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The Effect of Reasoning Logics
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Abstract—The advent of satellite tracking and communications
technology has motivated organizations to investigate centralized
real-time support for remote and mobile units and operations.
Transportation companies have begun to use satellite tracking
systems, production and energy plants are employing intelligent
monitoring systems, and on-site emergency managers are being
supported by headquarters in their assessment and decision
making process. Although different reasoning logics have been
proposed for real-time decision making, little attention has been
given to the comparative assessment of these approaches. This
paper presents empirical evidence on the impact of alternative
reasoning logics on individual decision making in real-time.
Following the definition of the decision tasks for hazardous opera-
tions, commonly used reasoning logics are discussed. Then, results
of an empirical comparison of different reasoning approaches are
presented. The data were gathered during an experiment with
experienced operators. The conclusions of this research are that
the selection of the appropriate reasoning logic in support of
real-time decision making is crucial.

Index Terms—Accuracy, decision support systems, effort, op-
erational risk management, time pressure.

I. INTRODUCTION

REAL-TIME decision making requires tradeoffs between
conflicting criteria, such as costs and benefits, under time

constraints. The assessment of these criteria, under different
scenarios, is done strategically to provide guidelines and
procedures (i.e., courses of action) for the decision makers
and operators. Optimal courses of action can then be computed
algorithmically, where a course of action consists of a tempo-
ral ordered sequence of decisions and concomitant selected
activities [1]. However, sudden onset events, for which no
appropriate response can be devised strategically, can affect
the successful completion of these planned courses of action.

Real-time control and decision making has been studied
for hazardous operations, such as command and control [2];
transportation of hazardous materials [3]; emergency man-
agement [4], and rail operations [5]. It can be generalized
as identifying any potential for immediate change in current
conditions (monitoring), comparing both to a desired state
(assessment), and if there is a gap, taking action to bring the
present or future state in concordance with the desired state
(choice) [2].
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For a dispatcher of hazardous material vehicles, monitoring
refers to observing the movement of the vehicles on an
electronic map. Whenever an unexpected sudden onset event,
a real-time event (RTE), occurs, the dispatcher must assess its
impact on safety and transportation costs. Examples of RTE’s
are snow storms and traffic accidents. Then, the “optimality”
of the routes for those vehicles that are affected by the RTE
(i.e., the vehicles that plan to drive through the area affected
by the RTE) must be analyzed. The dispatcher can then decide
for all the affected vehicles, i) to leave them on the planned
route (i.e., not to change the original course of action), ii)
to reroute to other routes (i.e., to search for new courses of
action), or iii) to stop the operations.

Real-time decision making must be performed under time
pressure and uncertainty. In addition, the alternative courses
of action, such as the different roads between origin and
destination, are usually represented only implicitly as a graph
(e.g., on a map). Explicit courses of action (e.g., the feasible
roads between two points on the road network) must first be
constructed using some heuristic and an algorithm. Thus, the
combinatorial complexity of constructing feasible courses of
action (e.g., roads) adds significantly to the overall complexity
of the decision situation.

Past research has investigated the limitations in human
information processing capabilities in real-time decision situa-
tions and concluded that models of the human-machine inter-
action have to take into account the cognitive aspects of human
behavior [6]. We can therefore summarize the characteristics
of real-time decision situations for hazardous operations as:
time pressure to make decisions, uncertainty, combinatorial
complexity, and human limitations in information processing.
Therefore, a human-machine system for supporting real-time
decision making must strive for an effective sharing of tasks
between the human operator and the computer. Our approach
is to have the computer perform the computationally intensive
tasks, and the operator the cognitive assessments.

II. DECISION MAKING AND REASONING

APPROACHES IN AREAL TIME ENVIRONMENT

Real-time decision making is a dynamic process. Decision
situations occur at a changing rate and with different task
complexity. The literature distinguishes three basic approaches
in decision support for dynamic settings. These areoutcome
feedback, feedforwardand cognitive feedback[7]. Outcome
feedback turns out to be the most ineffective approach, as
shown in studies with a fire-fighting simulation system [8].
Reported reasons are time delay, insufficient information feed-
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back, and inability to make correct conclusions from observed
outcome. Cognitive feedback (i.e., provide information to
the decision maker about various relations in the system) is
the most effective approach, outperforming feedforward (i.e.,
provide the decision maker with a model of the task prior to
performing the task) [7].

In using cognitive feedback, a distinction between present-
ing information byalternativesand byattributescan be made.
Decision making by alternative amounts to providing the
decision maker information about feasible alternative courses
of action (e.g., routes). In this case, the computation of feasible
courses of action is done using algorithms and heuristics. De-
cision making by attribute amounts to providing the operator
information about relations between the impact of the RTE’s
and the feasibility (and optimality) of alternative courses of
action.

There are various examples of reasoning logics for gener-
ating feasible and optimal courses of action (i.e., routes) for
hazardous operations. The most basic approach is to let the
operator determine such courses of action with no computer
support (i.e., using only his/her individual reasoning logic).
The only support that is provided to the operator is a graphical,
visual interactive display that facilitates the construction of
courses of action. Such a reasoning model is called visual
interactive model,VI model.

A more sophisticated approach is to use a simple heuristic to
compute courses of action. For hazardous operations, it is quite
common to adopt a conservative approach, i.e., to assume that
all activities that are affected by a RTE have become too risky
to employ. This model is called conservative heuristic model,
CH model. These two reasoning approaches pertain todecision
making by alternativebecause they help the operator decide
on new courses of action by focusing on feasible alternatives.

Many reasoning approaches are based on multi-attribute
utility theory (MAUT) and mathematical programming. A
common approach is to evaluate every activity with a given
set of criteria. Hazardous operations, such as the transportation
of dangerous goods, are usually valued using the criteriarisk
andcosts. To compute optimal routes, risks and costs of every
road segment must be evaluated. Risks are then transformed
into costs and added to the transportation costs, resulting in
total risk-costs. The optimal paths between any two origins and
destinations is the one with minimum total risk-cost values,
subject to physical constraints. Tradeoff values needed to
transform risks to costs can be found in the literature [9].

The mathematical program for the multicriteria route op-
timization model is then the following, where are the
total risk-costs for the road segment and is the road
segment from node to node : minimize subject
to for origin, 1 for
destination, an 0 for all other or 1 for all Note
that the constraints refer only to physical characteristics of
the network. A reasoning approach based on such a model is
called a multi-attribute utility model,MAU model.

Despite the fact that many MAU models have been proposed
for real-time decision support, they have been criticized for
not taking into account humans’ limitations in information
processing, particularly their inability to apply probability

logic [10]. Consequently, other reasoning approaches have
been proposed and employed for real-time decision support of
large scale operations, e.g., fuzzy set theory and approximate
reasoning [11], genetic algorithms [12], and lexicographic goal
programming [4].

The latter approach is based on a set of cognitive assump-
tions about the human operator performing in a real-time
environment. These assumptions consider i) human’s cognitive
limitations, ii) that uncertainties in real-time decision situations
are more difficult to assess than in strategic settings, and
iii) that searching for suboptimal decisions can be more
efficient than searching for optimal solutions. The cognitive
assumptions are operationalized as a preference algebra which
leads to the lexicographic goal programming approach, i.e.,
the optimal course of action is the one that scores best on the
least preferred criteria.

The reasoning principle of the search algorithm that con-
structs the optimal course of action in this decision situation
is the following. It fans out from the origin decision toward
the destination decision by adding new activities (e.g., road
segments) according to the following priorities: 1) it never
takes a road segment that must be avoided (too high risk); 2) it
avoids as much as possible road segments with high risks; 3) it
minimizes transportation costs; 4) it avoids as much as possible
road segments with low risks. For a detailed discussion of the
algorithm see [13].

Thus, risks are traded off against costs in the sense that high
risks must be avoided no matter the costs that are involved, and
low risks are only avoided if no additional costs are involved.
In addition, risks can be so high so that the road segment
cannot be used. A reasoning approach based on such a model
is called ordinal preference model,OP model.

III. EMPIRICAL ASSESSMENT OFREASONING APPROACHES

Reasoning logics imbedded into decision support systems
should be assessed empirically. The most interesting measures
of performance areeffort and accuracy[14]. Effort refers to
the time it takes the operator to make decisions, the cognitive
strain to make decisions, and the effort involved in using the
decision support system (DSS). Accuracy refers to the quality
of the decisions.

Variables affecting effort and accuracy are the reasoning
logic, task complexity, cognitive load, training and experience
of the operator. The reasoning logics of the VI, CH, OP,
and MAU models have been implemented into a DSS for
dispatchers of hazardous material shipments for the Capital
District region of New York State [15], and for Switzerland
[3].

The latter DSS was used to simulate different task situa-
tions for empirical assessment of the four reasoning logics.
Significant insights can be gained if the DSS can simulate the
work environment of operators using advanced technology.
To achieve this, the DSS was developed in a multimedia
environment using graphics, text, drawing, animation, and
voice output. Operators only use the mouse as input device.
The simulated task situations can be repeated with different
scenarios. Tests confirmed that computer knowledge did not
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Fig. 1. Decision making processes for the four reasoning approaches.

affect the results, and learning during the assessment process
did not occur.

A. Assessment in a Simulated Work Environment

An assessment of the four reasoning logics was done
with 32 experienced dispatchers at a dispatching school in
Wil, Switzerland. Three scenarios were designed to simulate
decision situations typical of a dispatcher of vehicles carrying
hazardous materials. In every scenario, the dispatcher could
monitor the movement of three vehicles using a computer
generated map. While the vehicles were moving on the map,
two RTE’s occur that affected safety and costs of some of the
shipments. The subjects must then make rerouting decisions
for all three vehicles. These decision situations are repeated
with three slightly different scenarios, yielding a maximum
of 72 rerouting decisions for each reasoning model (nine per
subject). In addition, the times for making these decisions were
also recorded.

While the means to communicate the occurrence of the
RTE’s (see Fig. 1: perception) is the same for all four models,
the remaining components of the decision making process (see
Fig. 1: assessment and choice) differ among the four models.
Subjects working with the OP and the MAU models must first
assess the impact of the RTE’s on risk and cost (assessment).
For subjects working with the CH model, the system auto-
matically computes an alternate route for all vehicles based
on the conservative heuristic that all RTE’s increase the risk
such that they must be avoided. Subjects working with the VI
model had no reasoning support in finding new routes. RTE’s
were designed to be either hazardous or harmless. Hazardous
RTE’s increased the risks significantly, while harmless RTE’s
did not.

After the assessment phase, all the subjects had to make
choices for all three vehicles (choice). Subjects with the VI
model would only see the current routes of the vehicles. New
routes could be selected by clicking on the appropriate road
segments with the computer mouse. Subjects with the other

models saw, in addition to the current routes, new routes that
result from the assessments or from the heuristic. Their choice
was between staying on the current route, taking the new route,
or constructing a new route.

Fig. 1 summarizes the decision making process consisting
of perception, assessment, and choice. It can be seen that MAU
subjects used a slide bar to assess the risks, while OP subjects
used risk classes. Stress was created by limiting the decision
time which was shown to the subjects by a timer at the top
boarder of the screen.

The discussion of the results concerning the comparison of
the four models for effort and accuracy are reported in [16].
Assessing the effects of RTE’s with the ordinal preference
structure (OP model), prior to making routing decisions, was
found to be significantly more efficient and accurate than
searching directly for new routes. Using a numeric scale to
assess safety and cost in cases of a RTE was disliked by the
subjects and led to inferior results.

In the following sections we discuss the results that refer
to the effects that effort and task complexity had on the
accuracy of the decisions within and across the four models.
Furthermore, findings on task sharing between humans and
DSS are also reported. Prior to these discussions, the role
of the DSS on these results is addressed. This is important
because the purpose was to assess different reasoning logics
and not the DSS.

B. The Decision Support System

When assessing reasoning logics embedded into DSS’s, one
must be careful to separate the effects of the reasoning logics
from those of the DSS. The purpose of the experiment was to
assess the effects of the reasoning and logics and not those of
the DSS. Thus, the effects of the DSS should be eliminated,
or at least be the same for the four systems.

Effects of the DSS on the results of the experiment can
stem from various sources. Since four slightly different DSS’s
were used for the four reasoning logics, effects across the
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DSS’s, as well as within the system, had to be eliminated.
Effects within the system refer to the learning effect that
might occur during the experiment when working with rather
complex DSS’s that require certain skills for effective use.
Effects across the systems refer to inevitable, although minor,
design differences among the four systems.

To make sure that the results, as reported in the following
sections, are not affected by the DSS’s, structured questions
were posed to the subjects, i.e., the purpose of asking these
questions was to help insure that the results refer to the
differences in the reasoning logics and not to the DSS(’s).
The responses to the questionnaires show that both the “ease
of using the DSS” as well as “sufficiency of training before the
experiment” scored in the average 8.8 and 8.6, respectively,
on a scale from one (very false) to ten (very true), with
no significant differences among the four DSS’s. Moreover,
“clearness of simplification” (7.9) and “clearness of scenarios”
(8.9) where high, while “confusion during scenarios” (3.9)
was low, which supports the conclusion that the DSS’s had
no significant effect on the results. Thus, we could conclude
that from the point of view of the subjects there was no effect
within (no learning) and across (no cross effects) the DSS’s.

It was of course the intention to eliminate the effects of the
DSS in the design phase. For this purpose, the DSS’s had to
be as similar as possible and very easy to use. Therefore, the
DSS’s were build in a multimedia environment. Information
was given to the subjects in form of voice output (instructions
about movement of vehicles and announcement of events),
graphs (map with road network), text (in addition to the
voice output), and animation (moving vehicles, drawing of
routes). Input was done solely with the computer mouse. It
was interesting to note that the subject who performed best
had no previous computer experience.

To eliminate effects across the DSS’s, the four DSS’s
were adapted from one main DSS. Only absolutely necessary
changes referring to the characteristics of the four approaches
were made. These refer to the input devises for risk and
cost assessment. Everything else, including the layout of the
scenarios, the time the events occur, the way the information is
presented to the subjects, etc., was completely identical among
the four DSS’s. In fact, the main body of the DSS’s uses the
same computer code. From a design point of view, everything
possible was done to eliminate effects within the DSS’s (by
using a multimedia environment) and across the DSS’s (by
adapting the four DSS’s from one core DSS).

C. Effort and Accuracy

Accuracy is measured as the number of correct decisions.
A rerouting decision is considered “correct” if the route is
both safest and minimum cost (i.e., fastest); it is considered
“acceptable” if the route avoids a hazardous RTE but is not the
fastest one, else it is considered “wrong,” Since every subject
had to make nine rerouting decisions, the sum of “correct,”
“acceptable,” and “wrong” decisions is nine. For example, a
possible score is five correct, two acceptable, and two wrong
decisions (5c/2a/2w), for a total of nine decisions. Fig. 2 shows
the relation between accuracy (scores) and effort (decision

Fig. 2. Accuracy (score: correct plus acceptable decisions) versus effort
(decision time) for the four reasoning approaches.

time) for the eight subjects per model, where score is defined
as the sum of correct plus acceptable decisions.

The CH and MAU models show a positive correlation
between effort and accuracy (Fig. 2), i.e., the more time the
subjects invested in decision making, the higher the score. The
VI model shows a negative correlation. This stems from the
fact that constructing new routes by clicking with the computer
mouse on the appropriate road segments yields higher scores
(accuracy) but also takes more time (effort). The relation
between effort and accuracy for the OP model seems to be
different. Low scores were obtained where decisions were
made rapidly. The best scores (i.e., all nine solutions are
correct) were obtained if subjects invested at least more than
120 s (maximum time available for each subject is 360 s).
These results are statistically significant at the 5% level for the
CH model, and at the 10% level for the VI model (omitting
one outlier), while the results for the OP and MAU models
represent merely trends.

D. Task Complexity and Accuracy

Task complexity can be defined in different ways. Since
the number of vehicles to be rerouted and the number of
RTE’s were constant for all three scenarios, task complexity
can be defined as the type of RTE (hazardous or harmless)
and number of RTE’s that affected the vehicles. Of the two
RTE’s that occurred in each scenario, one did increase the
risk (hazardous) and the other did not (harmless). For every
scenario, one vehicle was affected by the hazardous RTE,
another by the harmless RTE, and the third by both RTE’s.
The vehicles that were affected by the corresponding RTE’s
were determined randomly (for all the subjects the same).
The most complex rerouting decisions of the three, is the one
where the vehicle is affected by both RTE’s. For the other
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two decisions, task complexity is assumed to be higher when
effort (time) to assess the RTE is higher. The OP subjects took
11.2 3.5 s to assess the harmless RTE and 10.82.9 s to
assess the hazardous RTE. The MAU subjects took 12.1
2.9 s to assess the harmless RTE and 15.24.6 s to assess
the hazardous RTE. Since there is no significant difference
in the RTE assessment times for both models, we conclude
that the assessment of a harmless or a hazardous RTE is of
the same task complexity. The effort to choose a route for the
three vehicles were not recorded; only the overall choice times
for all three vehicles per scenario were recorded. The choice
times per vehicle could have given insights about the relation
between task complexity and effort (e.g., more complex tasks
might require more effort to solve).

Table I shows the relation between accuracy (scores for
correct/acceptable/wrong rerouting decisions) and task com-
plexity. It can be seen that accuracy is lowest where vehicles
were affected by both RTE’s. This result holds for all models
except for the OP model. Accuracy for the OP model seems
to be independent of task complexity. When we consider only
“correct” solutions, the VI and the CH models also show a
decrease in accuracy between hazardous and harmless RTE.
Accuracy with the VI, CH, and MAU models decreases with
increasing task complexity, while again the OP model seems
not to be affected by increased task complexity.

Interesting to note is that CH subjects had a very low score
for vehicles that were affected by both RTE’s. An explanation
is that for the vehicles that were affected by both RTE’s, both
the current route and the new route were wrong. For the vehicle
that is affected only by the harmless RTE, thecorrect route is
identical with the original route. For the third vehicle, which
is affected only by the hazardous RTE, thecorrect route is the
one computed with the conservative heuristic.

The daily work of operators involves higher task complexity
and consequently more time pressure than simulated in this
experiment. For example, a dispatcher of vehicles carrying
hazardous materials must handle more vehicles, and RTE’s oc-
cur more frequently. The most appropriate reasoning approach
seems to be the OP model. It is based on a lexicographic
reasoning approach which i) provides more support than the
VI model, ii) is more flexible than the CH model, and iii) is
more conservative than the MAU model. In fact, it has been
found that decision makers are less risky (more conservative)
under time pressure [17].

E. Cognitive Load

Cognitive load can be characterized by the effort expanded
on assessment and choice. Table II shows the efforts (times in
seconds) for assessment and choice for the CH, OP, and MAU
reasoning logics. Given are the average times (efforts) for
decision making for those scenarios where the subjects made
no mistakes (“no-mistake scenarios,” i.e., both assessments
and choices are correct), and the average times (efforts) of the
other scenarios (i.e., some mistakes were made). Note that VI
subjects could not assess the RTE’s and had no new routes
proposed by the DSS. The assessment times for the CH model
are zero, since the assessments are done automatically with a
conservative heuristic.

TABLE I
ACCURACY (CORRECT/ACCEPTABLE/WRONG DECISIONS) AND

TASK COMPLEXITY (HARMLESS, HAZARDOUS, AND BOTH RTE’S)

The efforts for the “no-mistake” scenarios can be used to
assess the effects of the reasoning logic oncorrect solutions.
The differences between the OP and MAU models for both
the average assessment times and the variances are not sig-
nificant. Thus, there is no benefit in using either reasoning
logic in regard to the assessment-effort. On the contrary, the
dispatcher must spend more time when using the OP and MAU
models compared to the CH model which does the assessment
automatically.

For the choice phase, the CH model is counterproductive.
Choice-effort in “no-mistake” scenarios is significantly greater
than in the other scenarios. A possible reason for this is
that CH subjects realized that many routes proposed by the
conservative heuristic were wrong and they spent time to
determine the correct route.

The variances for choice-times are for all three reasoning
approaches significantly smaller for “no-mistake” scenarios
than for the other scenarios. This means that the efforts spent
on wrong choices vary more than the efforts spent on correct
choices. A possible explanation is that wrong choices were
obtained either by rapid, random selection of one of the two
routes proposed by the system, or by spending time fruitlessly
in searching for the correct solution.

Two of the three consecutive tasks that were part of this
decision process are assessment followed bychoice(as shown
in Fig. 1). The OP model reduces significantly the choice-
effort, while the MAU model does not. Moreover, although the
OP and MAU models have no significantly different choice-
efforts, the OP model has significantly smaller variances in
choice-effort than the MAU model. Therefore, the effort spent
on correct decisions (“no-mistake” scenarios) is more stable,
i.e., the variances in effort are smaller than for when mistakes
are made.

We can postulate thathigh accuracy(high number of correct
decisions) andstable effort(small variance in the effort to
obtain the high accuracy) are related to each other, i.e., high
accuracy is not completely random (at least less random than
low accuracy). There seems to be an optimal amount of effort
needed to obtain maximum accuracy; more or less than this
effort results in inferior solutions.

From a design perspective, we can conclude that a reasoning
logic should not have as one of its goals rapid decision making
but should strive for an appropriate balance between amount
of decision support and task complexity. Since tasks in real-
time decision making may have different task complexities,
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TABLE II
COGNITIVE LOAD WITH OP AND MAU M ODELS MEASURED IN SECONDS

different decision support approaches should be provided. This
could mean that a DSS should provide different assessment
and choice strategies. In fact, cognitive load can often better
be reduced by switching choice strategy than by speeding up
the current strategy [18].

F. Final Judgment

After the dispatchers of the OP and MAU models have
assessed the impact of the RTE’s on risk and costs, new routes
were computed automatically by the system and presented to
them for choice. For the CH model, subjects had nothing to
assess since new routes were computed automatically using a
conservative heuristic. Therefore, the picture on the screen for
the choice phase (see Fig. 1) was the same for the CH, OP,
and MAU models. This picture contained the current routes
as well as the newly computed routes which were presented
for choice. In addition, subjects could decide to construct a
completely different route if they decided not to take either
the current or the new route.

For the choice process, i.e., the selection of new routes for
the three vehicles, CH, OP, and MAU subjects were presented
for every vehicle (one at the time) two routes (the original and
the new one) to choose from. Some of the subjects carefully
examined these two routes in the context of the geographic
display. Less critical subjects would trust the new routes
proposed by the system; e.g., some CH subjects accept the
routes generated with the conservative heuristic, and some OP
and MAU subjects simply follow their assessment.

Fig. 3 shows the conditional scores ofcorrect plus accept-
able solutions versuswrong solutions per model, given that
the screen presented thecorrect route (solution) or given that
both routes are notcorrect. The correct solution was either
the new computed route (when the vehicle was affected by a
hazardous RTE) or the original route (when the vehicle was
affected by a harmless RTE).

OP subjects were presented thecorrect solution on the
screen (either the original route or the new computed route
based on their assessment) in 89% of the choice situations. If
they saw thecorrectroute, they never made a “wrong” choice.
CH and MAU subjects were shown the correct route in 67%
and 68%, respectively.

Of special interest are those cases, where the subjects were
not presented thecorrect route on the screen. For these cases,
OP subjects more often selected thecorrect solution (63%)
than the CH (42%) and MAU (35%) subjects. It is rather
surprisingly that MAU subjects had the lowest frequency for
“savings” (35%), i.e., to make the right choice although only
wrong solutions are presented for choice.

Fig. 3. Marginal frequencies for seeing “correct” solution on the screen, and
conditional frequencies for choosing the “wrong” solution.

IV. SUMMARY AND CONCLUSIONS

Four reasoning approaches in support of real-time decision
making have been assessed in a simulated work environment
with experienced operators. They range from no reasoning
support, to ordinal preference model, to numerical utility
model, and finally to automatic assessment with a conservative
heuristic. The results show thatheuristicandutility reasoning
models have a positive correlation between effort and accu-
racy, while no reasoning supportdoes not. The OP model,
which has been found to be the most accurate and to require the
least effort, seems to yield high accuracy independent of the
decision effort. In addition, the results show that the accuracy
of the OP model is not affected by task complexity, while
the other models show decreased accuracy with increasing
task complexity. Comparing the three reasoning approaches
that computed new routes after a RTE (CH, OP, and MAU
model), the OP model creates less cognitive load than the
other two models. In addition, the OP model reduces more
the cognitive load than the MAU model, while the OP model
can be counterproductive. Finally, operators working with the
CH and MAU models seem to accept more easily incorrect
results generated by the system than those working with the
OP model.

Innovations in communications and computing technology
have made possible real-time monitoring and control of haz-
ardous operations. These technological advances are providing
the capability for operational decision making. Consequently,
alternative reasoning logics have been proposed for supporting
the assessment and choice process involved in decision making
under uncertainty. It is our contention that the appropriateness
of a reasoning logic must be assessed empirically, if possible,
in situ or at least in simulated decision situations. In so doing,
one must be careful that the reasoning logic is tested and
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not the technology in which it is embedded. Human–machine
interfaces that enable one to “see,” “hear,” and “feel” in a
virtual environment do not ensure that the user is “smarter”
and better able to make decisions under uncertainty and time
pressure.

A conclusion of this research is that the selection of the
appropriate reasoning logic in support of real-time decision
making is crucial. However, since each subject worked with
only one of the four reasoning logics, no conclusions can be
drawn whether a combination of the logics could yield better
results. In fact, as Hulland and Kleinmuntz [18] note, time
pressure does not necessarily force one to employ the current
choice strategy more rapidly, but it could cause a shift in
choice strategy. For example, if events (such as snow storms)
have been perceived to be risky, the conservative heuristic
logic would be appropriate; but in instances where dangerous
and harmless events are present simultaneously, assessment
by attribute seems to be the most appropriate strategy. For
noncomplex rerouting situations, the dispatcher might select
the new routes without the help of the DSS.

Further research should focus on relaxing some of the strin-
gent constraints that were used in this experimental setting. For
example, more vehicles and more events would significantly
increase the complexity of the tasks. This would make the
scenarios more realistic but also include more parameters
requiring a more complex experiment to generate the necessary
data.

Despite the fact that more investigations must comple-
ment this work before firm conclusions can be drawn, the
results of these research can have an impact on the design
of human-machine systems and on the tasks of organizations
focusing on centralized real-time decision support for remote
and mobile units. Efforts in this directions are going on in
different domains all over the world. Examples are the U.S.
projects relating to the intelligent transport systems (IVTS),
the European DRIVE projects addressing issues of advanced
road transport telematics, as well as commercially available
satellite tracking systems (e.g., Euteltracs and Omnitracs) that
have incorporated little decision support so far. However, the
results of this research show that the appropriate reasoning
approach, embedded into a DSS, can reduce effort and improve
accuracy in real-time decision making.

Thus, the steadily growing use of real-time decision making
technology by industry (in general regardless of the economic
benefits), coupled with the fact that decision makers tend to
adapt their decision making strategy to the decision aid that
reduces mostly effort (mostly regardless of the accuracy) [19],
motivates further investigations of real-time decision support.
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