vector on the basis of its posterior probabilities of

group membership given all the observation vectors in the

character. The feature vector oi;j is then labeled as

Gk � argmax
zi;j

Pr�zi;jjO�: �4�

However, such a scheme would be too difficult to implement. In

order to reduce the complexity of the problem, we further assume

that oi;j might be labeled to maximize Pr�zi;jjoi;j;o�i;j �, i.e.,

Gk � argmax
zi;j

Pr�zi;jjoi;j;o�i;j �
� argmax

zi;j
Pr�zi;j; oi;j;o�i;j �:

�5�

Note that

Pr�zi;j;oi;j;o�i;j � �
X
z�i;j

Pr�zi;j; z�i;j ;oi;j; o�i;j�

and

Pr�zi;j; z�i;j ;oi;j;o�i;j � � Pr�oi;j; o�i;j jzi;j; z�i;j � � Pr�z�i;j jzi;j� � Pr�zi;j�:
�6�

Substituting (1) and (2) into (6), one gets

Pr�zi;j; z�i;j ; oi;j;o�i;j � �
Pr�zi;j� � Pr�oi;jjzi;j� �

Y
�i0 ;j0�2�i;j

Prm;n�zi0 ;j0 jzi;j� � Pr�oi0 ;j0 jzi0 ;j0 �: �7�

So, the feature vector oi;j can be labeled as

Gk � argmax
zi;j

Pr�zi;j� � Pr�oi;jjzi;j��Y
�i0 ;j0�2�i;j

X
zi0 ;j0

Prm;n�zi0 ;j0 jzi;j� � Pr�oi0 ;j0 jzi0 ;j0 �: �8�

The above labeling scheme is a noniterative one and all zi;js can be

updated synchronously. This method was originally developed in

[20] and called CVQ labeling, and later was adopted in [22], [23]

for character recognition.

3.1.2 Global Labeling of the Feature Map

Alternatively, one can define an optimal region map Zopt as

follows:

Zopt � argmax
Z

Pr�ZjO�: �9�

According to Besag's ICM (iterated conditional modes) method

[12], a suboptimal region map can be obtained by applying the

following single feature vector labeling procedure iteratively

which relabels oi;j to Gk by:

Gk � argmax
zi;j

Pr�zi;jjO; z
i;j �; �10�

where 
i;j is the set of all sites of the observation image except �i; j�.
By making an analogy to the original ICM method, a global region

map can be derived by iteratively applying the following single

feature vector labeling procedure [24]:

Gk � argmax
zi;j

Pr�zi;jjoi;j; o�i;j ; z�i;j � �11�
� argmax

zi;j
Pr�zi;j; z�i;j ;oi;j; o�i;j�: �12�

Substituting (7) into the above equation, we have

Gk � argmax
zi;j

Pr�zi;j� � Pr�oi;jjzi;j��Y
�i0 ;j0�2�i;j

Prm;n�zi0 ;j0 jzi;j� � Pr�oi0 ;j0 jzi0 ;j0 �; �13�

where each term on the second line of (13) represents a source of
contextual information. Consequently, for a given CS model, one
gets the following ªmodifiedº ICM feature vector labeling
algorithm:

Step a. Get an initial region map for the image. This can be
achieved by ignoring contextual considerations and merely
choosing zi;j to maximize Pr�oi;jjzi;j� at each �i; j� separately.

Step b. Let �i; j�move from the top left corner of the image to the
bottom right corner along a row-wise raster scan. Reidentify
feature vector oi;j to Gk according to (13) and replace the old zi;j
value with Gk. Then, this process of feature vector reidentification
is repeated following a path of a row-wise raster scan but in the
opposite direction, from bottom to top. Repeat again along
columnwise raster scans in two opposite directions.

Step c. Repeat Step b until the labeling of all feature vectors
becomes stable.

The above iterative algorithm can also be viewed as a
deterministic relaxation version of the above noniterative
CVQ labeling scheme.

3.2 Solution to Problem 2

Let there be a collection of M CS models, � � f�1; �2; � � � ; �Mg, one
for each character class in the vocabulary. Furthermore, let the
prior uniform probability distribution for all M character classes be
assumed. There are many possible ways to define a discriminant
function which characterizes the similarity between the observa-
tion O and the given model � of a character class. In the following,
we highlight three discriminant functions which we have studied.

One possibility is to define the discriminant function as
follows [22]:

g1�O; �� � g1�O;Z; �� �
Y
�i;j�

Pr�zi;j� � Pr�oi;jjzi;j��Y
�i0 ;j0�2�i;j

X
zi0 ;j0

Prm;n�zi0 ;j0 jzi;j� � Pr�oi0 ;j0 jzi0 ;j0 �;
�14�

where Z � �zi;j� is the region map obtained by labeling O � �oi;j�
with respect to � using (8).

Another way to define the discriminant function is as
follows [24]:

g2�O; �� �g2�O;Z; �� �
Y
�i;j�

Pr�zi;j� � Pr�oi;jjzi;j��Y
�i0 ;j0�2�i;j

Prm;n�zi0 ;j0 jzi;j� � Pr�oi0 ;j0 jzi0 ;j0 �;
�15�

where Z is the region map obtained by using the above modified
iterative ICM labeling algorithm.

A third way is to define the discriminant function as follows [24]:

g3�O; �� �
Y
�i;j�

X
zi;j

Pr�zi;j� � Pr�oi;jjzi;j��Y
�i0 ;j0�2�i;j

X
zi0 ;j0

Prm;n�zi0 ;j0 jzi;j� � Pr�oi0 ;j0 jzi0 ;j0 �:
�16�

This equation differs from (14) only in the presence of a summation
over all possible values of zi;j.

By using any of the above definitions of the discriminant
function, an unknown image O will be classified to class d if

g�O; �d� > g�O; �c� 8c 6� d: �17�
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This is known as the maximum discriminant decision rule for pattern

recognition.

3.3 Solution to Problem 3

The third, and by far the most difficult, problem of CS modeling is

to determine a method to adjust the model parameters ��;A;B�
under certain reasonable criterion. Several solutions will be

provided below.

3.3.1 Decision-Directed Method

In section 3.1, it is assumed that, if a particular model � is given, a

particular feature vector labeling procedure can be used to

generate a ªmeaningfulº region map Z. In this subsection,

conversely, assuming a particular region map Z is given, the

way to estimate the parameters of � will be discussed.

Let �O1;O2; . . . ;OS � denote a set of S observation samples with

Os � �osi;j� being the sth training sample, and �Z1;Z2; . . . ;ZS �
denote the corresponding region maps with Zs � �zsi;j� being the

given region map associated with the sth image. Assuming

observation samples are drawn independently, an objective

function can be defined as follows:

F ��� �
XS
s�1

ln g�Os;Zs; ��; �18�

where g�Os;Zs; �� can take the form of g1��� in (14), or g2��� in (15).

The parameter estimation of a CS model is then based on the

maximization of the above-defined objective function. This type of

objective functions will be called hereinafter ªpseudolikelihoodº

functions.
If g2��� is adopted, the ªpseudolikelihoodº function becomes

F2��� �
XS
s�1

ln g2�Os;Zs; �� �19�

and the reestimation formulas for �k, a
m;n
kl , and bk;t can be derived

as follows:

�̂k �
PS

s�1 N
s
kPS

s�1 N
s

�20�

âm;nkl �
PS

s�1 f�i; j� j zsi;j � Gk; z
s
i�m;j�n � Glg

��� ���PS
s�1 N

s
k

�21�

b̂k;t �
PS

s�1 f�i; j�josi;j � vt; zsi;j � Gkg
��� ���PS

s�1 N
s
k

; �22�

where Ns
k denotes the number of feature vectors in the sth image

assigned to region Gk, N
s denotes the total number of feature

vectors in that image, and jf. . .gj denotes the number of events in

the set defined within the two bars.
Now, an algorithm can be formulated for CS model parameter

estimation by taking an initial set of model parameters and

iteratively improving it as follows:
Step 1. An initial estimate of parameters of a CS model can be

derived with a bootstrapping region segmentation algorithm to be

explained later.
Step 2. Based on the current estimate of model parameters, a

region map for every training image is generated with feature

vectors identified according to the modified ICM labeling method

described previously.
Step 3. Based on the current region maps, the model parameters

are updated by using (20), (21), and (22). b̂k;t for any vt not observed

in region Gk should be assigned a small constant � followed by

normalization instead of leaving it at zero because such a lack of

observation may simply be due to the finite size of the training
image set.

Step 4. Repeat Step 2 and Step 3 until convergence (i.e., the
change in (19) drops below a predefined threshold).

The above algorithm can be viewed as a standard technique for

finding a fixed-point via the method of successive approximation

[25]. In practice, convergence to what must generally be a local

maximum of the above-defined ªpseudolikelihoodº function

seems very rapid with little change of the function value after six

or seven iterations on the average. Readers can examine the rate of

convergence in Section 5.

If the modified ICM labeling in Step 2 of the above training

algorithm is replaced with the noniterative CVQ labeling proce-

dure defined in (8), the resulting training algorithm can be viewed

as maximizing the ªpseudolikelihoodº function defined in (18)

with g��� taking the form of g1��� as follows:

F1��� �
XS
s�1

ln g1�Os;Zs; ��: �23�

In practice, the convergence of this simplified algorithm is still

acceptable. Readers can refer to its learning curve in Section 5. In

fact, this simplified training and the associated recognition

algorithm were first presented in [22] as an extension of the

CVQ model used in speech recognition [20], [21] and, later, used to

build the character recognizer reported in [23].

In order to start the training process of � for a character, the

initial model parameters can be specified according to the initial

region identifications of an arbitrarily chosen training sample of

the character. Such a bootstrapping region segmentation procedure

is described as follows [22], [23]:

. Each row of the selected original binary character image as
a bit map is decomposed into alternate white and black
segments. Each segment in the first row is assigned a
unique region identity.

. For each segment in the next and subsequent rows,

- if there is a segment in the previous row having the
same color and approximately the same starting and
ending columns, say, differing by no more than one
pixel position, the same region identity will be
inherited from the segment of the previous row;
otherwise,

- a new region identity will be created for the segment
of the new row.

In this way, pixels of the same stroke may therefore belong to

multiple regions and blank spaces between strokes will be divided

into regions also. Thus, a region map is created for the image.

Based on the initial region map, one computes the initial parameter

estimates of the CS model by using (20), (21), and (22) (note that

S � 1 in this case). As a remark, the above initialization method is

not necessarily the best one. As a future work, other possibilities

deserve being explored.

3.3.2 Mixture-Region Algorithm

Identifying each feature vector to a region will inevitably end up
with some quantization error. Each feature vector can be
considered belonging to all regions stochastically instead of a
particular one in the labeling procedure. That is, one considers
Pr�zi;j � Gk;oi;j;o�i;j � over all possible k � 1; 2; . . . ;K, and not just

Gk � argmax
zi;j

Pr�zi;j; oi;j;o�i;j �;
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as in (8). The associated training algorithm uses the following

ªpseudolikelihoodº function [24]:

F3��� �
XS
s�1

ln g3�Os; ��; �24�

where g3�Os; �� is defined in (16). One can observe that in (20), (21),

and (22), Ns
k is the number of feature vectors from the

training image assigned to region Gk. It's useful to think ofP
i;j Pr�zsi;j � Gk;o

s
i;j; o

s
�i;j
� as a fractional number of feature vectors

from the training image assigned to region Gk. Then, one can

modify the parameter reestimation formulas (20), (21), and (22)

into the ones shown as follows:

�̂k �

PS
s�1

P
i;j
Pr�zsi;j � Gk; o

s
i;j;o

s
�i;j
�

P
k0

PS
s�1

P
i;j

Pr�zsi;j � Gk0 ;o
s
i;j;o

s
�i;j
�

�25�

âm;nkl �

PS
s�1

P
i;j

Pr�zsi;j � Gk; o
s
i;j;o

s
�i;j
� � Pr�zsi0 ;j0 � Gl; o

s
i0 ;j0 ;o

s
�i0 ;j0
�

PS
s�1

P
i;j

P
l0
Pr�zsi;j � Gk;o

s
i;j;o

s
�i;j
� � Pr�zsi0 ;j0 � Gl0 ;o

s
i0 ;j0 ; o

s
�i0 ;j0
�
�26�

b̂k;t �

PS
s�1

P
f�i;j�josi;j�vtg

Pr�zsi;j � Gk;o
s
i;j; o

s
�i;j
�

PT
t�1

PS
s�1

P
f�i;j�josi;j�vtg

Pr�zsi;j � Gk;o
s
i;j;o

s
�i;j
�
; �27�

where

Pr�zsi;j �Gk;o
s
i;j; o

s
�i;j
� � Pr�Gk� � Pr�osi;jjGk��Y

�i0 ;j0�2�i;j

X
zs
i0 ;j0

Prm;n�zsi0 ;j0 jGk� � Pr�osi0 ;j0 jzsi0 ;j0 �: �28�

The mixture-region algorithm has a merit of being more robust by

considering all possible region labels and not just the most likely

one, which can be regarded as a smoothing technique. Little is

known of the convergence properties of the above training

algorithm, but limited experience thus far seems encouraging.

Readers can refer to the relevant learning curve in Section 5.

3.3.3 Training a CS Model with the Gradient

Projection Method

With the well-defined objective function as in (24), CS model

parameters ��;A;B� can be considered as variables of this function

subject to the following linear constraints:

XK
k�1

�k � 1 and �k�0; k � 1; 2; � � � ;K �29�

XK
l�1

am;nk;l � 1 and am;nk;l �0; k; l � 1; � � � ; K; �m;n� 2 � �30�

XT
t�1

bk;t � 1 and bk;t��; k � 1; � � � ; K; t � 1; � � � ; T ; �31�

where � is a small positive value and � � f�ÿ1; 0�; �1; 0�; �0;ÿ1�;
�0; 1�g. If one looks at the training problem of a CS model as a

problem of classical constrained optimization, then the standard

optimization techniques can be used to solve for the ªoptimalº

model parameters. There are many general purposed procedures

for linear constrained optimization (e.g., [25]) that can be used to

solve the training problem. One of them is called, the gradient

projection method (GPM), which was proposed and extensively

analyzed by Rosen in [26].

The main idea of the GPM is to search along the projection of
the gradient of the objective function on the constraint space for a
local maximum. So, the GPM is essentially a steepest ascent
method in the subspace defined by ªthe active constraintsº of
model parameters. The method had been adopted and tailored for
HMM training in [27], [28]. As in the HMM case, when this
GPM method is applied to train CS models, a very simple
formulation can be derived due to the special structure of the
constraints on CS model parameters. One can see that the
constraints in (29), (30), and (31) can be divided into disjoint
groups, i.e., no two constraint groups have any variable in
common. Each constraint group takes the form

PN
i�1 xi � 1 and

xi � �; i � 1; 2; � � � ; N . So, all the CS model parameters and their
associated constraints can be divided into disjoint subsets, with the
corresponding search directions computed and the working set for
each subset determined independently. The overall search direc-
tion is just the concatenation of search directions of the disjoint
subsets of CS model parameters. In this way, the same formulation
in [27], [28] can also be used for CS model parameter estimation
because of the same linear constraint properties. What needs to
change is the evaluation of the objective function F3��� and its
partial derivatives. These partial derivatives can be calculated as
follows:

@F3

@�k
�
XS
s�1

X
i;j

bk�osi;j�Y s
i;j;k

Xs
i;j

�32�

@F3
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X
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X
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X
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; �34�

where

Y s
i;j;k �

Y
�m;n�2�

XK
l�1

am;nk;l bl�osi�m;j�n�

Y m;n
i;j;k �s� �

Y
�m0 ;n0�2�ÿf�m;n�g

XK
l�1

am
0 ;n0

k;l bl�osi�m0 ;j�n0 �

Xi;j �
XK
k�1

�kbk�osi;j�Yi;j;k

and 1��� is an indicator function:

1��h� � 1 if �h is true
0 otherwise:

�
�35�

Readers are referred to [27] for details of the GPM algorithm. Note
that the GPM algorithm does not require the objective function to
assume any special form. This fact may prove to be an advantage
since the decision-directed algorithms and the mixture-region
algorithm discussed previously are not applicable to a general
objective function which is usually demanded in discriminative
training. In the following section, we discuss how to discrimina-
tively train the CS models by using GPM.

4 DISCRIMINATIVE TRAINING WITH GPM

For any CS model-based character recognizer, generally speaking,
the purpose of CS model training is to yield a recognizer of the
lowest possible recognition error rate. This objective is achieved by
maximizing a suitable objective function R���. Thus, there are two
important and difficult problems to consider. The first is to
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determine a meaningful objective function such that, if

R� ��� > R���, then �� produces a better recognizer than that by �.

Once a function R��� has been chosen, the second problem (the

estimation problem) is to find the parameter set �� which

maximizes it. The maximum ªpseudolikelihoodº training of

CS models described in the previous section will not necessarily

lead to maximum recognition accuracy. Discriminative training

methods such as the minimum classification error (MCE) training

(e.g., [29], [30], [28]) had been proposed for a speech recognition

problem to address this issue. In this section, we demonstrate how

to use the MCE/GPM method in [28] for discriminative training of

CS models [31].

Let's consider a collection of M CS models, � � ��1; �2; � � � ; �M�,
where �m denotes the set of parameters of the mth CS model. Let

O�m;n� denote the nth training sample associated with �m, and each

model has Wm such training samples. The objective function for

discriminative training adopted in this section is the minimum

recognition error formulation which is a three-step procedure

proposed in [29]. The three-step definition emulates the classifica-

tion/recognition operation as well as the performance evaluation,

particularly in terms of classification errors. Readers are referred to

[29], [30] for details of the rationale of the MCE framework. In the

following, we briefly outline how to form the objective function for

MCE training.

The first step of the formulation is to prescribe an appropriate

discriminant function fi�O; �� which is used by the classifier to

make its decision for each input O by choosing the largest of the

discriminants evaluated on O, i.e.,

O is classified as class i; if fi�O; �� � max
j
fj�O; ��: �36�

The ith discriminant function fi�O; �� is chosen to be ln g3�O; �i�.
A misclassification measure is then introduced in the second

step to embed the decision process in a function form. While there

are many alternatives, one misclassification measure for each class i

can be defined as:

di�O; �� � ÿfi�O; �� � ln
1

M ÿ 1

X
j 6�i

efj�O;���
" #1

�

; �37�

where � is a positive number. This misclassification measure is a

quantity that indicates whether an input token O of the ith class

will be misclassified according to the decision rule of (36),

implemented by the classifier parameter set �. A larger di�O; ��
definitely implies that more of the input will be misclassified. By

varying the value of �, one can, to a degree, take all the competing

classes into consideration in the process of optimizing the classifier

parameter set �.

The third step is to define the smoothed loss function li�O; �� of

the misclassification measure for each class i. One possibility is to

choose

li�O; �� � li�di�O; ��� � 1

1� eÿ�di�O;�� ; �38�

where � is a positive number. Thus, for any unknown O, the

classifier performance is measured by

l�O; �� �
XM
i�1

li�O; ��1�O 2 Ci�; �39�

where 1��� is the same indicator function as in (35) and Ci is used to

denote both the class and the data set of it.

At this point, the objective function of discriminative training is
defined as the following empirical average cost for the entire training
data set:

L��� � 1

W

XM
m�1

XWm

n�1

lm�O�m;n�; ��; �40�

where W �PM
m�1 Wm is the total number of training samples. By

controlling parameters � and �, and minimizing this empirical
average cost, one can have an accurate approximation to the
minimization of the classification error probability. Due to the fact
that the GPM formulation in [27] is for maximization, the actual
objective function adopted is

F4��� � ÿL���: �41�
To compute the gradient rF4���, let �k denote a particular
parameter of model k, then one has

@F4���
@�k

� ÿ 1

W

XM
m�1

XWm

n�1

@lm�O�m;n�; ��
@�k

: �42�

After some algebraic manipulation, one gets
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j 6�m efj�O
�m;n� ;��� �

@fk�O�m;n�; ��
@�k

�
:

�43�
By substituting the related derivatives @fk�O;��

@�k
(which are special

cases in (32), (33), and (34)) into the above equation, the final

derivatives used in the gradient projection method can be

obtained.

Given the above objective function and its partial derivatives,

one can now apply the GPM to discriminatively adjust the

CS model parameters � which equivalently minimizes the cost

function.

5 EXPERIMENTS AND RESULTS

5.1 Experimental Setup

In this study, 50 pairs of highly similar Chinese characters, as

shown in Fig. 1, are used as the recognition vocabulary to study the

characteristics and the effectiveness of the various training

algorithms and the discriminant functions discussed in this paper.

This vocabulary is formed by choosing the most confusable pairs

from the confusion matrix of the testing result of a previous

recognizer reported in [23]. Each character is written by 200 writers

with 150 of them used for training and the remaining 50 samples

for testing. The same preprocessing techniques as in [22], [23] are

adopted. The characters are scanned by a 300dpi scanner into
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TIFF files, which are then noise removed, thinned, segmented, and

size normalized (with a resolution of 30� 30 pixels) into

individual character files. At each pixel, a feature vector is

constructed by computing five features, as described in Section 2.

Four character recognizers are constructed by using four combina-

tions of the model training algorithms and the discriminant

functions described in Sections 3 and 4. These recognizers are

described briefly in Table 1. A series of experiments are then

carried out to compare the performance of these recognizers.

5.2 Experimental Results

The first experiment is to test Recognizer 1. After 20 iterations of
training, the recognizer achieves a recognition rate of 98.1 percent
on the training set (close-test) and 93.7 percent on the testing set

(open-test). The objective function values, and the close- and open-

test recognition rates at various iterations are plotted in Fig. 2 to

illustrate the performance improvement as a function of the

training process. The relative change of the corresponding

pseudolikelihood function is less than 10ÿ3 after nine iterations.
The second experiment is to test Recognizer 2. After 20 iterations

of training, the close- and open-test rates are 98.5 percent and

93.8 percent, respectively. The related learning curves are plotted

in Fig. 3. The algorithm converges rapidly with a relative change in

the pseudolikelihood function value less than 10ÿ3 after

seven iterations.
The third experiment is to test the mixture-region algorithm.

After 20 iterations, the close- and open-test rates are 98.1 percent
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TABLE 1
Character Recognizers Constructed by Using Different Methods

Fig. 2. Learning curves for training Recognizer 1: (a) Close-test and open-test

recognition rates (percent correct). (b) The corresponding pseudolikelihood

function values.

Fig. 3. Learning curves for training Recognizer 2: (a) Close-test and open-test

recognition rates (percent correct). (b) The corresponding pseudolikelihood

function values.



and 94.4 percent, respectively. The related learning curves are
plotted in Fig. 4. Although the close-test result is not as high as that
of using the modified ICM algorithm, the open-test result is
improved as a consequence of ªsmoothingº or ªaveragingº over
the regions. The relative change of the corresponding pseudolikeli-
hood function is less than 10ÿ3 after 12 iterations.

The fourth experiment is to test the discriminative training
based on the GPM. The training process starts with the well-
trained initial models which themselves are trained with the
mixture-region algorithm. The parameters � and � used in (37) and
(38) are set to be 1 and 0.1, respectively. When � approaches 1,
the misclassification measure becomes

di�O; �� � ÿfi�O; �� � fj�O; ��; �44�
where j is the index of the class with the largest discriminant value
among those classes other than Ci. After 20 iterations, the close-
and open-test recognition rates are 99.7 percent and 95.5 percent,
respectively. Fig. 5 illustrates the rate of convergence of the
discriminative training process in terms of the objective function
and close- and open-test results. One can observe in Fig. 5b that the
negative of the objective function has almost the same form of
change as the misclassification rate, which demonstrates that the
definition L��� emulates the classification errors very well.

5.3 Discussion

The close- and open-test recognition performance of the above four
recognizers are summarized in Table 2 for comparison. Among the

three maximum pseudolikelihood training methods, it can be
observed that the training based on the modified ICM algorithm
(Recognizer 2) can produce a better fitting to the training data than
the other two algorithms (Recognizers 1 and 3). However, from the
open-test results, it seems that the mixture-region training
algorithm (Recognizer 3) tends to smooth the model thus, leading
to a better generalization capability. In other words, if there is no
shortage of training data, one can expect the modified
ICM algorithm to be superior to the other two algorithms. The
mixture-region algorithm seems to be more robust when there are
insufficient training data which is the case in real life most of the
time. By MCE/GPM training (Recognizer 4), about 86 percent error
rate reduction is achieved for close-test and 20 percent for open-
test. The very high close-test rate suggests the power of
discriminative training in tuning the model parameters to the
training data. This is not accomplished on the expense of model
generalization to unseen samples, because effectively, the model of
each character is now trained with not only its own samples but
also those of the similar characters.

Although a worst-case comparison of the computational
complexity of the above recognizers can be easily made, it's not
so meaningful here. In practical implementation of the above
recognizers, many tricks and pruning techniques have been used.
Consequently, different recognizers can be made equally efficient.
A detailed description of those techniques is out of the scope of this
paper.
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Fig. 4. Learning curves for training Recognizer 3 (mixture-region algorithm):

(a) Close-test and open-test recognition rates (percent correct). (b) The

corresponding pseudolikelihood function values.

Fig. 5. Learning curves for discriminative training with initial models trained by

mixture-region algorithm: (a) Close-test and open-test recognition rates (percent

correct). (b) The objective function values and the misclassification rate of

close-test.



In summary, the results show that all three pseudolikelihood-
based algorithms are efficient for CS model training. The
performance of such a recognizer can be substantially upgraded
by parameter fine-tuning through discriminative training with the
objective of minimum recognition error rate using the GPM. As a
remark, like any local optimization procedure, the final result of
the GPM-based training highly depends on the initial values of the
CS model parameters. This also suggests that the algorithm based
on the GPM is most attractive for final ªtune-upº and will usually
be bootstrapped from well-trained initial models trained with
other methods such as pseudolikelihood-based algorithms.

6 SUMMARY

In this paper, we present a study on using a discrete contextual
stochastic model for handwritten Chinese character recognition.
The capability of contextual stochastic models in modeling
complex and variant patterns like handwritten Chinese characters
has been demonstrated by the encouraging results obtained thus
far. The limitations of the current discrete CS model are also
apparent. First, it requires too much memory to store those discrete
probability distribution parameters. Second, it is not clear if the
adopted cellular features are the most efficient ones. Some
perceptually-motivated features are currently under investigation,
and the discrete density framework is being extended to a
Gaussian-mixture continuous density framework. By extending a
discrete CS model to a continuous density one, the number of
model parameters will be reduced greatly. This will also facilitate
the study of other more advanced topics such as recognizer
adaptation, robustness issues, character verification, etc. As
important future work, a carefully designed comparative study
will be performed on a larger scale experiment to ascertain the
performance difference among the contextual stochastic modeling
approach, the HMM approach, and the more conventional
multiple-prototype based approach. This will help us make an
appropriate decision in choosing which approach to use when
constructing a practical handwritten Chinese character recognizer.
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