This is a repository copy of Multiobjective Optimization and Multiple Constraint Handling
with Evolutionary Algorithms II: Application Example.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79978/

Monograph:

Fonseca, C.M. and Fleming, P.J. (1995) Multiobjective Optimization and Multiple
Constraint Handling with Evolutionary Algorithms II: Application Example. Research
Report. ACSE Research Report 565 . Department of Automatic Control and Systems
Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Q 298 ()

Multiobjective Optimization and Multiple
Constraint Handling with Evolutionary
Algorithms II: Appliciation Example

Carlos M. Fonseca and Peter J. Fleming
Dept. Automatic Contrel and Systems Iing.
University of Sheffield
Sheffield S1 4DU, U.K.

January 23, 1995

Research Report 565

\
\/
Fa

AN

Abstract

The evolutionary approach to multiple function optimization formulated in
the first part of the paper [1] is applied to the optimization of the low-pressure
spool speed governor of a Pegasus gas turbine engine. This study illustrates how
a technique such as the Multiobjective Genetic Algorithm can be applied, and
exemplifies how design requirements can be refined as the algorithm runs.

Several objective functions and associated goals express design concerns in
direct form, i.e., as the designer would state them. While such a designer-oriented
formulation is very attractive, its practical usefulness depends heavily on the
ability to search and optimize cost surfaces in a class much broader than usual,
as already provided to a large extent by the Genetic Algorithm (GA).

The two instances of the problem studied demonstrate the need for preference
articulation in cases where many and highly competing objectives lead to a non-
dominated set too large for a finite population to sample effectively. Further, it
is shown that only a very small portion of the non-dominated set is of practical
relevance, which further substantiates the need to supply preference information

to the GA. The paper concludes with a discussion of the results.

Contents
1 Introduction
2 The gas turbine engine model

3 The design problem

Bl DesigriobiBetiVel & : s sa s i o b uTE 5 HEB S RS nm r o a
4 Implementation
4.1 Parameterencoding ittt
4.2 Geneticoperators i i e
4.2.1 Fitness assignment and selection.
422 BecombIlion .5 55 5 55 5 2 mo v s 2 dm b on s mo n .
423 Mutation i s 55 15« 20 communmomonnmmesnn
4.3 Offspring evaluation
5 Results
5.1 A two-variableexample.,
5.1.1 Genetic algorithm results
5.2 Full controller parameter optimization

6 Discussion

7 Concluding remarks

ar

1 Introduction

The evolutionary approach to multiple function optimization formulated in the
first part of the paper [1] is applied to the optimization of the low-pressure spool
speed governor of a Pegasus gas turbine engine, a non-trivial and realistic non-
linear multiobjective optimization problem.

The study provides an illustration of how a technique such as the Multiob-
jective Genetic Algorithm can be applied. It also exemplifies how the trade-off
information generated by the algorithm can contribute to a better understand-
ing and appreciation of the complexity of the problem before requirements are
refined. In particular, the concept of preferability can be seen to establish an
important compromise between aggregating function approaches, which would
provide a single final solution, and a pure Pareto aPproach, which would be faced
with sampling a very large trade-off ;;t_‘i';;r—;ahéc-h’ onl;a small portion is of

practical relevance. Variable dependencies leading to ridge-shaped fitness land-

scapes can also be identified in the problem.

2 The gas turbine engine model

This study is based on a non-linear model of a Rolls Royce Pegasus gas turbine
engine. The engine layout and the physical meaning of some of the associated
variables are shown in Figure 1. The engine model reproduces dynamic charac-
teristic variations for the fuel thrust range over the complete flight envelope.
The model of the full system also includes a fuel system model, stepper motor
input and digital fan speed controller, and is shown in Figure 2 [2, 3]. The demand
in low-pressure spool speed (NLDEM) is the only control input of the controller.
The other inputs allow external perturbations to be applied to the system, but
are not used in this work. NLDEM is compared with the actual speed of the low-

pressure spool (NL) in order to produce a demand in high-pressure spool speed

THST THST

Fuel flow

High-pressure spool speed
Low-pressure spool speed
High-pressure delivery pressure
Low-pressure delivery pressure
High-pressure delivery temperature
Jet pipe temperature

Front nozzle thrust

Rear nozzle thrust

The Pegasus turbofan engine layout

FCDEL

PBDEL[i’E_

h 4

STEPPER FUELSYS

ENGINE

Figure 2: The SIMULINK model of the system

(NHDEM). The desired position of the stepper motor THSTD is then computed
from NHDEM and the actual high-pressure spool speed (NH).

The structure of the existing controller was originally determined by Rolls
Royce [4] on the basis of requirements imposed by its integration with other
systems on the aircraft. Both NH and NL are states of the engine model. The

remaining outputs are simply non-linear functions of the two states.

3 The design problem

Each block of the controller, NLLOOP and NHLOOP, is characterized by four
parameters, one of which is a real gain value. The other three parameters are time
constants. The appropriate setting of such parameters, or design variables, is cast
as the problem of optimizing a number of closed-loop performance measures.

In the existing controller, the non-linearity of the plant (i.e., the stepper mo-
tor, the fuel system and the engine) is handled by scheduling different controller
parameters on-line against the values of NLDEM and NH. In this study, a sjg;g}g
operating point of the plant is considered, and the design procedure described
gives but a single step towards the design of a controller for the full range of
operation of the plant. Nevertheless, the example serves well to show how the
concept of preferability can be effectively explored by an evolutionary technique

such as the Genetic Algorithm.

3.1 Design objectives

The design objectives were extracted from the original stability and response
requirements provided by the manufacturers, consisfing of a selection of both time
and frequency-domain objectives. Frequency-domain measures were computed
from the model linea.rize-dﬂ around the operating point defined by NL = 70%. The

time-domain characteristics were derived from the response of the full non-linear

model to a (small) step input of 3%NL, obtained through simulation.

Closed-loop stability. The stability of the closed-loop system is probably the
most basic objective to be satisfied. In the discrete-time case, the maxi-
mum pole magnitude of the corresponding closed-loop system provides a
simple and effective means of assessing how far from being stabilizing a
non-stabilizing controller is. If set up as a high-priority objective with
unity for a goal, this measure enables stabilizing controllers to be found

before other objectives come into play [5].

If, however, a fast time response is also required, the maximum pole mag-
nitude of the final controller should continue to be minimized below unity.

For this reason, this measure is set up as a soft objective here.

Gain and phase margins. The gain and phase margins are measures of ro-
bustness to multiplicative loop perturbations. They are generally indepen-
dent from the maximum pole magnitude of the closed-loop system. The
gain margin for the Pegasus engine is required to be at least 1.5 (3.53 dB),
and the phase margin is required to be at least 50 degrees. Both mar-
gins are measured by opening the loop after the controller output.! The
maximization of both margins is implemented as the minimization of their

complements.

Rise time The time taken by the closed-loop system to reach, and stay above,
70% of the final output change demanded by a step-input. It is required to
be no longer than 0.7 of the time taken by the open-loop engine to reach

70% of a similar output change, following a step in fuel flow.

Settling time The time taken by the closed-loop system to stay within £10%
of the final output change demanded by a step-input. It is required to be

!This is consistent with modelling the uncertainty associated with the fuel system in terms
of maximum gain and phase deviations, although it does not directly address the behaviour of
the system in the presence of that uncertainty.

4

no longer than the time taken by the open-loop engine to reach 90% of a

similar output change, following a step in fuel flow.

Overshoot The maximum value reached by the output as a consequence of a

step input should not exceed the final output change by more than 10%.

Output error Given the presence of a pure digital integrator in the control
loop, the steady-state output error of the system is guaranteed to be zero.
Consequently, and provided the system is fast enough, the output error
measured at the end of the simulation should be close to zero. The

associated goal is set to 0.1% of the desired output value.?

4 Implementation

The several objective functions, the multiobjective ranking algorithm, and all
GA routines were implemented as MATLAB [6] M and MEX-files [7). A graphical
user interface (GUI) was also written as an M-file, making use of the graphical

capabilities of MATLAB V4. The model was simulated with SIMULINK [8].

4.1 Parameter encoding

The controller parameters were encoded as 15-§1g1t binary strings each, using
Gray coding, and then concatenated to form the:chromosomes. Gain param-
eters in the interval [107%,10°), and time constants in the interval [107%,10)
(s), were logarithmically mapped onto the set of possible chromosome values,

{0,...,2'® — 1}, providing a resolution of about 4 significant digits in each case.

2This goal was taken from the steady state stability requirement, which states that speed
fluctuations should not exceed +0.1%NL.

4.2 Genetic operators

The genetic algorithm consisted of a fairly standard generational GA with mul-
tiobjective ranking, and with sharing and mating restriction implemented in the
objective domain, as described in Part I [1]. A small percentage (10%) of ran-
dom irnrnigr_a.qts was inserted in the population:t_e;;i;;éneration, with a view
to m:kmg the GA more responsive to on-line preference changes [9].

After evaluation, multiobjective ranks were computed according to the current

preferences, and the population sorted. Fitness assignment followed.

4.2.1 Fitness assignment and selection

The selective pressure (defined as the ratio between the number of offspring ex-
pected by the best individual in the population and the average number of off-
spring per individual) imposed by rank-based fitness assignment is constant and
can be easily set. In particular, arbitrary values of selective pressure can be
obtained by assigning fitness exponentially [10].

In a fixed-size population, the average number of offspring per individual is
one and, therefore, the number of offspring expected by the best individual equals
the selective pressure. In the present case, however, only 90% of the individuals
in the new population are the resuH of sélection, the remaining 10% consisting
of random Ji;x-nmigrants'. Consequently, for the expected number of offspring of
the bestﬂ-individual to be kept constant, selective pressure must increase with the
percentage of random immigrants introduced in the population. This is useful in
setting parameters such as the mutation rate, as discussed below.

By guaranteeing a non-zero, although small, probability of reproduction to
the least fit individuals in the poi)ulation for all values of selective pressure, ex-
Pponential ranking also gives random immigrants a chance to take part in the next
recombination stage of the algorithm. It is desired that, through recombination,

they may pass their genetic diversity on to the population, since it is unlikely that

randomly generated individuals are able to compete with the current best directly
in terms of fitness, especially as the population evolves towards optimality.

The fitness assigned to individuals with the same multiobjective rank is av-
eraged, and fitness shared within each rank before selection takes place. The
sharing parameter o,hare is estimated given the number N of preferable individu-
als in the present generation and, for each objective, either the range they define
in objective space, or the corresponding range defined by the set of preferred in-
dividuals found until, and including, the present generation, whichever is smaller.
This encourages the population to expand across the trade-off surface, while al-
lowing it to contract when some of its preferable individuals become known to lie
outside the preferred region.

Selection uses Baker’s stochastic universal sampling (SUS) algorithm [11],
which is optimal in terms of bias and spread. It minimizes the stochastic errors

associated with roulette-wheel selection, and, thus, genetic drift.

4.2.2 Recombination

Once the parents of the next generation have been selected from the old popu-
lation, they are paired up and recombined with high probability (0.7). Mating
rt_:s’;;i__qj;,ign is implemented by forming pairs of individual within a distance omat.
of each other in objective space, where possible [12]. Reduced-surrogate [13]

shuffle crossover [14] is used for recombination.

4.2.3 Mutation

Although initially thought to play a secondary réle in the context of the Ge-
netic Algorithm [15], mutation has been found to, despite its simplicity, be an
important, active search operator. Independent bit mutation is characterized by
a single parameter, the bit mutation rate, or probability, the setting of which

depends on the selective pressure and chromosome length [16].

If there was no crossover, the probability of an individual not actually under-

going, or surviving, mutation should be at least the inverse of the best individual’s
expected number of offspring u for the best individual to, on average, be passed

on to the next generation. For length £ chromosomes,
Po<1-p7

where P, represents the bit mutation probability. In the presence of crossover,

the actual Py, should be somewhere below the limit. For p = 2, setting
Fu=1- (a#)-lﬂ

where o = 0.9, was found to perform well. (Note that in the presence of mating

restriction, crossover tends not to be too destructive).

4.3 Offspring evaluation

Only those offspring which were actually changed by the genetic operators were

re-evaluated, as suggested in [17]. This simple “caching” mechanism reduced the

number of objective function evaluations by between 20% and 25%.

5 Results

The setting of the gain parameters of the controller given the existing time-
constant parameter values will be considered first. Involving only two decision
variables, this formulation makes it possible to directly visualize cost surfaces in
the decision variable domain.

The optimization of all eight controller parameters follows, with emphasis
being put on the articulation of preferences in the objective domain. The seven

objectives described above are included in both cases.

o

.0001

Normalized rank
- o W .-

100

Figure 3: The cost surface associated Figure 4: The cost surface associated
with the maximum pole magnitude of with the phase margin of the closed-
the closed-loop system. loop system.

5.1 A two-variable example

Consider the problem of minimizing the seven objectives by varying only the
controller gains, KNL and KNH. Since there are only two variables, the cost
surfaces associated with each of the objectives can be produced through gridding
and visualized, although this is a computationally intensive task.

Figures 3 to 6 depict four of the seven single-objective cost surfaces involved
in this problem. Due to the bad scaling of some of these objectives, the points
on the grid were ranked after evaluation, as discussed in Part I [1]. Whilst being
closer to how a GA with ranking would see them, the resulting surfaces are much
easier to visualize than the original ones. In each case, the axes have been rotated
so as to highlight the features of each surface.

It is possible to see how some objectives, notably those defined in the time
domain, tend to display large flat regions corresponding either to lowest per-
formance, as with settling time (Figure 5) and rise-time (not shown), or even
to optimal performance in that objective’s sense, as with overshoot (Figure 6).
However, zero (optimal) overshoot means very little on its own: for example, it
may imply too long a rise-time.

In these regions of the search space, the optimizer must rely on other objec-

o

Nt_')rmaﬁzad rank
8 Normalized rank
S.p oo

Figure 5: The cost surface associated Figure 6: The cost surface associated
with the settling time of the closed- with the overshoot of the closed-loop
loop step response. step response.

tives, such as the maximum closed-loop pole magnitude (Figure 3). The closed
forms used to compute the gain and phase ma.rgi::.t.‘s_, though resulting in fairly fast
numerical algorithms, proved not to be sufficiently numerically robust across the
whole search space. This is apparent in Figure 4 for the phase margin. Never-
theless, the algorithms did produce accurate results with “sensible” gain settings,
and were used instead of more stable, but brute-force, approaches. (A discussion
of genetic search with approximate function evaluations can be found in [18]).
One can also estimate and plot a representation of the cost surface associated
with the Pareto formulation of the problem when no goals are specified (Figure 7).
Here, the most striking features are, perhaps, the large area of the search space
corresponding to non-dominated solutions and the irregular shape of that region,
also shown in Figure 8.
solutions (Figures 9 and 10); whose dimensions approach the reséi_t-;—tion of the
grid. As it turns out, noxéie of these points i, in fact, satisficing, Actual preferred
solutions, whether satisﬁéih‘g or not, will probz_a,gl; ge_c;);}li:;d to an even smaller

region of the search space.

10

o e
] = €
2 A
3
g3 .01
g 5
3 oy g
1
» 1
00%001

Figure 7: A representation of the cost Figure 8: An alternative view of the

surface associated with the Pareto- non-dominated set estimated through
based formulation in the absence of gridding.
preference information.

100}
L
< 1
. 0 pd
E X
3!
% 3 .01
5
57 .0001
13 W
100
.0001
’ 0001 KNH .0001 .01 1 100
KNL

KNL

Figure 9: A representation of the cost Figure 10: An alternative view of the

surface associated with the formulation preferable set estimated through grid-
including goal information. ding.

11

5.1.1 Genetic algorithm results

A genetic algorithm with a population size of 100 individuals was run on ‘this
problem five times, each time for 50 generations. Out of a total of about 4000
points evaluated in each run, around a half were non-dominated relatively to
each other. Of these, from 10 to 200 points were satisficing. Runs in which the
population could locate itself earlier on the satisficing region rapidly produced
variations of the first satisficing individuals found, which explains why some runs
ﬁere apparently much more successful than others.

In this example, some degree of preference information proves to be absolutely \G,.n"‘"
necessary to guide the GA through a very large non-dominated set towards solu- | fff"
tions of practical interest. Figure 11 illustrates the solutions ;go-far—preférablghat ;\
three different stages of an algorithm run. The preferable squ\ﬁ‘OII{’fEﬁpd at the

end of the run reveal trade-offs between the several objectives within tht\‘:\ bounds R M._ﬂcf‘g

Sp zoam ol Via
imposed by the goals associated with them. S

In these plots, objectives are represented by their integer index i on the z-
axis, and performance in each objective dimension is plotted on the y-axis. Each
candidate solution X is represented by a line connecting the points (2, fi(x)). A
trade-off between adjacent objectives results in the crossing of lines between them,
whereas non-concurrent lines indicate that those objectives are non-competing.
For example, rise-time (objective 4) and settling-time (objective 5) do not seem
to compete heavily. In turn, there is a clear trade-off between these two ob jectives
and objective 6 (overshoot). The gain and phase margins (objectives 2 and 3)

seem to be competing objectives in part of the trade-off only.

5.2 Full controller parameter optimization

The optimization of the full controller assumes no a priori knowledge of the con-
troller parameter values apart from that implicitly used in setting the parameter

ranges. Individuals are now 120-bit long, and the population is increased to 150

12

Pegasus NL governor design (2 params)

T T T

8% . %
1 2 3 4] 6
After 10 generations
Pegasus NL governor design (2 params)
B X
8X
1 2 3 4 5 6
After 30 generations
Pegasus NL governor design (2 params)
- [X
8X
1 2 3 4 5 6

Objective

Maximum pole magnitude

Objective
Objective

-Phase margin (deg)

Objective

70% rise time (s)

Objective

10% settling time (s)

Objective

Overshoot (%)

Objective

Figure 11: Sample trade-off graphs from a run on the 2-variable example, showing
the preferable solutions found after 10, 30 and 50 generations. The vertical axis
ranges are the same as those associated with the control-panel sliders. The goal
values are given in the middle column of the panel and are plotted as “x”.

0. 13

Error (%)

individuals. [st

Running the GA reveals a much larger set of satisficing solutions. The prefer-
able individuals found until, and including, the 40th generation are shown in
Figure 12(a). 'Wh-eﬁmcompa.red with the previous example, the solutions found
h;re all greater maximum pole-magnitudes, that is, longer time-constants. On
the other hand, they generally exhibit better stability margins and settling time.
Thus, not only do the solutions found in this second example not dominate those
found previously, but also they represent a significantly different region of the
preferable set.

The fact that the 8-variable GA could not find solutions similar to, or better
than, those found for the 2-variable example shows how sampling the whole
preferred region with a population of a given size may not be always feasible, even
though niche induction mechanisms are used. The dwers:ty among the preferable

1nd1v1duals in the populahon at genera.tlon 40, shown by the correspondmg trade-

—off graph in Figure 12(b), is an indication that these techniques are indeed at

N Gra, e

work, at least to some extent. Nevertheless, their effectiveness in causing the
population to spread across the whole, actual, preferred set also depends on the
genetic algorithm’s own ability to capture the regularities in the fitness landscape,
and generate offspring accordingly. Unfortunately, as discussed in Part I [1],
bmary coded GAs cannot be expected to be able to deal well with strong variable
dependenc:les

| Appropna.te interaction with the decision maker can help address this dif-
ficulty. The algorithm has found solutions which do, in principle, meet their
goals, and which it sees all as equally fit. Other solutions non-preferable to these
may exist, but they are probably more difficult to find given the encoding struc-
ture used for the chromosomes and the associated genetic operators. If the DM
finds the candidate solutions produced by the GA unacceptable, then preferences
should be refined so as to stimulate the GA to move on to a different region of

the non-dominated set.

14

Pegasus NL governor design (8 params)

T T

1 2 3 4

(a) Cumulative trade-off graph after 40 generations

Pegasus NL governor design (8 params)

_Objective

"‘('ijectwe

‘viaximum pole magnitude
-Gain margin (dB)
-Phase margin (deg)

_Objective

70% rise time (s)

Objective

10% settling time (s)

Objective

Overshoot (%)

Objective

Error (%)

Figure 12: Sample trade-off graphs from a run on the 8-variable example, showing
preferable solutions found after 40 generations. The vertical axis ranges are the
same as those associated with the control-panel sliders. The goal values are given
in the middle column of the panel and are plotted as a “x”.

15

As an example, consider again the trade-off graph in Figure 12(a). The step-
response error at the end of the simulations is not particularly low, reflecting the
long time constants associated with maximum pole magnitudes close to unity. If
faster responses are desired, the DM can tighten the goals assoc:ated with e1ther,

or both of these two obj jectives while contmlung to run the algonthm

“ Suppose the DM chooses to lower the goal associated with the maximum pole
magnitude to 0.98. Solutions capable of meeting this new requirement turn out
not to have yet been found, and a set of relatively non-dominated solutions close
to being satisficing is presented to the DM (Figure 13(a)). If the DM believes
this new set of goals can in fact be met (for example, because some goals in
the previous set have clearly been over-attained), there is no algorithmic reason
not to specify it. If the GA cannot find satisficing solutions, it will at least
produce a set of relatively non-dominated approximations to the new goals on
which further preference changes can be based. As the population continues to
evolve, reductions in maximum pole magnitude are accompanied by reductions
in the step-response error measured at the end of the simulation, and satisficing
solutions are eventually found at the expense of some degradation in gain margin
and other objectives (Figure 13(b)).

Further refinements could involve specifying hard, instead of soft, bounds for
some of the objectives. Suppose the DM decided that a gain margin of 6dB
seemed possible (in the presence of the trade-off graph), and that better gain and
phase margins would not be required. Raising the priority of these objectives,
and changing the gain margin goal, converts them into hard constraints as de-
sired. Doing so reduces the preferred set further (Figure 14(a)), and the process
continues. The family of step responses corresponding to the trade-off graph in

Figure 14(b) is shown in Figure 15.

16

"r~’” aet

Pegasus NL governor design (8 params)

(a) After 40 generations (new preferences)

Pegasus NL governor design (8 params)

T T T T T

1 2 3 4 5 6 7
(b) After 60 generations

_Dbjective ..
Objective

_Objective .-

_ Objective - [70% rise time (s)
Objective . B10% settiing time (5)
Objective — WOvershoot (%)
Objective ... @Error (%)

Figure 13: Sample trade-off graphs showing the effect of tightening one goal’s
value. The population is driven towards achieving that goal at the expense of
degradation with respect to others.

17

Pegasus NL governor design (8 params)

(a) After 60 generations (hard stability margins)

Pegasus NL governor design (8 params)

T T T T T

Cost
X

X

1 1 1

1 2 3 4 S 13 7

(b) After 80 generations

"Aaximum pole magnitude
-Gain margin (dB)
| §-Phase margin (deg)
_.Objective - M70% rise time (s)
..Objective - W10% settling time (s)
Objective - MOvershoot (%)
Objective == WError (%)

Figure 14: Sample trade-off graphs showing the effect of converting two objectives
into hard constraints, while also changing the goal associated with of one of them.

18

73.5

73

72.5¢

72

NL (%)

71F

70.5r

70 A 1 i 1
0 1 2 3 4 5
Time (s)

Figure 15: Family of preferable step-responses found after 80 generations.
6 Discussion

In the authors’ search for a reduced, yet illustrative, set of realistic design ob-
jectives for the Pegasus engine, the ability of the GA to exploit omissions in
the design requirements soon became apparent. The set up of the closed-loop
maximum pole magnitude as a soft objective instead of a hard one was a di-
rect consequence of the solutions produced by early runs of the algorithm being
clearly unacceptable: the GA was sometimes able to exploit the non-linearity of
the plant in such a way that the step-response characteristics achieved were only
valid for the particular amplitude of the step used during simulation. Applying
slightly larger or smaller steps to the controlled plant immediately revealed the
slow dynamics in the closed loop, deeming the controller unacceptable.

The objective functions and respective goals used in these examples reflect
design concerns in a direct form. The problems were formulated from the point
of view of the designer, not that of the optimizer. The associated cost landscapes

do not all meet common requirements such as continuity, smoothness, and absence

19

of flat regions, and neither does the resulting multiob jective cost landscape. The
practical usefulness of such a formulation is, therefore, tied to the ability to search
and optimize cost surfaces in a class much broader than usual, as provided by
the GA.

On the other hand, GAs do work best when no strong dependencies between
decision variables exist, which was neither the case for the simple example given
in Part I [1], nor is the case for the Pegasus controller design example. Evolu-
tionary algorithms to be used in multiobjective parameter optimization should
undoubtedly address this issue, because it seems to arise from the very nature
of the Pareto formulation. Decision variable dependencies have been taken into
account mainly in the context of Evolution Strategies [19], at the coding level.
Simple mating restriction techniques, as described and discussed in Part [(1], may
require too large a population to become effective as the size and complexity of
the trade-off surfaces increase, while also remaining practical. The preferability
relation provides a means of addressing this difficulty by interfacing between the
DM and the search algorithm, and allowing the two to interact.

When objective functions are very expensive to evaluate, the interactive use
of the MOGA may become less attractive due to the long time spent at the
function evaluation stage of the GA. In such generational EAs, however, many
candidate solutions can be evaluated independently from each other, making
possible the use of parallelism paradigms which exploit event replication, while
largely avoiding issues such as load balancing and inter-processor communication
problems. Parallel formulations (as opposed to parallel implementation) of EAs
are also important alternatives, because of the niche mechanisms which arise in
geographically isolated populations.

Finally, evolutionary algorithms are not restricted to parameter optimization.
They are also, and probably mainly, powerful combinatoric optimizers. The
preferability relation can, in principle, be applied to virtually all design appli-

cations of evolutionary algorithms, whether they involve permutation problems

20

such as scheduling and the travelling salesman problem [20], grouping problems
such as process-processor mapping [21] and non-linear model term selection [22],

or the evolution of computer programs [23].

7 Concluding remarks

The application of the multiobjective genetic algorithm to a controller design ex-
ample was used to demonstrate the need for some degree of preference articulation
in Pareto-based evolutionary optimization. The preferability relation provides
such a mechanism, allowing the designer to concentrate on design requirements
rather than on the properties of the final cost function to be optimized.

The interactive use of such an evolutionary multiobjective algorithm is very
attractive. Speed of execution then becomes an important concern, which can
possibly be addressed with parallel processing techniques. The need for improved

EAs capable of addressing strong variable dependencies to some extent has also

been highlighted.

Acknowledgement

Thanks are due to A. Shutler of Rolls-Royce for sharing his expertise and knowl-
edge in connection with the Pegasus case-study. The first author gratefully
acknowledges support by Programa CIENCIA, Junta Nacional de Investigagio
Cientifica e Tecnolégica, Portugal. The authors also wish to acknowledge the
support of the UK Engineering and Physical Sciences Research Council (Grant
GR/J70857) in completion of this work.

References

[1] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and multiple

constraint handling with evolutionary algorithms I: A unified formulation,”

21

Research report 564, Dept. Automatic Control and Systems Eng., University
of Sheflield, Sheflield, U.K., Jan. 1995.

[2] S.D. Hancock, Gas Turbine Engine Controller Design Using Multi-Objective
Optimization Techniques. PhD thesis, University of Wales, Bangor, UK,
1992.

[3] “Turbofan engine model,” technical report, Control and CAD Group, Uni-
versity College of Swansea, Swansea, U.K., June 1991. Final draft.

[4] A. G. Shutler, “A case study problem for the advanced controls technology
club,” Internal Report CSAN 2790, Rolls Royce plc, Bristol, U.K., 1991.

[5] C. M. Fonseca and P. J. Fleming, “Multiobjective optimal controller design
with genetic algorithms,” in Proc. IEE Control’94 International Conference,

vol. 1, (Warwick, U.K.), pp. 745-749, 1994.
[6] The MathWorks, Inc., MATLAB Reference Guide, Aug. 1992.

[7] A. Chipperfield, P. Fleming, H. Pohlheim, and C. Fonseca, “Genetic algo-
rithm toolbox user’s guide,” Research report 512, Dept. Automatic Control

and Systems Eng., University of Sheffield, Sheffield, U.K., July 1994,
[8] The MathWorks, Inc., SIMULINK User’s Guide, Mar. 1992.

[9] J. J. Grefenstette, “Genetic algorithms for changing environments,” in Par-
allel Problem Solving from Nature, 2 (R. Ménner and B. Manderick, eds.),
pp. 137-144, Amsterdam: North-Holland, 1992.

[10] P. J. B. Hancock, “An empirical comparison of selection methods in evo-
lutionary algorithms,” in Evolutionary Computing, AISB Workshop (T. E.
Fogarty, ed.), vol. 865 of Lecture Notes in Computer Science, pp. 80-94,
Berlin: Springer-Verlag, 1994.

22

[11] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,”
in Genetic Algorithms and Their Applications: Proceedings of the Second
International Conference on Genetic Algorithms (J. J. Grefenstette, ed.),

pp. 14-21, Lawrence Erlbaum, 1987.

[12] K. Deb and D. E. Goldberg, “An investigation of niche and species formation
in genetic function optimization,” in Proceedings of the Third International
Conference on Genetic Algorithms (J. D. Schaffer, ed.), pp. 42-50, San Ma-
teo, CA: Morgan Kaufmann, 1989.

(18] L. Booker, “Improving search in genetic algorithms,” in Genetic Algorithms
and Simulated Annealing (L. Davis, ed.), Research Notes in Artificial Intel-
ligence, ch. 5, pp. 61-73, London: Pitman, 1987.

[14] R. A. Caruana, L. J. Eshelman, and J. D. Schaffer, “Representation and
bidden bias II: Eliminating defining length bias in genetic search via shuif-
fle crossover,” in Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence (N. S. Sridharan, ed.), pp. 750-755, Morgan Kauf-

mann, 1989.

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, Massachusetts: Addison-Wesley, 1989.

[16] 1. Harvey, “Evolutionary robotics and saga: The case for hill crawling and
tournament selection,” Cognitive Science Research Paper 222, University of

Sussex, Brighton, Brighton, U.K., 1992,

[17] P. Oliveira, J. Sequeira, and J. Sentieiro, “Selection of controller parameters

2]

using genetic algorithms,’

Tzafestas, ed.), pp. 431-438, the Netherlands: Kluwer Academic, 1991.

in Engineering Systems with Intelligence (S. G.

(18] J. J. Grefenstette and J. M. Fitzpatrick, “Genetic search with approximate

function evaluations,” in Genetic Algorithms and Their Applications: Pro-

23

i

[19]

[20]

[21]

[22]

[23]

ceedings of the First International Conference on Genetic Algorithms (J. J.

Grefenstette, ed.), pp. 112-120, Lawrence Erlbaum, 1985.

T. Back, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution strate-
gies,” in Genetic Algorithms: Proceedings of the Fourth International Con-
ference (R. K. Belew and L. B. Booker, eds.), pp. 2-9, San Mateo, CA:
Morgan Kaufmann, 1991.

D. Whitley, T. Starkweather, and D. Shaner, “The travelling salesman and
sequence scheduling: Quality solutions using genetic edge recombination,”
in Handbook of Genetic Algorithms (L. Davis, ed.), ch. 22, pp. 350-372, New
York: van Nostrand Reinhold, 1991.

M. J. Baxter, M. O. Tokhi, and P. J. Fleming, “Heterogeneous architectures
for real-time control: Design tools and scheduling issues,” in Preprints of the
12th IFAC Workshop on Distributed Computer Control Systems (DCCS’94)
(J. A. del al Puente and M. G. Rodd, eds.), (Toledo, Spain), pp. 89-94, 1994.

C. M. Fonseca, E. M. Mendes, P. J. Fleming, and S. A. Billings, “Non-linear
model term selection with genetic algorithms,” in IEE/IEEE Workshop on
Natural Algorithms in Signal Processing, vol. 2, (Essex, U.K.), pp. 27/1-
27/8, 1993.

J. R. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, Massachusetts: MIT Press, 1992.

24

