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SUMMARY

For automatic obstacle avoidance guidance dur-

ing rotorcraft low altitude flight a reliable model of the

nearby environment is needed. Such a model may be
constructed by applying surface fitting techniques to

the dense range map obtained by active sensing using
radars. However, for covertness, passive sensing tech-

niques using electro-optic sensors are desirable. As
opposed to the dense range map obtained via active

sensing, passive sensing algorithms produce reliable

range at sparse locations and, therefore, surface fitting

techniques to fill the gaps in the range measurement
are not directly applicable. Both for automatic guid-

ance and as a display for aiding the pilot, these discrete

ranges need to be grouped into sets which correspond

to objects in the nearby environment. The focus of this

paper is on using Monte Carlo methods for clustering
range points into meaningful groups. One of the aims

of the paper is to explore whether Simulated Anneal-

ing methods offer significant advantage over the basic
Monte Carlo method for this class of problems. We

compare three different approaches and present results

of application of these algorithms to a laboratory image

sequence and a helicopter flight sequence.

1 INTRODUCTION

For vehicle guidance and navigation, it is always
assumed that the position of all objects near the path

of interest is available (see for example, refs. 1 and 2).

The position of the objects is given by the constructed
model of the neighboring environment. The first step in

the model building process is sensing the environment

using a sensor. In the case of an electro-optic sensor

this begins with the acquisition of a sequence of im-

ages of the outside world. The second step involves

processing the images to extract the position of the

various objects in the field-of-view of the sensor. For

example, optical flow/motion algorithms are used for

extracting range to several locations using a sequence

of images. The third step is to aggregate (cluster) the

range at discrete locations into groups that represent

objects in the environment. In this paper, we will fo-

cus on the third step.

Recently, several algorithms for computing depth,
using a sequence of images, have appeared in the liter-

ature on computer vision (refs. 3-8). These algorithms

are successful in determining depth to only a few lo-

cations in the image plane due to various ambiguities.

Sparse depth map represents discrete locations (fea-
tures) in the sensors field-of-view where depth infor-

mation is available. The range map created by these

algorithms may be processed further to establish rela-

tionships between nearby features based on some mea-
sure of distance. Once the range features are aggre-

gated into groups, the range map may be partitioned to

repregent the objects in the nearby environment. In the
subsequent sections we will focus on exploring statis-

tical methods for achieving this partition.
One of the ways of solving the clustering prob-

lem is to cast it as a discrete optimization problem,

which minimizes a cost function to partition the depth

map into groups of features. Monte Carlo method and
its various modified forms, also known as Simulated

Annealing methods, may then be used to optimize the

cost. In reference 9, Simulated Annealing has been

used for assigning features to a pre-defined number of

image regions by minimizing the sum of within group

variances. To start the process, an image is segmented

and labeled into regions. Next, features are assigned

to the regions in the image plane. Features are then

reassigned to the regions and group properties such as,

mean depth and variance, are computed. Simulated

Annealing is then used to iteratively minimize the sum

of group variances, thus achieving the final configura-
tion. It may be noted that a structure was first imposed

by fixing the number of groups. Given this structure,

the algorithm was used to determine the optimal group

membership (which feature belongs to which group)
that fit this structure.

In unsupervised clustering, neither the number of

groups, nor the memberships are known and therefore,
as opposed to the approach taken in reference 9, we

do not fix the number of groups but iteratively mod-

ify the structure by adding new groups and optimize
the cost at each such step. The question of an appro-

priate stopping criteria is discussed later. In the next
section we discuss the Monte Carlo methods. In sec-

tion 3 the laboratory and the flight image sequences

are described. Subsequently, in section 4, the process

of initial grouping is described. Section 5 describes

the Simulated Annealing, modified Simulated Anneal-

ing and the Monte Carlo method for minimizing a cost

function to achieve the optimal grouping. The results

of application of these algorithms to a laboratory and

a flight sequence are described in section 6. Finally,
conclusions are drawn in section 7.



2 MONTE CARLO METHODS

Interest in the modified forms of the Monte Carlo

method seems to have been stimulated by reference 10,
in which a modified form of the Monte Carlo method

was proposed for investigating equilibrium properties

of liquids. By conventional numerical methods this

would involve solving several hundred-dimensional in-

tegrals. Alternatively, the equilibrium property may be

computed by using the Monte Carlo method for multi-

dimensional integrals by integrating over a random

sampling of points instead of over a regular array of
points. The modified Monte Carlo approach suggested

in reference 10 consists of choosing the configurations

with a probability exp(-E/kT) and weighting them

evenly. Here, E is the energy of the configuration,

k is the Boltzmann constant and T is the temperature.

Their algorithm for accomplishing this may be summa-

rized as follows: Initially N particles are placed in any

configuration, for example, in a regular lattice. Then

a particle is moved such that it is equally likely to be
anywhere within a square centered about its original

position. Change in the energy of the system, AE, is
calculated for this move. If AE < 0, i.e., if the move

brings the system to a state of lower energy, the move
is allowed and the particle is put in its new position.

If AE> 0, the move is allowed with a probability

ezp(-AE/kT), i.e., if a random number ( between 0

and I is less than ezp(-AE/kT), the move is allowed.

If ( > exp(-AE/kT), the particle is returned to its

old position. Average property is then computed base cl

on the resulting configuration, whether it changed or

not, due to the move. The procedure then proceeds to

consider the next particle and so on.
A later modification in reference I I uses the al-

gorithm of reference 10 with a decreasing temperature

schedule. This algorithm is known as the Simulated

Annealing algorithm. The temperature scheduling idea

is motivated by the analogy to the annealing process
in metals. The Simulated Annealing algorithm may be

summarized as follows: Start with an initial configura-

tion at a certain temperature and make a random move.

Due to this move, compute the change in energy, AE.

If AE < 0, accept the change. If AE > 0, accept

the change with a probability exp(-AE/T). In other

words, if AE > 0, generate a uniform random number

( between 0 and 1 and check if _ < ezp(-AE/T).

If the inequality is satisfied, accept the new config-

uration else, preserve the old configuration. Repeat

the above steps a number of times, n, and then lower

the temperature by a factor 0 < k < 1. Start from

this configuration and re-do the steps till the change in

energy is small. The details of the algorithm are avail-

able in references 12 and 13. The main implication of

temperature scheduling is that at a higher temperature,
increase in AE is more freely allowed than at a lower

temperature.

Usually, it is claimed that the Simulated Anneal-
ing technique has the ability to "climb out" (because it

allows AE > 0) of the local minimum (refs. 12-14).

This, however, is misleading. The main feature which

allows the algorithm to find the global minimum is by

randomly choosing starting locations within the search

space. These ideas may be clarified by the following
one-dimensional search example shown in figure I.

Ax

c I

Global minimum

X

Figure 1. Search in one-dimension.

The objective of the one-dimensional search prob-

lem (see fig. 1) is to determine the value of z for which

f(:c) is a global minimum. It is assumed that f(x)

is continuous. Let us say that we have an algorithm
which climbs over the hill. Such an algorithm would

eventually find the minimum, but it would probably

take the same amount of time as an algorithm that sys-

tematically explores the entire domain of z. Let us

now say that we have an algorithm that starts out with

random initial conditions (for example: locations a, b,

c, and d in fig. 1) and uses a gradient search method

to locate a minimum. This algorithm will succeed in

reaching the global minimum in very few steps.



Thealgorithmin reference10wasintroducedto
solvea specifictypeof problemwhereit madegood
sense.Sinceits introduction,theSimulatedAnneal-
ing methodhasbeenproposedfor solvingmanydif-
ferentkinds of minimizationproblems.Oneof the
goalsof thispaperis to determinewhethertheSim-
ulatedAnnealingmethodsoffersignificantadvantages
overthebasicMonteCarlomethodfor partitioningthe
sparsedepthmapintoobjects.For thecomparisonwe
haveappliedthealgorithmsto rangemapsgenerated
from both,a laboratoryimagesequenceanda flight
sequence.

In thenextsectionwedescribethedatasets.

3 DATA SETS

In thissectionwewill firstdescribethelaboratory
imagesequenceandthentheflight sequence.

Thelaboratoryimagesequenceusedin thiswork
consistsof 80 imagesthatwereacquiredby acamera
mountedona3 degree-of-freedommotiontable.Fig-
ure2showsthefirst imageandfigure3 thelastimage
in thesequence.Theobjectsin theviewof theimag-
ing sensorarelabeledfromA-L in figure2 where,A
is thetapeon thebackwall, B is the left pencil,C is
thesodacan,D is thewire,E is therightpencil,F is
thesodacanbase,G is thetable,H is thetapeonthe
tablein front of thesodacanbase,I is thebracket,J
is thetapeon thebracket,K is thetapeon thetable
behindandto theleft of thebracket,andL is thetape
on thetableto the left of thebracket.Thedetailsof
thedataacquisitionprocessfor the laboratoryimage
sequencearedescribedin reference15.

Theflight imagesequenceconsistsof 240images
whichwereacquiredby acameramountedunderthe
rotorcraflnoseandorientedroughlyin thedirection
of theflight sothatthedesignatedobstaclescouldbe
observed.Thepositionof thecameraandits orienta-
tionwith respectto therotorcraftwereheldconstant
throughouttheflight. The45thimageisshownin fig-
ure4 andthe60th imagein figure5. Theobjectsin
theview of the imagingsensorarelabeledfrom A-
H in figure 4 where,A, B, C, D, andE are trucks
on therunway,F is thetimestamp,G is therunway,
andH is therotorcraftnoseboom.ThetrucksA, B,
andC arearrangedwithA beingclosesttothecamera
andCbeingfarthestwithB inbetween.TruckD isbe-
tweentrucksA andB,andtruckEis betweentrucksB
andC.Thedetailsof themethodologyusedto develop

Figure2.Firstlaboratoryimage.

theflight databaseconsistingof imagery,rotorcraft
andsensorparameters,andground-truthrangemea-
surementsis describedin reference16.

The methodof depthcomputationconsistedof
featuretrackingbasedon correlationfollowedby re-
cursivedepthestimationusinganExtendedKalman

Filter (refs. 3, and 6-8). The ranging algorithm out-

puts a sparse depth map (displayed as white squares in

Figure 3. Last laboratory image.



body-to-inertialtransformationmatrices.The identi-
ficationtagidentifiesthefeaturethrougha seriesof
images.

Thedepthmapin figure5 is for thosefeatures
whichexistedin atleastl0 of the15depthmapspro-
cessed,i.e.,thepresenceof thesameidentificationtag
wascheckedin 15depthmapsandif it existedin l0
of them,it wasselected.Thesedepthmapscorrespond
to the45thimagethroughthe60thimage.Oneof the
advantagesof doingthispre-processingis thatnewor
unconvergedfeaturesareeliminated.Thisresultsin a
higherconfidencedepthmap.

4 INITIAL GROUPING

Figure 4. 45th flight image.

figs. 3 and 5). The depth map consists of a list of fea-
tures characterized by a "u," "v" location in the image

plane, an identification tag and computed depth. The

u, v locations and depth are directly related to the x, y,

and z locations in the inertial frame via the inverse per-

spective projection equations, the camera-to-body and

Figure 5.60th flight irnage.

Let us assume that the depth values of the features,

corresponding to the viewed objects, have a gaussian
distribution. The objective now is to describe the depth

data by a combination of gaussians. The first step in

this process is the construction of a depth histogram
with the number of features as a function of depth.

This process may be summarized as follows:

• Compute the minimum depth, dmi n.

• Compute the number of bins, nbins as,

drnax - drain
(1)

nbins = bin_size

where, dmaz is the maximum depth of interest and

bin size is the depth resolution. The maximum ob-

servable depth and depth resolution may be specified

in terms of the camera parameters and the stereo or
motion baseline.

• Count the number of features within each bin.

This corresponds to the frequency at a depth corre-

sponding to the center of the bin.

• Compute the maximum frequency and normal-

ize all frequencies with respect to it.

This results in a normalized histogram sampled at bin

size intervals. For the depth map shown in figure 3,

the depth histogram is shown in figure 6. Here, the bin

size was chosen to be 2 inches. For the flight sequence

depth map shown in figure 5, the depth histogram is

shown in figure 7. The bin size in this case was 20 feet.

The second step in the grouping process is detec-

tion of the peaks of the histogram. A peak is defined
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Figure 6. Depth histogram for laboratory sequence.
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Figure 7. Depth histogram for flight sequence.

as a maximum bounded on both sides (left and right)

by minima such that the difference between the peak

and the valleys exceeds a threshold, "peakiness." The
exact implementation of the peak detection algorithm

is fairly elaborate and will not be discussed here. The

central idea however, is to determine a peak by brack-

eting it between a proper left minimum and a proper
right minimum such that the peakiness criteria is satis-

fied. A proper minimum is determined by bracketing

the minimum between two peaks such that the peak-

iness criteria is satisfied with respect to the bounding

peaks. For the histograms in figures 6 and 7, the circles

around the peaks in figures 6 and 7 show the detected

peaks. The peakiness value used was 0.1.

Next, we approximate the histogram as a sum of

m gaussians. The approximation to the histogram is

achieved by minimizing the sum of the squares of the
error defined by equation (3).

where

n

2
minimize _ e i (2)

i=1

m 2o- _.

ei = ¢i - _ kje 3 (3)
j=l

Here, kj is the scale factor, #j is the mean and aj
is the standard deviation of jth gaussian. At n depth

locations, the depth is _i and the normalized frequency

is _i. For minimization, a MINPACK (ref. 17) routine
LMDIF1 is used. The routine LMDIF1 is a modified

version of the Levenberg-Marquardt algorithm. Based

on the detected peaks, an initial estimate of the k j, #j

and aj for each gaussian is provided to the minimiza-
tion routine. The individual gaussians approximating

the depth histogram (in fig. 6) are shown in figure 8.

Similarly, the five gaussians approximating the flight

sequence depth histogram (see fig. 7) are shown in fig-
ure 9.
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Figure 8. Gaussians approximating the histogram for

the laboratory sequence.
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Figure 9. Gaussians approximating the histogram for
the flight sequence.

Finally, the features are assigned to the groups

represented by the gaussians. For this purpose, con-

sider two gaussians next to each other. Inorder for

them to intersect, the following relationship must hold:

kl e 2a_ = k2e- 2,r_ (4)

This simplifies to:

52+ (#1a2- - 2a2a ln( ) = 0 (5)

This equation may be solved to obtain the depth 6 at

which the two gaussians intersect. It may be noted
that if the standard deviations al and a2 are equal,

equation (5) is reduced to a linear equation. The inter-
section depth marks, the outer limit of gaussian 1, and

inner limit of gaussian 2. By repeating this procedure,

inner and outer limits are determined for each gaus-

sian. The minimum depth marks the inner limit for the

1st gaussian, and the maximum depth marks the outer

limit of the last gaussian. Each feature is allocated

to one of the gaussians based on whether the depth

corresponding to the feature lies within the inner and

outer limits of that gaussian. The resulting grouping is
coded in a matrix, G where the number of columns is

equal to the number of groups, and the identification

tags of all features belonging to a particular group are

stored in a single column. The number of members

in each group is coded in a vector, N. This way each

member of the group is accessible via the vector N and
the matrix G.

In the next section we describe grouping based
on the basic Monte Carlo method and its modified

versions.

5 OPTIMAL GROUPING

Starting with the initial grouping described in the

previous section, the goal now is to re-allocate the fea-

tures to various groups such that a cost function is

minimized. Several criterion functions for clustering
are described in reference 18. Out of these, we have
chosen the cost function to be the ratio of the trace

of the within group scatter matrix to the trace of the

between groups scatter matrix:

j = tr(Sw) (6)
tr(SB)

C ni

i=lj=l

C

SB = Z ni(mi -- m)(mi - m)t (8)
i=1

Here, c is the number of groups, n i is the number of

features in the i th group, ra i is the mean of the fea-

tures in the ith group, m is the mean of all features, zj

is the jth feature in the i th group, Sw is the within

group scatter matrix, SB is the between groups scatter

matrix and J is the objective function. The objective
function, J, can be minimized using discrete optimiza-

tion techniques. Minimizing J has the implication of
decreasing the within cluster distance and increasing
the between cluster distance.

We first describe the Simulated Annealing al-

gorithm. Next, we describe the basic Monte Carlo

method. Finally, we describe the modified Simulated

Annealing algorithm.
The Simulated Annealing algorithm for refining

the grouping may be summarized as follows:

1. Compute the cost, J, for the initial grouping

using equation (6) and initialize the temperature, T, to

a large number. ........

2. While (T >/3) execute the following steps or

exit the algorithm.

6



3. Setthe iterationcounter,I = 1.

4. Randomly select a feature, F, such that every

feature has an equal probability of being selected.

5. Randomly select a group, g, such that every
group has an equal probability of being selected_

6. Check the grouping matrix, G, to see if F is

already a member of g. If yes, go to step 10. If no,

proceed to the next step.

7. Remove F from its group and add it to the

g group. This results in a modified grouping matrix,

_, and the membership vector lq.

8. Evaluate the cost, ,], for grouping _ using

equation (6).

9. Compute AJ = 3-d. If AJ < 0, set:
N=lq, G=_and J=J. IfAJ>0andauniform

random number between 0 and 1, r < exp(-Ad/T),

then set: N=lq, G=_andJ=3.

10. If I > Imax or if ]-_ < e go to step 11,

else increment the iteration counter, I = I + 1 and go

back to step 4.

11. Reduce the temperature, T, by a factor 0 <
a < l; T = aT.

12. Go back to step 2.

Here, Imaz is the maximum number of iterations,

e is a small number for checking relative convergence,

c_ is the cooling schedule parameter and fl is a small

number used for exiting the algorithm. Convergence
criteria in step 10 may also be based on absolute con-

vergence, I AJ [< e. Generally, absolute criteria will

require a large number of iterations. An additional cri-

teria requiring that a certain small number of trails be

made before going to step 11 is a useful one due to

the fact that the same feature F and group 9 may be

selected successively. It may be noted that the con-

vergence and rate of convergence depend on the initial

temperature, T, and the cooling schedule parameter,
a. For the clustering problem of the type discussed in

this paper, a high initial temperature T may cause the

solution to diverge. This is due to the reason that at

very high temperature, many configurations which in-

crease the optimization cost will be permitted thereby,

altering the group properties (for example, means) to

an extent that it may no longer be possible to recover

the structure. To ensure that most of the time AJ < 0,

an appropriate initial temperature must be chosen. The

cooling schedule parameter a is directly related to the
number of iterations.

The basic Monte Carlo algorithm may be summa-
rized as follows:

1. Compute the cost, J, for the initial grouping

using equation (6).

2. Set the iteration counter, I ----1.

3. Randomly select a feature, F, such that every

feature has an equal probability of being selected.

4. Randomly select a group, g, such that every
group has an equal probability of being selected.

5. Check the grouping matrix, G, to see if F is

already a member of g. If yes, go to step 9. If no,

proceed to the next step.

6. Remove F from its group and add it to the

group. This results in a modified grouping matrix,
, and the membership vector N.

7. Evaluate the cost, J, for grouping (_ using

equation (6).

8. Compute AJ = 3-J. If AJ < 0, set:
N=N,G=Gand J= J.

9. If I > Imax or if ]-_ < e exit or increment
the iteration counter, I = I + 1 and go back to step 4.

It may be seen that most of the steps of the Simu-

lated Annealing and the basic Monte Carlo algorithms

are alike. The differences are the following: In the ba-

sic Monte Carlo method, temperature scheduling is not
used and the cost is not allowed to increase (compare

step 8 of the Monte Carlo algorithm with step 9 of the

Simulated Annealing algorithm).

A modified version of the Simulated Annealing

approach is suggested in reference 19. The differ-

ence is in step 9 of the Simulated Annealing algorithm,
which is:

9. Compute AJ = 3- J. If AJ < 0, set:

N=lq, G=_andJ=3. IfAJ>0andauniform

random number between 0 and 1, T < exp(-AJ/(J x

T)), then set: N = lq, G = _ and J = 3.

7



Note, inclusion of the cost, J in the function

exp(-Ad/(d × T)). This has a similar effect as the

temperature, T. For large J, configurations which in-

crease the cost are permitted, and as the cost decreases,

fewer cost increasing configurations are allowed. Some

of these features are illustrated via examples given
below.

Figure 10 shows the optimization cost, for the

laboratory image sequence, as a function of the num-
ber of iterations. The graphs with legends MC, SA,

and MSA show the cost reduction achieved by the ba-

sic Monte Carlo, Simulated Annealing and the mod-

ified Simulated Annealing methods, respectively. In

each case, the optimization was started with 3 groups

shown in figure 8. For the flight sequence, the de-
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Figure 10. Cost for the laboratory sequence.

crease in cost achieved by the basic Monte Carlo (MC),

the Simulated Annealing (SA), and the modified Simu-

lated Annealing (MSA) methods is shown in figure 11.
The initial grouping for the flight sequence consisted

of 5 groups shown in figure 9. Both, in the case of

optimization using the laboratory and flight sequence,
it was also ensured that the total number of random

moves for the three algorithms was the same. The

cost function (eq. 6) was computed via equations (7)

and (8), by defining x as feature coordinates in a two-

dimensional inertial frame on horizontal plane. This

means that the altitude component of the position vec-

tor was not used for grouping. The initial temperature

for the Simulated Annealing methods was chosen to be

T = 0.1. It may be seen from figures 10 and 11 that
the basic Monte Carlo method reduces the cost faster

than the Simulated Annealing methods. Initially, both

the Simulated Annealing methods allow cost increas-

ing configurations and eventually converge to nearly
the same cost.

o _
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Figure 11. Cost for the flight sequence.

It was observed in reference 19 that the standard

Simulated Annealing method requires a large number
of steps to reach the global minimum when compared

to the modified Simulated Annealing method. One may

compare figures 10 and 11 to see that the number of

steps required for convergence in the case of modified

Simulated Annealing depends on the numerical value

of the cost. It is further suggested in reference 19 that
the cost keeps increasing and decreasing thereby not

providing a logical termination criterion. It appears

that the final temperature in the case of Simulated An-

nealing and the product of the final cost and tempera-
ture in the case of modified Simulated Annealing deter-

mine whether the cost keeps increasing and decreasing

or settles down. It may be seen from figures 10 and 11

that for a final temperature of T < 0.0001 the cost

scales down for both the meth0ds. _Inconclusion, both

the Simulated Annealing methods may be made to be-

have in a similar manner by choosing the appropriate

initial temperatures.



Sofarwehavedescribedthreeoptimizationmeth-
ods for a fixed number of groups. These algorithms

result in a grouping G, which is optimal with respect

to the cost d for the number of groups, c. The number

of groups, c is determined by the initial grouping al-

gorithm described in the previous section. This means
that for a fixed structure (number of groups), an opti-

mal feature grouping (which feature belongs to which
group) may be achieved. We now describe a method

for creating new groups and applying the optimization

methods to achieve optimum number of groups and

optimal group membership.
One of the ways of creating a new group, which

is away (not close to any particular group) from all the

groups, is to do the following: For each feature, com-

pute the Euclidean distance to the mean of each group.
Select the minumum distance. Once this is done for

all the features, select the feature whose minimum dis-

tance to the groups is a maximum. The selected fea-
ture is the pivot for the new group. Features, which

are closest to this pivot feature, are allocated to this

group thus a new grouping matrix G and a member-

ship vector N are created to reflect the new grouping.

The optimization methods described before may

now be re-applied to the new grouping to result in an

optimal grouping. It is hoped that by successively ap-

plying the optimization algorithm and the new group

creation algorithm a stage will be reached where ad-

dition of a new group will not result in a significant

decrease in the optimization cost. We will call the

grouping at this stage to be optimal.

Starting with the initial grouping (with cost d =

2.997) for the laboratory sequence, shown in figure 8,

the optimization algorithms were applied to minimize

the cost. Next, a new group was created by using the

new group creation algorithm and the grouping was
altered. The optimization methods were re-applied to

this configuration. Results of iterative application of

the optimization algorithms and new group creation

algorithm are shown in figure 12. The graphs, MC,
SA, and MSA depict the cost reduction achieved by

the basic Monte Carlo, Simulated Annealing, and the

modified Simulated Annealing methods. The results

of application of the iterative group creation and op-

timization method for the flight sequence is shown in

figure 13. As before, graphs with legends MC, SA,

and MSA show the cost reduction achieved by the ba-

sic Monte Carlo, Simulated Annealing, and the modi-

fied Simulated Annealing methods. Initially, 5 groups

shown in figure 9 were input for optimization. A cost

of 0.5143 was computed for the initial grouping. The

symbol with legend H & S, in figure 13, shows the

minimum cost for l0 groups using the algorithm in
reference 9.

o

o

©

"d

o

©

o

o

o 5 1o 15 20

Number of Groups

Figure 12. Cost for the laboratory sequence.
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Figure 13. Cost for the flight sequence.
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Foroptimizationateachstage(forafixednumber
of groups)12,000iterationsweredonefor thelabora-
tory sequence,and5,000iterationsweredonefor the
flight sequence.Theinitial temperaturefor theSimu-
latedAnnealingmethodswaschosento beT = 0.1.

It may be seen from figures 12 and 13 that the
basic Monte Carlo method reduces the cost faster than

the Simulated Annealing methods and arrives at the

optimal solution, which partitions the initial 3 groups

into 8 groups for the laboratory sequence and 5 groups

into 24 groups for the flight sequence. In the next

section we describe the optimal grouping results based
on these methods.

6 RESULTS

For the laboratory sequence depth map shown in

figure 6, a histogram was constructed and the peaks

of the histogram were detected by the peak detection

algorithm (see fig. 6). Next, the histogram was approx-

imated as a sum of gaussians. Starting with an initial
estimate of the mean, standard deviation and the scale

factor for each gaussian, the sum of squares of the
fit error (between the histogram and the sum of gaus-

sians) was minimized to obtain improved estimates of
the mean, standard deviation and the scale factor for

the gaussians. The three gaussians approximating the
histogram are shown in figure 8. Finally, each feature

was assigned to one of the gaussians based on whether

its depth was between the inner and outer limits of

the gaussian. The resulting grouping is shown in fig-
ure I4. Boundaries have been drawn around features

to show that they belong to the same group. It may

be seen from the figure that most of the features on

the bracket (see fig. 2, label I), tape on the bracket

(J), and the edge of the table are classified as group 1

(corresponding to the 1st gaussian). The right pencil

(E), the tape on the table in front of the soda can (H),

a part of the wire (D), few features on the base of the
soda can (F), few features on the table (G), and a few

features on the tape on the table to left of the bracket

(K) are classified as group 2 (corresponding to the 2nd

gaussian). Most of the soda can (C), the soda can base

(F), the wire (D), the left pencil (B), the tape on the

back wall (A), the tape on the table to the left of the

bracket (K), and a few features on the tape on the ta-
ble in front of the soda can base (H) are classified as

group 3 (corresponding to the 3rd gaussian). It may

be seen that small groups of features appear within or

close to larger groups.

Figure 14. Initial grouping based on fitting gaussians.

Starting with the initial grouping (one-
dimensional clustering) described in figure 14, the ba-

sic Monte Carlo method was applied to re-group the
features based on the distance measure in the hori-

zontal inertial plane (two-dimensional clustering). To

minimize the cost, 12,000 random moves (for example,

see fig. 10) were made. The grouping matrix, G, and

the vector, N, were updated to reflect this grouping.

A new group was then created by following the new
group creation algorithm. The process of optimization

and new group creation was repeated till each group

had at least three features. The final grouping consist-

ing of 11 groups is described in figure 15.

In this figure boundaries have been drawn around

features to show that they belong to the same group.

The outliers are demarcated by circles. It may be seen

from figure 15 that group 1 consists of the bracket (see
fig. 2. labelI), tape on the bracket (J), and/he edge of

the table. Group 2 consists of the right pencil (E), a
portion of the wire (D), a part of the table (G), and a

portion of the tape on the table (H), which is in front

of the soda can. The outliers of group 2 lie on the

base Of the soda can (F). Features corresponding to the

tape on the back wall (A) belong to groups 3 and 4.

Group 5 consists primarily of features belonging to the

10



Figure15.Optimalgroupingfor laboratorysequence. Figure16.Initialgroupingfor flight sequence.

left pencil03). One outlier of group 5 lies close to the

bracket (I). Groups 6 and 7 are made up of features
that belong to the soda can (C) and the base of the

soda can (F). It may be seen that features on the soda

can (C) and the soda can base (F) are mostly grouped
in the 6th group. A smaller portion of the features on

the soda can are members of group 7. Groups 8, 10,

and 11 are made up of features that belong to the tape

on the table (K). Most of the members of group 9 lie

on the soda can (C). This completes our discussion of

the laboratory image sequence. Next, we describe the

results of application of the initial and optimal grouping

algorithms to the flight image sequence.
For initial grouping of the flight image sequence

range features, depth histogram, shown in figure 7 was

approximated by 5 gaussians, shown in figure 9. Fea-

tures were then allocated to the groups represented by

the 5 gaussians. This is shown in figure 16. Most

of the features on the runway (see fig. 4, label G) are

members of group 1. The features on truck A belong

to group 2. Four outliers of group 2 are on the run-

way (G). Group 3 is mostly composed of features on
the trucks D and E and one feature each on the trucks B

and C. Few features on truck D and on the runway (G)

form the 4th group. The 5th group consists of features

on the trucks B, C, and E, and the background. Two
outliers of group 5 lie on the truck D. The symbol FOE

shows the location of the focus of expansion on this

image.

Starting with the initial grouping, described

above, optimization using the basic Monte Carlo

method and new group creation were done iteratively

to arrive at the optimal grouping. Groups with less
than three features were removed. This resulted in

12 groups. The last 2 groups consist of features from

the background so the 10 closest groups are shown in
figure 17. Groups 1-5 and 7 are composed of features

on the runway (G). The 6th group is mostly composed

of features on truck A. Groups 8 and 9 contain features

of the background and features on trucks D and E, re-

spectively. Finally, features on trucks B and C belong

to group 10.

The salient features of the optimal grouping are
the following: The features which are close are

_ouped together (for example, see group 2 in fig. 15).

The left pencil 03) is no longer grouped with the soda

can (C).The portion of the tape on the table (H), which

is close to the soda can, is grouped together with the

soda can (C). Similarly for the flight sequence, features

that are closer to trucks A, D, and E are grouped with

trucks A, D, and E, respectively. It may be seen in fig-

ure 17 that the outliers of initial groups (for example,

see group 2 in fig. 16) are merged with the features

(see groups 1, 4, 5, and 9 in fig. 17) that they were

close to form optimal groups.

It may be seen from figures 15 and 17 that some
groups span across a large number of pixels in the im-

age plane therefore, suitable cluster density measures

I1



Figure17.Optimalgroupingfor flight sequence.

(for example,seeref. 20) maybeusedin the image
planeto furtherrefinethegrouping.It isquitepossible
thatthefinalresultof all thetechniquesnamely,initial
grouping,optimalgroupingin thehorizontalplaneand
re-groupingin theimageplane,mayresultin anover-
segmenteddepthmap. From rotorcraftlow altitude
guidancepoint of view a reasonablyoversegmented
depthmapmaynot posea significantproblem.An
undersegmenteddepthmap,on the otherhand,may
notbeacceptablebecausein thiscaseonewouldend
up interpolatingacrossvariousphysicalobjects,thus
blockingpotentialopenings.

7 CONCLUSIONS

Startingwitha depthmap,computedby anopti-
cal flow methodfor a laboratoryimagesequenceand
a flight imagesequence,amethodbasedon fittingthe
sumof gaussiansto thedepthhistogramwasdescribed
to form the initial groups.Severalfeaturegrouping
techniquesbasedon the basicMonteCarlomethod
andits modifiedforms(SimulatedAnnealingmethods)
werethenexaminedto refinethisgroupingbasedon
separationin thehorizontalinertialplane.For theex-
ampledepthmap,convergencecharacteristics,andthe
optimizationcostasafunctionof thenumberof groups
wereexaminedfor thevariousmethods.Additionally,

it wasshownthatthebasicMonteCarlomethodcon-
vergedfasterandloweredthecostcomparedto the
SimulatedAnnealingmethods.Finally,thelimitations
of theresultinggroupingarepointedout.
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