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Shape from Periodic Texture Using the
Eigenvectors of Local Affine Distortion

Eraldo Ribeiro and Edwin R. Hancock

AbstractÐThis paper shows how the local slant and tilt angles of regularly

textured curved surfaces can be estimated directly, without the need for iterative

numerical optimization. We work in the frequency domain and measure texture

distortion using the affine distortion of the pattern of spectral peaks. The key

theoretical contribution is to show that the directions of the eigenvectors of the

affine distortion matrices can be used to estimate local slant and tilt angles of

tangent planes to curved surfaces. In particular, the leading eigenvector points in

the tilt direction. Although not as geometrically transparent, the direction of the

second eigenvector can be used to estimate the slant direction. The required

affine distortion matrices are computed using the correspondences between

spectral peaks, established on the basis of their energy ordering. We apply the

method to a variety of real-world and synthetic imagery.

Index TermsÐShape-from-texture, spectral analysis, affine distortion,

eigen-analysis.

æ

1 INTRODUCTION

THE recovery of surface shape using texture information is a process
that is grounded in psychophysics [1]. Moreover, it has been
identified byMarr [2] as being a potentially useful component of the
2 1

2
D sketch. Stated succinctly, the problem is as follows: Given a

two-dimensional image of a curved textured surface, how can the
three-dimensional shape of the viewed object be recovered? This is
clearly an ill-posed problem. In order to be rendered tractable,
restrictive simplifications must be made. These frequently hinge on
the assumed periodicity, homogeneity [3], and isotropy of the
underlying surface texture. When viewed from the standpoint of
shape recovery, there are two distinct areas of activity in the
literature. The first of these confines its attention to planar surfaces
and focuses on the recovery of perspective geometry from texture
gradient or vanishing point location [4], [5], [6], [7]. The second
problem is that of interpreting the geometry of curved surfaces [8],
[9], [10], [11], [12]. Without detailed knowledge of the viewing
geometry or camera optics, the latter problem involves recovering
local surface orientation from texture gradient.

This second problem is perhaps the most interesting from the

standpoint of shape perception and is the focus of this paper. The

problem can be approached in two ways. The first of these is to use

presegmented structural texture primitives and to measure texture

gradient using the variation in the size of the primitives. This

approach will clearly be sensitive to the process used to segment

the required texture primitives. However, the method can be used

with aperiodic textures. The second commonly used method is to

adopt a frequency domain representation of the underlying texture

distribution. The frequency domain approach can be applied more

directly to the raw image data and is potentially less sensitive to

the segmentation process. However, the applicability of the

method is restricted to periodic textures.
Although it is not dependant on the reliable detection of texture

primitives or the measurement of texture gradient, the frequency

domain approach to curved shape-from-texture can be criticized
on a number of grounds. First, in the methods of both Krumm and
Shafer [13] and Malik and Rosenholtz [10], [11] the recovery of
local surface orientation is based on either numerical optimization
or exhaustive search. This is done to overcome the problems
associated with the fact that no fronto-parallel sample of the
texture is to hand. In addition, the method of Rosenholtz and Malik
[10], [11] has difficulty in distinguishing between curved and
planar surfaces, is sensitive to initial parameter values, and needs
curvature to be specified as a parameter.

To overcome these shortcomings, our aim in this paper is to
present a closed form method for recovering shape from curved or
planar textured surfaces using frequency information. We follow
Krumm and Shafer [13], Super and Bovik [5], [14], Malik and
Rosenholtz [10], [11] by measuring the local texture variations due
to the perspectivity using the frequency domain affine distortion of
the pattern of spectral peaks. Our main contribution is to show that
the directions of the eigenvectors of the affine distortion matrix can
be used to directly estimate the slant and tilt angles of local tangent
planes to curved surfaces. This result applies under the assump-
tion that the underlying surface is painted with a uniform texture
and is viewed under perspective projection onto the image plane.
The texture is assumed to be homogeneous but not necessarily
isotropic. Our main contribution is, therefore, to develop a direct
and simple method for estimating slant and tilt angles.

The main advantage of the method presented in this paper over
those of Super and Bovik [14], Krumm and Shafer [15], [4], [13] and
Malik and Rosenholtz [11] is that it delivers slant and tilt angles by
computing the eigenvectors of the affine distortion matrix for
spectral peaks. These related methods, differ from our proposed
method in the way in which the affine distortion of the texture
spectrum is used to measure the local surface orientation of curved
surfaces. Specifically, previous work in this area concentrates on
using numerical optimization or exhaustive search to recover the
local slant and tilt angles. By contrast, our method recovers the
parameters in closed form. To provide some specific examples,
Krumm and Shafer [13] numerically adjust the slant and tilt angles
so as to minimize a ªfrontalizationº error between the back-
projected texture spectra. Although less direct than our method of
orientation estimation, this backprojection method involves a
feedback loop. The lack of feedback between the measured texture
spectra and the estimated orientation field may be viewed as a
weakness of our method. Super and Bovik [14], [5], on the other
hand, invoke the homogeneity assumption and recover the surface
orientation parameters which minimize the variance of the
backprojected frequency vectors of the spectral peaks. Rosenholz
and Malik [10], [11] have a more sophisticated method which
involves using a singular value decomposition method to mini-
mize a �2 measure of goodness of fit. The recovered parameters are
the slant and tilt angles together with local curvature.

2 LITERATURE REVIEW

Beforeweproceed to detail our new shape-from-texturemethod,we
pause to review the related literature. The topic of shape-from-
texture has been studied in the computer vision literature for almost
three decades. Early work hinged on the use of texture-gradients
[16], [17]. Bajcsy andLiebermanwere among the first to demonstrate
the use of texture gradient as a depth cue [17]. Drawing on
psychophysics, Stevens has provided an analysis of the information
content of texture-gradient [18] and has shown how it can be used to
recover surface orientation through the estimation of slant and tilt
angles [19]. Witkin [20] has developed a statistical method for
recovering local orientation and, hence, surface shape from natural
two dimensional imagery. The method commences by assuming a
uniform distribution of edge orientation, i.e., an isotropic texture,
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and models how this distribution transforms under perspective

geometry. The shape of the edge orientation distribution can be used

to estimate slant and tilt angles. Several authors have developed

methods which assume that a fronto-parallel view of a planar

sample of the texture is available. For instance, Ikeuchi [21] has

shown how the process of estimating surface shape from regular

texture patterns can be simplified using spherical projection.

Aloimonos and Swain [22] have computed a texture analogue of

the reflectance map from the area gradient of the fronto-parallel

texture elements. The regularized variationalmethod of Ikeuchi and

Horn [23] for shape-from-shading is adapted to recover surface

orientation. In this way, poor initial surface orientation estimates

can be improved using iterative relaxation operations [21], [22].

However, the smoothing of the field of surface normals is based on a

simple neighborhood averaging method.
Several authors have attempted to elucidate more general

frameworks for shape-from-texture. For instance, Blake and

Marinos [3] have critically assessed Witkin's [20] edge isotropy

assumption. They have developed an optimization-based method

for recovering surface orientation from second-order texture

moments. Kanatani and Chou [24] have further extended Witkin's

[20] work by modeling the statistical transformation of texture

density. They consider the effects of perspective geometry when

isotropy and homogeneity assumptions apply. Garding [8], [9] has

developed an elegant framework based on differential geometry.

This simplifies the analysis of perspective geometry and provides a

mathematical setting in which curvature can be directly recovered

from weakly isotropic textures.
More recently, the use of spectral information has been

explored as an alternative to texture-gradient information. The

use of frequency domain or spectral measurements represents a

way of overcoming some of the restrictive requirements imposed

by the need to work with accurately determined texture gradients.

Moreover, it increases the range of natural textures that can be

accommodated. Frequency properties can be captured using a

number of different representations including the Fourier trans-

form, Gabor wavelets, and the Wigner distribution [25], [5], [10],

[26], [27]. The frequency domain method has been used extensively

in the recovery of the perspective pose of texture planes. In an

important series of papers, Krumm and Shafer [15], [4], [13]

recover slant and tilt angles for periodic surface textures. They

commence by introducing the idea of using measurements of the

affine distortion to recover the parameters of perspective projec-

tion from spectral peaks [15]. Parameter estimation is based on

exhaustive numerical search. The method is later extended to

provide a means of segmenting multiple planar patches from

textured images [4]. Super and Bovik [5], [14] have an equivalent

method which focuses on linearizing the Jacobian of the

perspective transformation in the frequency domain. The method

shares with that of Krumm and Shafer the feature of using

exhaustive numerical search.
Turning our attention to curved surfaces, Krumm and Shafer

[13] have shown how to relate the frequency distortion between

local planar patches under an affine transform. Malik and

Rosenholtz [10], [11] use Garding's framework [8] to estimate

local orientation and curvature. Whereas Garding uses departures

from isotropy as the texture measurement, Malik and Rosenholtz

use Krumm and Shafer's ideas to construct affine distortion

measures. The texture measurements are based on frequency

domain derivatives. The method uses numerical minimization to

recover the five parameters needed to estimate orientation and

curvature. The method requires a good initial estimate of the

magnitude of the curvature. It can be viewed as minimizing a

measure of spectral back-projection error.

3 SPECTRAL DISTORTION

This paper is concerned with recovering a dense map of surface
orientations for surfaces which are uniformly painted with
periodic textures. Our approach is a spectral one which is
couched in the Fourier domain. We make use of an analysis of
spectral distortion under perspective geometry extensively devel-
oped by Super and Bovik [5], Krumm and Shafer [4], [13], and by
Malik and Rosenholtz [10], [11] among others. This analysis
simplifies the full perspective geometry of texture planes using a
local affine approximation. Suppose that Ut represents the
frequency vector associated with a spectral peak detected at the
point with position-vector Xt on a texture plane. Further, let Ui

and Xi represent the corresponding frequency vector and
position vector when this texture plane undergoes perspective
projection onto the image plane. If the perspective projection can
be locally approximated by an affine distortion TA�Xi�, then the
relationship between the texture-plane and image-plane fre-
quency vectors is Ui � TA�Xi�

ÿT
Ut. The affine distortion matrix

is given by

TA�Xi� �



hf cos�

xi sin�� f cos � cos� ÿf sin �

yi sin�� f sin � cos� f cos �

2

4

3

5; �1�

where f is the focal length of the camera, � is the slant angle of the
texture-plane, � is the tilt angle of the texture-plane, and

 � f cos �� sin � xi cos � � yi sin �� �.

We aim to exploit this property to recover shape-from-texture.
Provided that the texture distribution painted on a curved surface
is homogeneous, observed changes in the image plane texture
pattern can be attributed to variations in surface orientation. Our
aim is to compute the slant and tilt angles of local tangent planes to
a textured surface using the observed distortions of the texture
spectrum across the image plane. To do this, we the measure affine
distortion between corresponding spectral peaks.

Consider the point S on the curved texture surface. Suppose
that the neighborhood of this point can be approximated by a local
planar patch. This planar patch undergoes perspective projection
onto the image plane. Further suppose we sample the texture
projection of the local planar patch at two neighboring points A

and B laying on the image plane. The coordinate vectors of the two
points are, respectively, XA � �x; y�T and XB � �x��x; y��y�T ,
where �x and �y are the image-plane displacements between the
two points.

Suppose that the local planar patch on the texture surface has a
spectral peak with frequency vector US � �us; vs�

T . On the image
plane, the corresponding frequency vectors for the spectral peaks
at the points XA and XB are respectively UA � �uA; vA�

T and
UB � �uB; vB�

T . Using the Fourier domain affine projection prop-
erty described above, the texture-surface peak frequencies are
related to the image plane peak frequencies via the equations UA �

�TA�XA�
ÿ1�TUS and UB � �TA�XB�

ÿ1�TUS , where TA�XA� is the
local affine approximation to the perspective projection of the
planar surface patch at the point A and TA�XB� is the correspond-
ing affine projection matrix at the point B. The consequence of this
property is that the frequency vectors for the two corresponding
spectral peaks on the image-plane are related to one another via
the local distortion UB � �TA�XA�TA�XB�

ÿ1�TUA. As a result, the
texture-surface spectral distortion matrix � � �TA�XA�TA�XB�

ÿ1�T

is a 2x2 matrix. This matrix relates the affine distortion of the
image plane frequency vectors to the 3D orientation parameters of
the local planar patch on the surface. Moreover, it does not require
a sample of the fronto-parallel texture since we have eliminated Us.
Substituting for the affine approximation to the perspective
transformation from (1), the required matrix is given in terms of
the slant and tilt angles as
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� �

�A�


2�B�


 A� � ��y sin� sin � ÿ�y sin� cos �

ÿ�x sin � cos � 
 A� � ��x sin� sin cos �

� �

;

�2�

where 
�A� � f cos�� sin� x cos � � y sin �� � and


�B� � f cos�� sin� �x��x� cos � � �y��y� sin �� �:

The above matrix represents the distortion of the spectrum

sampled at the location B with respect to the sample at the

location A. In the next section, we show how to solve directly for

the parameters of surface orientation, i.e., the slant and tilt angles,

using the eigen-structure of the transformation matrix �.

4 EIGENSTRUCTURE OF THE AFFINE DISTORTION

MATRIX

Let us consider the eigenvector equation �wi � �iwi for the

distortion matrix �, where �i; i � 1; 2 are the eigenvalues of the

distortion matrix � and wi are the corresponding eigenvectors.

Since � is a 2x2 matrix the two eigenvalues are found by solving

the quadratic eigenvalue equation det��ÿ �I� � 0 where I is the

2x2 identity matrix. The explicit eigenvalue equation is

�2 ÿ Trace����� det��� � 0; �3�

where Trace��� and det��� are the trace and determinant of �.

Substituting for the elements of the transformation matrix �, we

have

�2 ÿ

�A�


�B�
�

2�A�


2�B�

� �

��

�A�


�B�
�

2�A�


2�B�

� �

� 0: �4�

The two eigenvalue solutions of the above quadratic equation are

�1 �

2�A�

2�B� and �2 �


�A�

�B� . The corresponding eigenvectors are

w��1� � 1; tan �� �T

and

w��2� � 1;ÿ
�x

�y

� �T

:

As a result, we can directly determine the tilt angle from the

vector components of the eigenvector associated with the

eigenvalue �1. The intuitive justification for this result is that

under perspective projection the only direction which remains

invariant at all locations on the image plane is the tilt direction. As

a result, a frequency vector which is aligned in the tilt direction

will maintain a constant angle, but it will change in magnitude

according to the position on the image plane. In other words, the

tilt direction is an eigenvector of the local affine transformation.

� � arctan
wy �1� �

wx �1� �

� �

: �5�

Once the tilt angle has been obtained, the slant angle can be

recovered using the second eigenvalue via the relationship

� � arctan
f �2 ÿ 1� �

�1 � �2

� �

; �6�

where �1 � y�1ÿ �2� ÿ �2�y� � sin � and

�2 � x�1ÿ �2� ÿ �2�x� � cos �:

With the slant and tilt angles to hand the surface normal n may be

computed.

5 COMPUTING LOCAL PLANAR ORIENTATION

In this section, we explain how to recover local planar surface
orientation using our local affine distortion method. Our method
shares with Krumm and Shafer [4] and Super and Bovik [5] the
feature of using the affine distortion of spectra to estimate surface
orientation. However, these two methods recover surface orienta-
tion by exhaustive spectral back-projection and error enumeration
for all slant and tilt angles. The orientation is selected so as to
numericallyminimize aback-projection error. This is clearly ahighly
time consuming process due to the amount of search and numerical
minimization required. Moreover, unless good initialization values
are to hand, the method is prone to convergence to local optima.

Instead, our method solves for the local surface orientation
parameters in closed-form. To directly recover the planar orienta-
tion angles, we use the eigenvectors of the spectral distortion
matrix. We assume that the texture is homogeneous over the entire
surface. The consequence of this assumption is that the spectral
content of the texture does not change systematically over the
curved texture surface. As a result of this assumption, the local
spectral distortions measured on the image plane are attributable
solely to changes in perspectivity. Shape effects such as changes in
local surface orientation, which are attributable to surface
curvature, must be assessed at a more global level.

In order to obtain a smooth spectral response, we use the
Blackman-Tukey power spectrum estimator. This is defined to be
the frequency response of the windowed autocorrelation function.
We employ a triangular smoothing window w X� � due to its well-
documented spectral stability [28]. The spectral estimator is then

P �Ui�
BT � Ffrxx Xi� � � w Xi� �g; �7�

where rxx is the estimated autocorrelation function of the image
patch. We locate peaks in the output of the spectral estimator using
a simple mode finding algorithm. This involves thresholding the
spectral energy and locating the centroids of the regions of supra-
threshold response. We use a spectral window of 32x32 pixels.

The first step in orientation recovery is to estimate the affine

distortion matrix which represents the transformation between

different local texture regions on the image plane. These image

texture regions are assumed to belong to a single local planar patch

on the curved texture surface. We do this by selecting pairs of

neighboring points on the image plane. At each point, there may be

several clear spectral peaks. Since the affine distortion matrix � has

four elements that need to be estimated, we need to know the

correspondences between at least two different spectral peaks at the

different locations. Suppose that U
p1
1

� �up1
1
; v

p1
1
�T and U

p2
1

�

�up2
1
; v

p2
1
�T represent the frequency vectors for two distinct spectral

peaks located at the point with coordinates X1 � �x1; y1�
T on the

image plane. The frequency vectors are used to construct the

columns of a 2x2 spectral measurement matrix V1 � �Up1
1
jUp2

1
�.

Further, suppose that Up1
2

� �up1
2
; v

p1
2
�T and U

p2
2

� �up2
2
; v

p2
2
�T repre-

sent the frequency vectors for the corresponding spectral peaks at

the point X2 � �x2; y2�
T . The corresponding spectral measurement

matrix is V2 � �Up1
2
jUp2

2
�. Under the affine model presented in

Section 3, the spectral measurement matrices are related via the

equation V2 � �V1. As a result the local estimate of the spectral

distortion matrix is � � V2V
ÿ1
1

.
In practice, we only make use of the most energetic peaks

appearing in the power spectrum. That is to say, we do not consider
the detailed distribution of frequencies. Our method requires that
we supply correspondences between spectral peaks so that the
distortion matrices can be estimated. There are a number of ways in
which this can be effected. Here, we are primarily interested in
demonstrating our new property of the affine distortion matrix to
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recover local surface orientation. For this reason, we draw on a
heuristic which uses the energy amplitude of the peaks to establish
the required correspondences. This is done by ordering the peaks
according to their energy amplitude. The ordering of the amplitudes
of peaks at different image locations establishes the required
spectral correspondences. A more satisfactory method would be
to use a large number of spectral peaks and to use a maximum-
likelihood method to align the pattern of peaks and recover the
associated affine distortion matrix. In fact, we have recently
reported an expectation-maximization algorithmwhich can be used
for aligning point-sets under an affine transformation when the
correspondence information is not available andwhen there is point
drop-out or contamination [29]. There is clearly scope for using this
method in the spectral domain.

After estimating the affine transformation between two local
spectral peaks, we can directly apply the eigenvector analysis
described in Section 5 to estimate the tilt and the slant angles by
using (5) and (6). However, there are some obstacles to the direct
estimation of the local spectral distortion. The first of these is
related to the choice of spectral scale. If the window size used in
the spectral estimator is mismatched to the frequency bandwidth
of the texture, then the power spectrum becomes defocused and
poor peak localization results. The second problem arrises if there
is no significant affine distortion between the corresponding
spectral peaks used in the analysis. In other words, in choosing
the locations of the spectral samples we must strike a compromise.
If the locations are too close to one-another then we risk poor
orientation estimation since the local affine distortions due to
global perspectivity are too small to detect. If, on the other hand,
the points are too far apart or span a high curvature feature, then
the local distortions in the power spectrum are likely to be due to
significant changes in local surface orientation. We can overcome
this latter effect through smoothing the field of local orientation
estimates.

There are several artifacts of the texture images which may
further limit the method described in this paper. The first of these
is the effect of perspectivity on image brightness. To reduce this
problem, we perform image equalization prior to spectral analysis.
However, it is important to stress that the Fourier power spectrum
is invariant to contrast reversal. As a result, our method is not
sensitive to the perceived brightness or darkness dominance of the
textures used in our experiments. Finally, certain textures may
exhibit aliasing effects such as Moire fringes. These are particularly
common in images of buildings or other objects which contain
glass surfaces. For the data studied here, there are no such artifacts.

However, the presence of such effects may confound our shape-
form-texture method.

In Fig. 1, we provide an illustration of the affine distortion of
the local spectra across a plane viewed under perspective
geometry and across a curved surface. At each location, we show
the computed spectra. The brightness of the peaks is proportional
to their energy. Notice that the energy ordering is preserved from
location to location. It is also important to note that the distortions
due to curvature are greater than those due to perspectivity.

The orientation estimates returned by the new shape-from-
texture method are likely to be noisy and inconsistent when viewed
from the perspective of local smoothness. In order to improve the
consistency of our needle map and, hence, the surface shape
description, we employ an iterative smoothing process to update
the estimated normal vectors. Aloimonos and Swain [22] have used
Horn's [30] local averaging method for this purpose. However, in
order to avoid the oversmoothing of local surface detail associated
with high curvature features, we use the robust vector field
smoothing method of Worthington and Hancock [31]. Rather than
using a quadratic penalty of the sort which underpins themethod of

Aloimonos and Swain [22], this method uses robust error kernels, to
gauge the effect of the smoothness error. The reason for this is that
the quadratic penalty grows indefinitely with increasing smooth-
ness error. This can have the undesirable effect of oversmoothing
genuine surface detail. Examples of such surface structures include
ridges and ravines. By using robust error kernels, the Worthington
and Hancock method moderates the effects of smoothing over
regions of genuine surface detail and allow a more faithful
topographic representation to be recovered [31].

6 EXPERIMENTS

We have experimented with both synthetic surfaces with known
ground-truth and real-world images. The former are used to assess
the accuracy of the method, while we use the latter to demonstrate

the practical utility of the method.

6.1 Real World Textures

In this section, we experiment with real world textured surfaces.
We have generated the images used in this study by moulding
regularly textured sheets into curved surfaces. The images used in
this study are shown in the first row of Fig. 2. There are two sets of
images. The first two have been created by placing a tablecloth
with a rectangular texture pattern on top of the corner of a box and
a balloon. The second group of images have been created by
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Fig. 1. Affine distortion of the local spectra across the image plane. The arrows are the estimated normal vectors at the center of the local planes. The ellipses represent

the affine distortion of circles under the local perspective geometry of the surface.



bending a regularly textured sheet of wrapping paper into various
tubular shapes. The first of these is a cylinder, the second is a
ªwave,º while the final example is an irregular set of folds. The
textures in all five images show strong perspective effects.

The remaining two rows of Fig. 2 show the initial needle-map
and the final smoothed needle-map. There are clear regions of
needle-map consistency. When robust smoothing is applied to the
initial needle maps, then there is a significant improvement in the
directional consistency of the needle directions. In the case of the
ridge in the first image, the defining planes are uniform and the
ridge-line is cleanly segmented. The radial needle-map pattern
emerges clearly in the case of the sphere. This radial pattern is also
clear for the three ªtubularº objects.

The main computational bottleneck in our reported algorithm is
the estimation of the local power spectra. The computation of the
initial surface orientation angles is fast, since it just involves
calculating the eigen-values and eigen-vectors of a 2x2 matrix. The
robust smoothing typically takes 10 iterations. Although our
research code is not optimized for rapid execution, we provide
some timing data for the processing of a 256x256 image on a
Pentium III 900MHz processor. Here, the initial surface orientation
estimation takes only 0.98 seconds, and the smoothing step takes five
seconds. Leaving the power spectrum computation aside, the initial
orientation estimation and robust smoothing steps involved in our
method is faster than that reported byKrummand Shafer in [15], [4],
[13] since we do not need to perform iterative back-projection.

6.2 Sensitivity Study

In this section, we assess the ability of our shape-from-texture
method to recover reliable slant and tilt information under
increasing degradation of the texture regularity. Here, we have
generated synthetic textured surfaces and have disturbed the
texture regularity in a controlled manner.

We have investigated the effect of spatial domain texture
irregularity by randomizing the positions of the texture primitives.

We do this by adding a random displacement sampled from a two-

dimensional circularly symmetric Gaussian distribution of zero

mean and known variance. We have projected these randomized

textures onto a plane whose slant and tilt angles are both equal to

45 degrees. In Fig. 3, we visualize the estimated perspective pose of

the plane by projecting a pattern of straight lines onto the image

plane using the estimated slant and tilt angles. This pattern is

composed of two families of parallel straight lines which are
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Fig. 2. Real curved surfaces. Top-row: original image; second-row: recovered needle map; third-row: smoothed needle map.

Fig. 3. Estimated perspective pose.



perpendicular to one-another. One set of straight lines is parallel to

the estimated vanishing line of the plane. From these projections, it

is clear that the breaking point of the algorithm occurs once the

ratio of the standard deviation of the displacement error to the

interpoint distance becomes larger than 10 percent. In this

example, it is interesting to notice that we still perceive the

sensation of perspectivity from the images in the sequence. This

may be attributable to the fact that the area gradient is invariant to

the positional irregularity of the texture primitives [1], [18]. The

random Gaussian noise in the locations of the texture primitives

does not mimic perspective distortion. As a result, the density

gradient of the primitives is not affected. However, our method is

based on measurements that reflect the dominant directions of the

texture. These dominant directions are severely affected by the

positional noise.
The corresponding power spectra for each texture in the figure

are shown in Fig. 4. The main effects to observe are that the

individual peaks merge together, creating clouds of peaks and,

that, the overall frequency structure of the texture spectra

degrades. This collapse of the frequency content is a result of

increasing the gap spacing between the texture primitives. The

overlap of the texture primitives also contributes to the decrease of

the total frequency energy.

In Fig. 5, we show the effect of the spatial domain irregularity in
the positions of the texture primitives on the estimated slant and tilt
angles. The plot shows the slant and tilt error as a function of the
standard deviation of the random spatial displacement error. Here,
the method recovers good estimates of the slant and tilt parameters
provided that the ratio of the standard deviation of the displacement
error to the interpoint distance does not exceed 10 percent.

The parameter of our spectral distortion method is the distance
between the points used to estimate the affine distortion matrix on
the image plane. As pointed out earlier, if this distance is too small
then the affine distortion becomes undetectable. If, on the other
hand, the distance is too large then we sample changes in surface
orientation rather than perspective foreshortening. To investigate
this effect in more detail, we have generated synthetic curved
surfaces with known ground-truth slant and tilt angles. We have
computed the regression line between the ground-truth and
estimated orientation angles as the interpoint distance is increased.

In Fig. 6 for the smoothed and unsmoothed needle-maps, we
plot the linear regression coefficients extracted from the scatter
plots as a function of the interpoint distances. If the measurements
are unbiased, then the linear regression coefficient should be unity.
The main feature to note is that there is a critical value of the
distance which results in a maximum value of the regression
coefficient. For the smoothed needle-maps, the linear regression
coefficient is closest to unity (0.97) when the interpoint distance is
r � 16 pixels; this represents an improvement over the initial
unsmoothed value of � � 0:51. For the unsmoothed needle-maps,
the best regression coefficient (0.84) is obtained when r � 48 pixels;
here the corresponding smoothed value is � � 0:93.

7 CONCLUSIONS

We have presented a new method for estimating the local
orientation of tangent planes to curved textured surfaces. The
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Fig. 4. Circular primitive images: local power spectra.

Fig. 5. Effect of texture irregularity on slant and tilt error.

Fig. 6. Plot of the regression line correlation as a function of the neighborhood radius. (a) Smoothed needle map. (b) Unsmoothed needle map.



method commences by finding affine spectral distortions between

neighboring points on the image plane. The directions of the

eigenvalues of the local distortion matrices can be used to make

closed form estimates of the slant and tilt directions. The initial

orientation estimates returned by the new method are iteratively

refined using a robust smoothing technique to produce a needle

map of improved consistency.
The method is demonstrated on both synthetic imagery with

known ground-truth and on real-world images of man-made

textured surfaces. The method proves useful in the analysis of both

planar and curved surfaces. Moreover, the extracted needle maps

can be used to make reliable estimates of surface curvature

information.
There are a number of ways in which the ideas presented in this

paper could be extended and improved. First, our texture

measures are relatively crude and could be refined to allow us to

analyze textures that are regular but not necessarily periodic.

Second, there is scope for improving the quality of the needle map

through measuring the back-projection error associated with the

smoothed surface normal directions. One possible approach to this

problem would be to use a variant of the expectation-maximization

algorithm to develop a statistical framework for local orientation

estimation and backprojection error assessment. Finally, our

current method makes use of a potentially fragile energy ordering

heuristic to locate spectral correspondences. A more satisfactory

solution to this problem would be to use more than two peaks and

to find the set of correspondences which best align the pattern of

peaks. We have recently developed a dual-step EM algorithm

which can solve this correspondence problem for cluttered point-

sets [29]. Our future plans involve using this algorithm for spectral

correspondence.
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