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Obstacle Avoidance in a Dynamic
Environment: A Collision Cone Approach

Animesh Chakravarthy and Debasish Ghose

Abstract—A novel collision cone approach is proposed as an aid [16]) are some of the techniques which have been reasonably
to collision detection and avoidance between irregularly shaped syccessful in achieving this goal. While these approaches
moving objects with unknown trajectories. It is shown that o.¢ 5 gtifiable for a completely known environment, a par-
the collision cone can be effectively used to determine whether . v k d . ; hich i listi
collision between a robot and an obstacle (both moving in a tially nown. ynf”‘m'(? environment—which Is a_more realistic
dynamic environment) is imminent. No restrictions are placed framework in situations where obstacle motion cannot be
on the shapes of either the robot or the obstacle, i.e., they can predicted—requires a different approach. In fact, dynamic
both be of any arbitrary shape. The collision cone concept is motion planning is more difficult than static motion planning
developed in a phased manner starting from existing analytical even when complete information about the environment is

results—available in aerospace literature—that enable prediction ilabl his i h b | ilabl lexi
of collision between two moving point objects. These results are available. This is shown by several available complexity

extended to predict collision between a point and a circular results for motion planning [21].
object, between a point and an irregularly shaped object, between  Recent advances in robotics technology has made possible
two circular objects, and finally between two irregularly shaped the development of autonomous and semiautonomous robotic

objects. Using the collision cone approach, several strategies that . :
the robot can follow in order to avoid collision, are presented. A systems for land, air, and underwater operations. These robots

discussion on how the shapes of the robot and obstacles can be!S€ SOphiStiC"J‘tec_j anoard ‘sensors to perceive their environ-
approximated in order to reduce computational burden is also ment and use this information to plan and execute tasks [2],
presented. A number of examples are given to illustrate both [3], [22], [23], [29]. Their primary use is in uncertain envi-

collision prediction and avoidance strategies of the robot. ronments characterized by the presence of moving obstacles
Index Terms—Collision cone, dynamic environments, obstacle with unpredictable trajectories. Motion planning of robots
avoidance, path planning. in uncertain and unpredictable environments has attracted
the attention of robotics researchers only recently [1], [7],
. INTRODUCTION [91-12], [19], [26], [25], [28].

, ) ) . In this paper, we present a novel approach called the

OBSTACLE avoidance is a fundamental requirement iggjision cone approachvhich is ideally suited for automated

motion planning of a mobile robot. Several papergijed vehicles or autonomous mobile robots. The method is
addressing this issue have appeared in robotics literature [Bl,) in the sense that it uses concepts which have their roots in
[8], [13], [23], [24]. Motion planning can be categorized [6] a$¢4gpace literature rather than in robotics. The only relevant
static (wh_en the obstacles are stationary in the environme per in the robotics literature that uses a similar concept is
or dynamic(when the obstacles are capable of movement apd by Tychonievichet al. [27].
may even change shape and S'Ze.)' The environment CoUlGhe specific problem considered in this paper is that of a
be completely known (when the trajectory of the abstacles Mobile robot avoiding one or more moving obstacles with
knawn a prior) or partially known (when abstacle trajectoryunknown trajectories, based on sensor information collected

IS unk_nov_vn or mformatlon about it is mcqmplete).. .Th'.so the robot. The robot and the obstacles are both assumed
f:lassm.catlon. is not universal and an alternative cIaSS|f|cat|9 move only by translation in a two-dimensional (2-D)
is available in [8]. To date, a major research effort in th'g ?ce. Unlike previous literature, no assumptions are made
area has bee_n a_pphed fo analyze and SOIVe. the proble_moﬁ the shape of the robot or obstacles (i.e., they need not be
motion p'af?”'”g in a completely known environment wit olygons—convex, or otherwise). They can be of any arbitrary
largely static and, to some extent, moving obstacles [2t hape but with the constraint that each is a single rigid body

Their primary goal was to determine a collision-free pa without relative motion between points on the body. Thus,

from a starting point to a goal point while optimizing SOM&his approach is more suitable for the problem of obstacle

performance criterion. Configuration space approach, Vorona%)\}oidance of an automated guided vehicle or a mobile robot

diagrams, retraction methods, potential functions, visibilit) - .
- a workspace consisting of moving obstacles, rather than for
graphs, accessibility graphs, tangent graphs, etc. ([6], [8], .. ; X .
otion planning of robotic manipulators.
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Fig. 1. Collision geometry between two point objects. Fig. 2. A typical (Vp, V) trajectory.

. . has b ¢ ori iy i circular object. In Section Ill, we formalize the concept of the
(or interception) has been of primary concermn mainly in thr‘?ollision cone and present analytical results to obtain the exact

a;er(r)]spaceblgmdangz Iltera;u_re [&4]' [.35)]' Forl_example_, sol Sllision cone between a point and a circular object, between
of the problems addressed In the guidance literature InVolye, i ang an irregularly shaped object, between two circular

the guidance of a missile to intercept an aircraft, guidance jects, and finally, between two irregularly shaped objects.

a torpedo to intercept a ship, etc. The problem of achleV|r|1|g Section 1V, we discuss some simple strategies for collision

collision or interception is a long-standing area of researgy,;jance hased on the collision cone concept. In Section V,
in the aerospace literature and has evolved into a reason

) . o . ) examine the possibility of simplifying the computation of
complete theory, especially in the missile guidance literaturge ¢ojjision cone by approximating irregularly shaped objects
over the past five decades. Though the problem of collisiq 5 cojiection of circular objects. We conclude the paper in

avoidance in the robotics literature is of a more recent vintag€ation VI with a general discussion on the applicability of
it has also witnessed intense research activity in recent yegfs. qjjision cone approach.

However, to date there has been almost no cross-fertilization
of ideas between the two areas. The main reason for this I
is the apparent dichotomy between them in terms of their . ) .
objectives, operating environments, vehicle dynamics, sensof '€ €ngagement geometry for an interception problem is
systems, performance capabilities, etc. With the present diyen in Fig. 1. HereA and B are two point objects, moving
technological advances (especially in sensor systems) &jcconstant velocitied’y and Vi, respectively. The behavior
the stringent performance requirements on intelligent robofé the line-of-sight (LOS) is characterized by the following
vehicles [3], it is felt that many of the advances in the arédnématic equations:
of aerospace guidance theory has considerable relevance in V. =7 =Vpgcos(f —0) — Vycos(a — 6) Q)
robotics too. ) Vo =76 = Vg sin( — ) — Vi sin(e — 6) 2)

Our purpose is to show that the fundamental concepts used
for achieving intercept between bodies in motion can also béereV,. andV; are the relative velocity components (with re-
used to formulate strategies for collision avoidance. In doing §pect toA) along, and perpendicular to, the LOS, respectively.
we extend these fundamental concepts to situations relevanBtoce we consider only the instantaneous velocities of the point
the collision avoidance problem in robotics, and derive severljects,a and 5 are assumed to be constants. Differentiating
results that are new not only in robotics but also in aerospade and (2), we get
gu'llfjhinﬁteérature on interception problems has mainly focussed V=6V sin( = 6) — oV sina - 6) = v 3)
upon conditions of collision between two moving point objects ~ *¢ = —0VB cos(3 = 0) + 0V.a cos(ar = 0) = —0V;.. (4)
based on their instantaneous velocities. In the context of colividing (3) by (4) and cross-multiplying, we get
lision avoidance between robots it is not sufficient to consider . .
an object as a point mass. Its physical shape and size, and its VeV + VeV =0 (5)
position and orientation in space, are of prime importance. Wich, on integration, yields the following relation:
first extend the existing theory for predicting collision between 2 2 2 2
point objects to obtain more general conditions to predict Vit Ve =Vio+ Veo (6)
collision between objects of arbitrary shapes and sizes. Basdltere V,, and Vo are the relative velocity components at
on these results trellision coneis presented as a fundamentasome initial time (¢ = ¢,). Equation (6) shows that the
concept used for the purpose of collision avoidance. We restricdjectory on the(Vy, V;.) plane is a circle with center at the
our study to the 2-D planar case in this paper. origin and radius equal to the initial relative velocity between

This paper is organized as follows. In Section Il, we reviewd and B. This also implies that the relative velocity is a
some results well-known in the aerospace guidance literatwenstant with respect to time. Also, from (3), (4), and (6),
and illustrate some basic concepts through simple exampiiess evident that the trajectories in th@%, V,.) plane have
which also show how the collision cone can be obtaineddtime history shown in Fig. 2. Next, we state the following
for a simple initial geometry between a point robot and well-known results ([14], [15], [20], [30]).

. CoOLLISION BETWEEN POINT OBJECTS
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Lemma 1: The set of points satisfying the conditidi = 0
(for example, pointX in Fig. 2) are stationary points on the
(Ve,V,.) plane.

Proof: V(= rf) = 0 implies thatf = 0. Substituting
this in (3) and (4) yield§’. = 0 andV, = 0. n

Lemma 2: If two point objects are moving with constant
velocities (i.e., constant speed and direction), thgn= 0 and
V.0 <0, together form a necessary and sufficient condition for
collision.

Proof: From Lemma 1}o = 0 andV,q < 0 implies that
Vs = 0 andV,. < 0 for all future time. ButVy = 0 implies that
the LOS does not rotate in space alid{= 7) <0 implies
that distance between the two objects reduces until collision
occurs, thus proving sufficiency.

To prove necessity, let the two objects collide at time ¢ ;. 0
In the time precedingy, the distance between the objects was
obviously decreasing, thus implying th&t(t;) <0. If the
positions of the objects are projected back to any tme ¢,
the resulting figure formed is a triangle with the LOStats
one side and the collision point as the opposite vertex so that
successive lines of sight at timeés-¢; are parallel to each
other. Thus,Ve(t;) = 0. From Lemma 1, we can see that
Vg(t;) = 0; V,,(t;) <0 implies thatVyy = 0;V,9 <0, thus
proving necessity. [ |

Example 1: Consider an initial geometry between a point
object O and a circleF, with rg = 10;6, = 45°;8 =
60° Vo = 2;Vr = 1.5 and R = 3. Let C be a point on
the circleF, at an anglep = 10° with reference t@ P. Then, (b)
by using (1) and (2), and the conditions indicated in Lemma
2, it can be shown tha is on a collision course with point
C if « = 58.75°. See Fig. 3(a).

If we now consider all the points on the circlg; then,
by using (1) and (2) (and Lemma 2) for each such point,
we get a corresponding value ef that causesD to collide
with that point. The collection of all the values afdefines a
cone such that iV lies in this cone ther® will eventually
collide with F. We refer to this cone as the collision cone. In
this example, it is found that the collision cone is defined by
e[51.28°,60.61°]. See Fig. 3(b).

Example 2: Consider another initial geometry betweén

@

(©
and F, with 7o = 10; 00 = 45°; 8 = 215°: Vo = 2,V = 2.5 Fig. 3. (@) Collision geometry for Example 1, (b) collision cone for Example

. . . . 1, and llisi for E le 2.
and R = 3. Again, C' is a point on the circleF at ¢ = 10°. and (¢) collision cone for Example

Now, O will collide with C' if « = 85.31° or o = 209.68°.
The two values ofa correspond to collision occurring atSubstituting forV, and V;. from (1) and (2), we get
different points in space and at different instants of time.

Again, if we consider collision betweef* and each point
on F; and consider the collection of all such valuesagfwe
find that the collision cone is now split into two cones, an
is defined byae[18.21°,97.65°] U [207.27°,216.88°]. See
Fig. 3(c). We call this a split collision cone.

Lemma 3: If two point objectsA and B are moving with

y = 6—7‘,(0-1—(77/2))(VB67‘,,8 _ VAev‘,(y) (7)

'dl'herefore,

3 4 4 4 3
argz = g = ¢~ H0H(/2)) arg(Vpe'® — Vye'™) = g (8)

_1 Vpsinf— Vasina

constant velocitied”; andV (Fig. 1), and the initial position =0 = tan VacosfB — Vacosa’ ©)
of only A is fixed; then, as long ag,4 # Vg, there exists &
for which A is on a collision course wittB. Thus, from (9), as long a¥y # Vg, there exists & that

Proof: Let z = Vy + iV,. Then, the collision condi- satisfies the conditions for collision. Whén, = V}, we get
tion (indicated in Lemma 2) is defined bygz = 3n/2. V3 =0;V,. = 0, which is not a collision condition. [ |
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Sincetan ¢ is a periodic function with periodr, successive
¢ that satisfy (Vs)oc = 0 occur at intervals ofr. The
angle¢ is always bounded in the sense thiaf—~,~], where

v = sin ' (). For 7 > R, we havey € [0°,90°], and
obviously this interval is insufficient to allow for more than
one value ofp, for which (Vy)oe = 0.

We now convert the conditiofV)o.4(Ve)op < 0 into an
equivalent condition with reference P for which (Vy)op
and(V;.)op are obtained from (10) and (11) by puttig= 0.
Now, consider the inequality

(Vo)oa(Ve)os < 0. (13)

Substituting the expressions fdrz )o.4 and(Vs)o s by putting
¢ = v and¢ = —~, respectively in (10), we get

VEsin[f — (6 +7)]sin[8 — (6 — )]
—VoVrsinfa — (8 +v)]sin[8 — (6 — )]

In the previous section, we illustrated the concept of a V(;V.f sinfer — (6 ’7.)] stnfff — (6 + )]
collision cone with the help of two examples. The collision +Vosinfa — (0 4 y)]sinfa — (0 — )] < 0. (14)
cone can be used to predict the possibility of collision betwe%rhbstitutingcos 2y = (12 — 2R?)
two objects and to design collision avoidance strategies. In this
section, we shall derive the necessary and sufficient conditions r2(Vo)ap < RH{(V)ip + (Vo)ipt (15)
that enable the determination of the collision cone.

Fig. 4. Collision geometry between a point and a circle.

I1l. THE CoLLISION CONE

/7% and simplifying, we get,

We omit the subscripOP in the above equation for conve-
nience, and henceforth dendf&)opr and(V;.)op simply by

A. Collision Between a Point and a Circular Object Vo and V. Thus, (15) can be written as

In Fig. 4, O is a point object, whileF is a circle of radius e )i )
R and with center aP. The velocities ofD andF are denoted Vg SRV + Vit (16)
by Vi, and Vz, respectively. For any poinf' (parametrized
by the angleg) on the circleF, we can write the relative
velocity components of)C' as

Lemma 6: If a point and a circle of radiug? are moving
with constant velocities such that they satisfy (16) at any given
instant in time, then they will continue to satisfy (16) for all
(Vooc =Virsinl = (64 @)] — Vosinfa — (6+¢)] (10) future time. |
(Voo = Vi cos|8 — (6 + ¢)] — Vo cosja — (8 + ¢)]. (11) Proof: Define a functionf(t) as

t) =V — R*(V2 + V@) 17
Lemma 4: The point object is headed for a collision with F#) =rVy (Vo +Ve) (A7)
the circle 7 if and only if there exists a ray)C, passing Differentiating (17) with respect to, we get
through F, for which (Vs)oc = 0; (V,)oc <0 (C is called

the collision point). s 2(r2Ve Vo + riVE) — 2R3V, V. + VaVe).  (18)
Proof: Follows from Lemma 2. [ | dt
Now, let us define the relative velocity componentstof  Using (5), we get
(the upper tangent to the circl& from point O) as (Vs)oa i

) . . . .
and (V,.)o.4 and those ofDB (the lower tangent to the circle = = 2(r?VaVy +77V) = 2r(rVa Ve 4+ 7V). (29)
. . dt
from point O) as (Vy)op and (V,.)op. These expressions ) )
are obtained from (10) and (11) by substituting= ~v and PuttingVy, = —8V,. and» = V. in (19), we get
¢ = —~, respectively. af )
Lemma 5: At any given time, if(V3)oa(Vs)on < 0, then = =27 (—r8V, Vo ++V3) = 2r(=V,VF + V,V}) = 0.

there exists exactly one ra@C, where C' is a point on the dt
circle F, that satisfiegVy)oc = 0. Thus, sincef(t) remains unchanged with time, if(¢) <0
Proof: Consider an arbitrary poin€ on the circleF, initially, it remains so for all future time. u
defined by the angle[—v,~]. From (10), it is obvious that Lemma 6 is thus a generalization of Lemma 1.
(Va)oc is a continuous function ap. Thus,(Va)oa(Va)or < Consider Fig. 2 (wher&, andV,. are, in fact,(Vy)op and
0 implies that there exists at least opigfor which (Vy)oc =  (Vir)or). Consider &Vp, V;.) trajectory starting at some initial
0. It remains to be shown that this point is unique. Puttingoint (Veo, V,.0). Then, two cases are of interest.
(Ve)oc = 0in (10), we get Case 1: Vo = 0; V.0 <0.
] ] This implies that the collision poinC' lies on the line
tan ¢ = Ve sin(p — ) — Vo sin(a — 6) ) (12) OP (Fig. 4), i.e., OCP is a straight line. So(Vao, Vyo) is

Vrcos(B — 8) — Vo cos(a — 0) a stationary point on théV;, V,.) plane (Lemma 1).
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Case 2: Vyo # 0; V4 <0. and we rewrite (24) as
In this case, a trajectory originating from the third (fourth)
guadrant moves into the second (first) quadrant, crossing the pVio < Vo, < —pVio. (28)

V.. = 0 line. At the crossing poin¥,. = » = 0, implying that
r is an extremum at that instant (say at time- ¢,,,). Since We now define two more sets5; and Ny, as
V., is negative fort < t,,, and positive for allt > t,,,r is also

a minimum att = ¢,,. Let 7(¢,,) = r». We have to determine Nat =1{n: Voo € —pVio} (29)
the gonQitions for .\NhiCh’m < R, since this implies collision. Naz ={n: pVo < Vao . (30)
Multiplying both sides of (4) by, we get

Vo /Ve = =V, /r = —i/r (20) The collision cone is then obtained as a Aédefined as
which, on integration, yields N =N N Ny N Naa). (31)

V., — o 2y72 22 22 L 2v2
Vo =roVeo = r7Vg =1oVio = 1 Vem =70Va0  (21)  The setn; is obtained through the following cases.

where Va,,, = Va(tw). If the initial conditions are such that Case 1:If (cosp/v) = 1, then Ny is null.
they satisfyrdV2 < R3(V2 + V2) then, from Lemma 6, we ~ C@se 2:If —1 < (cosp/v) <1, then

N — {77: — COS (—COSI’L) < 77< COS (—COSN)}. (32)
1/ 1’

But V,,, = V,.(t,,) = 0. Therefore,2, < R? = r,, < R. Case 3: If (cos /) < —1, thenN; spans the whole space,
These results automatically lead to the following theorem. i.€.,

Theorem 1:If a point and a circle are moving with constant
velocities such that their initial conditions satisfy Ny ={n:0<n<2n}. (33)

T Vom < BV, + Vi),

5 Vio < B2 (VS + Vi) andV,o <0 (22)  To determineNs; we rewrite Vag < —pVio as

then they are headed for a collision. The above conditions are
both necessary and sufficient for a collision to occur.
Proof: Follows from the analysis given above. | -
Putting R = 0, (22) reduces td/yg = 0 andV,.c < 0, which Now, defining
are the conditions for collision between two point objects

(pcos p+sin ) < v(pcosn +siny). (34)

> i ) D 1
Lemma 2). Substitutind/so and V.o from (1) and (2) in (16), Sin( = ——=———; cos( = ———;
\(/veget ) &s0 0 1) (2) in (16) 1 1
A _ pcosp+sinp (35)
r2{Vz sin(B — 6p) — Vo sin(a — 69)}° N/ RS

< RV +VE —2VoVrcos(a— )} (23)
) ) ~so that(¢ is in the first quadrant, we may rewrite (34) as
Equation (23) can be interpreted as follows. Given

10,00, Vo, Vr, 5, and R, there exists a range ofv that sin(¢ +n) > A/v. (36)
satisfy (23) and for which,.o < 0. Let us denote this range

by [, aa]. Now, if O has a velocity vector at an angleye define the two values of, that satisfy (36) with a strict

« such thatae[ay, ao], then collision is inevitable. We call equality, asp, and7.. Then, Va1 can be obtained from:
this cone, with vertex aD and angular limits defined by cgge 1:If A/v>1, then Ny, is null.

a; and az, as thecollision cone To determine the collision  cgge 2: |f 0 < (A/v) < 1, thenny > u; and
. . . —_— —_— b) —_—
cone we first rewrite (16) as

V2 < pV3 (24) Nop={n:m <n <} (37)
where where
p=R/\[r§ — R%. (25)  p =sinYA/Y) =G mp=m—sin"H(A/v) — (. (38)

Also, we define the following quantities: Case 3: If —1 < (A/1) <0, thenm > 7, and

Vo
o=t =2 s
n 05 M [ 0 V]: ( ) NQl 2{77772771777§772} (39)

The collision cone comprises of those values;dhat satisfy
(24) and yieldV,, < 0. We define a sef\; as where

N = {n: Vg <0} (27) m= sinfl(A/l/) — G =—n— sinfl(A/l/) - (. (40)
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Case 4: If (A/v) < —1, thenN>; spans the whole space, v
ie., ro

Noy={n:0<n <27} (41)
To determineNs,, we rewritepV,q < Vg as

(pcosp — sin ) < v(pcosn — siny). (42) -1

Define
_r _ -1
/—p2+17 /—p2+17 i

A:pcosu—smu (43) é
VPE+1

so that = 7 — ¢ lies in the second quadrant. From (42)
sin(¢ +n) = Afv. (44)

We define the values of,, that satisfy (44) with a strict Example 3: Lgt the initial geometry be identical to that in
equality, as7; andj,. Then the set\z, is obtained from: ~ EXample 1. This corresponds to = 1.33,p = 0.314, 1 =

o’

—”
| [V
—t

Sin& = COSC: =

Fig. 5. Collision region in théVyq, V5.0) plane.

Case 1: If (A/v)> 1, thenNas is null. 15°. Since (cos 1/v) = 0.72, we use (32) to obtainV; =
Case 2:If 0 < (A/v) < 1, thenj» > 7., and {n: —43.42° < n < 43.42°}. From (35),( = 17.22° .and
A = 0.53. From (43),{ = 162.78° and A = 0.038. Since

Nag = {m: 71 <1 < M} (45) (> 3|sin H(A/v) +sin H(A/v)| = 12.6° and v > 1, (49)

should be used to determitéd,; N Naz. Since(A/rv) = 0.4,

where from (38) we get); = 6.35°. Since(A/v) = 0.038, from (46)

we getrp = 15.56°. Therefore, Ao N Nae = {n: 6.35° <

~ =17 _~.~:_._1~ _~
o= s AfY) = Gip = —sinTH(Afv) = G (46) 15.56°}. Thus, from (31 = {n: 6.35° < 5 < 15.56°},

Case 3: If —1< (A/r <0, thensj; > 7, and from which the collision cone is obtained 8$.35° < a <
60.56°.
Noz =A{n:n>m1,n < 02} (47) Example 4: Let the initial geometry be identical to that in
Example 2. This corresponds 0 = 0.8,p = 0.314,u =
where 170°. Since (cosu/v) = —1.23, (33) is used to determine

5= sin~ U (A/v) — G = —7 —sinY(A/) — ¢, (48 M = {n 0 < 75 < 2x}. From (35),( = 17.22° and
= st (A) = Gl = —m = s AN = G @8) e e rom (43). — 162.78° andA = —0.461. Since

Case 4: If (A/v) < —1,thenNay = {n: 0 < n < 27} 0<(<3|sin™H(A/v) + sinT}(A/v)| = 21.42° andv< 1,
The boundaries ofVa; N AN, are then determined as(50) should be used to determing; N Na.. Since(A/v) =
follows. —0.156, from (40) we gety; = —26.79° andn, = —188.21°.

1) If (A/v)>1 andlor(A/v) > 1 thenNy N Ny is null.  Since(A/v) = —0.5625, from (48) we gety, = —197.73°
2) If both —1 < (A/l/) <land—1< (A/l/) <1, then andm = 52.65°. ThGYEfOFQ,Ngl n NQQ = {77: —26.79° <

P RN n < 52.65°F U {n: —197.73° < n < —183.21°}
&) Ify>1,8nd¢ = 5 sin™(A/v)+sin™(A4/v)], then Consequently, from (31) the collision cone is obtained as

Nor N Nag = {mimy < < iz} (49) {18.21° < o < 97.65°} U {207.27° < o < 216.79°}.
A representation of the collision cone in tfig, V,.0) space
b) If <1, and 0 < ¢ < ${sin"'(A/r) + can be obtained by rearranging the terms in (22) to yield the
sin~!(A/v)}, then initial conditions that lead to collision as

Noay N Npp={mm <n<mt U {nig <n <t .
(50) Vg > < (%J) - 1) Vao| and V,o<0.  (51)

c) In all other casesV>; N Na is null.
3) For all other cases,

a) If (A/») < —1, and—1 < (A/») < 1, thenAay N Equation (51) represents a sector-shaped region in the

(Vao, Vio) plane, and is shown in Fig. 5.

N22 = N22- : . ..
- Equation (31) gives the collision cone between a paént
b) /II[_1</(\1;1/”) < land(4/v) < -1 thenNay N 5h4 5 circle. Let F° be an open circle containing all the
22 — 21-

points in the interior ofF. Then the collision cone betwe&n
and.F° is the open cone obtained by removing the boundaries
of the collision cone given by (31).

c) If (A4/v) < —1 and (A/v) < —1, then Ny N
Nog = {n: 0 < nn < 27}
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Fig. 6. Definition of cone<y, &, &3.

B. Collision Between a Point and an Irregularly Shaped Object

(@) (b)

lt_ is possible .t.O adapt Theorem 1 [and (31)]_ to Ob,taleig. 7. Collision geometry between a point and an irregularly shaped object
equivalent conditions that can be used to predict collisigh) v < r and (b)2> > .

between a point and an irregularly shaped object. Before doing
so, we give a few useful definitions [17]. A sétin a linear Case 2: ¢ > .

vector space is said to be a cone with vertex at the origingge Fig. 7(b). Here, we construct an open Citle con-

if z € £ implies thataz € £ for all a > 0. Fig. 6 Shows 5ineq in the complement of the code such thatAP and

three different types of cone, &; and &3, each with vertex 41 are tangential to the closure 8. Note thatF° does not
anglew. These cones differ from one another in the following'ave any points in common WithP or AQ.

manner:£, is convex and hag) <x;&; is nonconvex and | emma 8: If 4>, then A is on a collision course with

has) > m: & is nonconvex and hag <. We shall use the 1 it 50 only if A is not on a collision course witF°, and
notations&;, &>, and &;, respectively, to define these threeV; £ Vi

different types of cones. , Proof: To prove necessity, leti be on a collision course
Consider Fig. 7(a) and (b), each of which shows the engagesh, 5 Then there exists a raytD, passing throughs, that

ment geometry between a point obje¢tand an irregularly has(Ve)ap = 0; (V,)ap < 0. Obviously, AD can never pass

shaped objects. We can construct a coné with vertex at gk 72, thus implying thatA is not on a collision course
A, such that® is the smallest cone that contains the object |, ., o

i.e., £ is the intersection of all cones that cont&mand have Sufficiency is then proved as follows. From Lemma 3, as
vertices atA. The vertex angle of is denoted by and its long asV, £ Vi, there exists a raylC that has(Vs).ic :’

bpundarie_s aredP and AQ. It can.be seen thgt the cone irb; (V.)ac <0. If Ais not on a collision course with, then
Fig. 7(a) is of the typet, and that in Fig. 7(b) is of typ€s.  ha ray AC will not pass through?®. Since F° lies in the

These cases are now considered separately. complement ofé,, therefore AC' will have to pass through

Case 1. ¢ <. i i , some point lying in&;. It can be seen thatlC will then
We construct a circleF contained in&; such thatAP and always pass through, thus implying thatA is on a collision

AQ} are tangential taF. Let F have radiusk and center course withB. -
at a distancer from A. Note that any choice ok and r From Fig. 7(b), we see that

should satisfyR = rsin(t/2). This is illustrated in Fig. 7(a).

Assuming thatF moves with a velocity identical to that ¢, sin(r —1/2) = R/r = sin(y/2) = R/r. (53)

we can state the following lemma. For a giveny, any circle F° that satisfies (53) will satisfy

Lemma 7:If » <w, A is on a collision course with3 if . :
! Lemma 8. Substituting (52) [or (53)] in (22), we get
and only if A is on a collision course witk¥. g (52) for (53)1in (22) g

_ Pr0(_)f:_ From Lemma 4, forAd to be_ on a collision course 2V020 < 2 <@> and V.o <0 (54)
with F, it is both necessary and sufficient that there exists a Vi Vi

ray AC, passing througlF, that hag Vi) .1 = 0; (V) ac <0.

It can be seen that the rayC will always pass throughs,

thus implying thatA is on a collision course with5. This

proves sufficiency.

The necessity is proved similarly. Let be on a collision
course withi3. This implies that there exists a point D &h
which is the point of collision [see Fig. 7(a)]. The rayD
obviously must pass through. [ |

As mentioned earlier, from Fig. 7(a), we can see that

where 9 represents the initial value of. Equation (54)

is necessary and sufficient condition for collision between

A and F. Thus (54), with the inequality replaced by a

strict inequality, is the necessary and sufficient condition for

collision betweem and.F°. These conditions can thus be used

as necessary and sufficient condition for collision betwden

andB (in the manner stated by Lemmas 7 and 8). Since these

conditions are invariant with respect to the choice of the circles

F or F° (so long as (52) or (53) is satisfied), we can discard
sin(1h/2) = R/r. (52) F or F° entirely, and takd’, andV,, to represent the initial

relative velocity components of the angular bisecto€pfor
For a givemy, any circle F with radius R and with center at ¢ < 7; and of the angular bisector of the complementef
a distance from A satisfying (52) will satisfy Lemma 7.  for ) > .
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Fig. 8. Collision geometry between two circles.

The case whew = = is a limiting case for both) > = and
1 < and the corresponding collision cone can be obtained
by using either Case 1 or Case 2 above with appropriate ;
modifications for the limiting value. Tz’\\
Theorem 2:The collision cone between a point and an ™
irregularly shaped object, both moving at constant velocities
on a plane, is obtained as follows. Letin (35) and (43) be
replaced by|tan(to/2)|. Now
1) If 49 < 7 then the collision cone is obtained from (31),
with 8y as the initial angle of the angular bisector of the
coneé&;.
2) If 49 > m, then the collision cone is the complement og
the cone obtained from (31) with, as the initial angle
formed by the angular bisector of the complement of

(b)

ig. 9. Collision geometry between two irregularly shaped objects @)
nd (b) > 7.

the coneé&s.
Proof: Follows from Lemmas 7 and 8, and the arguments  Pr00f: Superposing#; onto 73, the problem reduces to
given above. m one of collision prediction between a point and a circle of

Example 5: Let the values of,, 4, Vo, andV; be the same radius (R; + RQ)_. It is easy to see that the angl_e subtended
as in Example 2, but let th& now be replaced by somePY theenlargedcircle 7 at thereducedpoint 7, [i.e., 4 as
iregularly shaped objed such thaty) = 120°. Then from defined in Fig. 7(a)] is equal tg defined in Fig. 8. The proof
(31) and Theorem 2, we see thatis headed for a collision then follows from 1) in Theorem 2. u
with B, if its velocity vector lies inside the angular bounds
ae[31.42°,72.97°]. If ¢ = 180°, then the collision cone is b collision Between Two Irregularly Shaped Objects

defined bywe[1.4°,88.57°]. If ¢ = 240°, then the collision Wi 4 Th 3 di llision b
cone is defined byee[72.97°, 391.42°]. e now extend Theorem 3 to predict collision between two

irregularly shaped objectgl and B, moving with constant

velocities on a plane. Note that wheA and B are both

irregularly shaped, it is difficult to superpose the shape of
Theorem 2 can be extended to enable detection of collisighonto that of 5. We therefore adopt a different approach.

between two circular objects. Consider the engagement geddonsider the irregularly shaped objects as given in Fig. 9.

etry in Fig. 8, whereF; and F; are two circles of radiiR; Several possibilities then arise.

and Ry, moving with velocitiesV; and V3, respectively. The  Case 1: ¢ <.

lines AB and CD are the common tangents to the circles, Refer Fig. 9(a). Here, the objects are well separated and we

intersecting atD. Note that these tangents form a cone of thean construct a cone of the ty@g with the smallest vertex

type &s. angle such tha#l and 5 are each contained on opposite sides
Theorem 3: The collision cone between two circles movingf the vertex. Letyy denote the vertex angle, and@ and

with constant velocities on a plane is given by (31) witin RS be the boundaries that intersect at ver@xWe can then

(35) and (43) equal totan(zo/2)|, andé, as the initial angle draw two circles, one contained in the com®R and the

of the line joining the centers of the two circles. other contained in the confOQ. Let 7, and F; be these

C. Collision Between Two Circular Objects
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circles, of radiiR; and Ry; with centers at a distance of
and ., respectively, fromO. This is illustrated in Fig. 9(a).
If we now assume thaf; and 7, are moving with velocities
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1) If 0 <49 < w, then the collision cone is obtained from
(31), with 6, as the initial angle formed by the angular
bisector of the con&;.

identical to those of4 and B3, respectively, then we have the 2) If =<y <2n, then the collision cone is the com-

following lemma.
Lemma 9: If ¢ <w, A is on a collision course witlB, if
and only if 77 is on a collision course witkFs.

Proof: If F; is on a collision course with*,, then
there exists a rayC;Cs (where C; is a point on; and
Cy is a point onF;), passing through bott#; and F,
and satisfying(Vs)c,c, = 0;(Vi)e,c, <0. Now if Dy Ds
represents any ray parallel 10,C>, then it is evident that
(Ve)p,p, = 0;(V,.)p,p, <0. At least one suchD, D, ray
(where Dy is a point on.A and D is a point on3) can be
drawn, thus implying that4 is on a collision course witls.
The necessity of the condition can be proved similarly. m

Case 2: ¢ > .

In this case, we can construct a cone of tygesuch that
1) The boundaries of the cone touch bothand 55.

2) The whole of5 is enclosed in the closed cofg,

plement of the cone obtained from (31), witlh as
the initial angle formed by the angular bisector of the
complement of the coné..

3) If 9o > 2, A will collide with 5 for any heading
direction of A except whenV, = Vp.

Proof: From Lemmas 9, 10, and Theorem 3. [ ]

IV. OBSTACLE AVOIDANCE

The collision cone concept described thus far provides
a convenient means to determine whether any two moving
objects are on a collision course. The collision cone concept
also helps to reduce the engagement between two irregularly
shaped objects into an equivalent engagement between a point
and a circle. In practice, the method by which the robot
determines an imminent collision would depend on its on-

and the board sensors. For example, suppose the robot can measure

whole of A is enclosed in the closure of the complemeny,, re|ative velocity components with respect to the moving

of &. This is illustrated in Fig. 9(b).

Before we obtain the collision cone betwedrand 3, some
construction is necessary [see Fig. 9(b)]. Draw lig¥®’ and
P’O' that are parallel t6)O and PO, respectively, such thad
is contained in the parallelogramA/ NO. We can then draw
two circlesF; and 7, such thatM N and M L are tangential
to Fi; while M P’ and M@’ are tangential taF,. Let F3
denote the open circle of;. If we now assume thaf; and
Fs are moving with velocities identical to those df and 3,
respectively, we can state the following lemma.

Lemma 10:If = < <27, A is on a collision course with
B; if andﬁonly if 71 is not on a collision course witlfs, and
Va # Vb.

Proof: Let.4 be on a collision course with. Then there
exists a rayD;Ds, (where D; is a point on.A), passing
through B, that has(Vy)p,p, = 0;(Vi.)p, p, <0. If C1Cs

obstacle, then it can directly use (16) to predict a collision.
However, note that it is not easy to obtain the relative
velocities by using simple Doppler radars (as is done in
aerospace applications) when the physical size of the objects
are significant compared to the distance between them. In the
case of automated vehicles in a factory environment, relative
velocities may be obtained by using an overhead sensor to
track the vehicle movements and transmit information to the
robot [18]. Alternatively, if the robot is equipped with an
inertial platform which provides it with its own velocity
information, and radar sensors which provide it with the
obstacles’ instantaneous velocity information then the results
given in Section Il can be directly used to obtain the collision
cone and thus predict an imminent collision.

If a robot is headed for a collision with some object in
its environment (i.e., the robot's velocity vector lies inside

(whereC; is a point onF;) denotes any general ray parallethe collision cone), it can adopt any of the following three

to, and in the same direction a®;D,, then (Vy)c,c, =

strategies to avert collision.

0; (V)cy ¢, < 0. Obviously, it is impossible to construct such 1) The robot can maintain its heading direction constant;

a C1C; ray that passes throughs, thus implying that?; is
not on a collision course withFs.

The sufficiency part is then proved as follows. We know
from Lemma 3 that as long a84 # Vg, there exists a ray

C,C5 (where C; is a point onF;) such that(Ve)e,c, =
0; (Vi.)eyo, < 0. If Fy1 is not on a collision course wittFs,
then C;C5 can never pass throughks, and will therefore
pass through any point lying in the complement#jf. Now,

if D;D> (where D, is a point on.4) denotes any general

ray parallel to, and in the same direction 65C>, then
(Ve)p,p, = 0;(V.)p, p, <0. It can be seen thab; D, will

always pass throughi, thus implying that4 is on a collision
course withi5. ]

but change its speed so as to make its velocity vector
lie outside the collision cone. This is equivalent to the
robot speeding up, slowing down, or reversing to avoid
colliding with the obstacle.
The robot can keep its speed constant; but change its
heading direction until its velocity vector lies outside
the collision cone. This is equivalent to the robot turning
away from its original path.
The robot can change both its speed and its heading di-
rection until its velocity vector lies outside the collision
cone.

For 1) the robot has to apply a longitudinal acceleration (i.e.,
an acceleration along its heading direction); for 2) it has to

2)

3)

Theorem 4: The collision cone between two irregularlyapply a lateral acceleration (i.e., an acceleration perpendicular
shaped objects! and 3, moving with constant velocities on ato its heading direction); while for 3) both longitudinal and
plane is obtained as follows: Letin (35) and (43) be equal lateral acceleration are required. The precise strategy to adopt

to |tan(to/2)|. Now

would depend on the longitudinal/lateral acceleration limits of
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the robot, its kinematic constraints, and the time within which Case 6: If = 7 — tan™! p, then V% = V3, and
the robot should pull its heading out of the collision cone. 1) if pcosp + sinp > 0, thenS; = S2.
From the preceding discussion, it is evident that the range of2) if pcos yu + sin <0, thenS; = S1.
speeds of the robot that will make its current heading direction3) if pcos ;o + sinp = 0, then Sy is null.
lie outside the collision cone is given B, € S C R, where Case 7: If n = —tan~1 p, then V% = V%, and

S Is defined as 1) if pcosp +sinp >0, thenS; = Si.

=85 UGS (55) 2) if pcosp +sinp <0, thenS; = S2.
Sy ={Vou V2> p?V2} (56) 3) if pcosp + sinp = 0, thenS; is null.
Sy = {Vo: v, >0}, ' (57) The setS; can be determined from the following.

Case 1: If cosn >0, then
We first determine the sef;. For tan?n — p? # 0, the

equationV;? — p?V;2 = 0 is quadratic inV,. Denoting its So = {Vo: Vo <Vz(cos i/ cosn)}. (64)
roots by Vo and Vo, we find that,
] Case 2: If cosn <0, then
Vo =V PpCoOS i+ s p (58)
L=\ peosn +sing Sy = {Vo: Vo > Ve (cosu/ cosn)}. (65)
COos [t — sin
Voo =Vr <pCOSN7_SmM> (59) Finally, from the above, the s& is obtained as follows.
peost K Case l: For0< (e — B) <
wherep,n, andp are as defined in (25) and (26). 1) If tan lp<n<m —tan~Lp, thenS = R.
_ Fortans —p* =0, the equationV/? —p*V;? = Olis linear  3) if x4 tan L p< < —tan"Lp, thenS = S, in (60).
in Vo, and its root is denoted by3. Let 3) If —tan~! p<n< tan—"! p, thenS = {Vo: Vo < Vool
\/]727—1-1 4 If 7 — tan"lp<n<w + tan"lp, then S =
Vi =Vr BT (pcos 1+ sin ) {Vo: Vo >Voi}.
Case 2: For < (o — f3) < 2w
. P’ +1 - 1) If 7 +tan~tp<n<—tan—lp, thenS = R
Voo =Vr| —— cos v — sin < b= an =p, :
02 f( 2p >(p = sinp) 2) If tan—Lp< <7 — tan—L p, thenS = Sy in (62).
* * * * If —ta -1 3 -1 h = : .
Vig = Vi Vi = —Viy i) tan~!p <77Z< tan~!p, t enSil Vo: Vo< V01}_
L . 5 . ) If 7 — tan “p<n<w + tan -p, then & =
Sl I{Vo: V0>VO} 51 = {V0:VO<VO}. {VO: V0>V02}.
Now, &; can be obtained as follows. Case 3: If sin(e — 3) = 0, and
Case 1:If 0< (o — ) <m, and 1) if tan?n — p? >0, thenS = R.
1) if tan®#n — p% >0, then Vo, > Vo, and 2) if tan?n — p? <0, thenS = S..
S = {Vo: Vo< Voz 0rVo > Vot (60) Case 4:If n = tanflp, and

1) if pcosp — sinp >0, thenS = R.
2) if pcosp —sinp <0, thenS = S;.
S1 = {Vo: Vo1 < Vo < Vo }. (61) 3) if pcosp —sinp = 0, thenS = &s.
Case 5:If n = # + tan™' p, and

1) if pcosp —sinp <0, thenS = S;.
2) if pcosp —sinp > 0, thenS = &s.

2) if tan?n — p? <0, then Vo1 < Voo, and

Case 2: If 7 < (o — ) <2m, and
1) if tan?n — p% >0, then Vo1 < Voo, and

S1 = {Vo: Vo> Voz or Vo <Vor } (62) case6:If =7 —tanlp, and
2) if tan27 — p? <0, then Vo, > Voo, and 1) ?f pcospu + sinpu <0, thenS = S;.
2) if pcosp +sinp > 0, thenS = &s.
S1 = {Vo: Vo <Vo <Vor}- (63) Case7:If n = —tan!p, and
Case 3: If sin(a — 3) = 0, and 1) if pcosp+sinp>0, thenS = R.
1) if tan?n — p? > 0, thenS; includes all values o¥p. 2) if pcosp +sinp <0, thens = S;.
2) if tan?n — p® <0, thenS; is null. 3) if pcosp +sinp = 0, thenS = &s.
Case 4: If n = tan™! p, thenV} = V5, and The detailed derivations for the above results are available
1) if pcosp —sinp >0, thenS; = Si. in [4]. ] o ]
2) if peosp — sin <0, thenS, = S2. Example 6: Consider the initial geometry as in Example 1.

Let the robot have a heading direction defineddy= 57°.
Then, with its present speéd, = 2, it is headed for a collision

i ) ) with the obstacle. To determine the speed the robot must
1) if pcosp —sinp >0, thens, = 511' attain (while maintainingx = 57°), we proceed as follows.

2) if peosp —sinpu <0, thens, = Sy. For this geometryy; = 12°,p = 0.314, = 15°, tan?n —

3) if pcosp —sinp = 0, thenS, is null. p? = —0.0534. Therefore, from (58) and (59), we obtain

3) if pcospy —sinp = 0, thenS; is null.
Case 5: If n = 7 + tan™! p, then V5 = V{5, and
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Vo1 = 1.637 and Vo, = 0.672. As « — § = —3°, we have

7 <(a—pf)<2rand—tan~! p<n< tan~! p. So, Case 2(3) ol

above is used to determide= {Vy: Vo < 1.637}. Therefore, I \ —

if the robot reduces its speed to a value below 1.637, it can 7 ~ \ ™

avoid a collision with the obstacle. ! \ ) |
Example 7: Consider the initial geometry as in Example 2. '\ ,I' \ |

Let the robot have a heading direction defineddy= 80°. ™ = 1 / S

Then, with its present speé, = 2, it is headed for a collision T — Circle s

with the obstacle. For this geometry = 35°,p = 0.314, u = approximation

—135° tan® ) — p? = 0.3916. Therefore, from (58) and (59),

we obtainVo; = —0.408 and Vo, = 3.815. As a — 8 = Fig. 10. Over- and under-approximations.

225°, we haver < (o — ) <27 and alsotan™'p<n <7 —

tan~' p. So, Case 2(2) above is used to determfle= 4 gutside such a cone is a sufficient condition fdr to
{Vo: Vo <—-0.408 or Vo, > 3.815}. Therefore, the robot must 4y0ig 3. Similarly, since under-approximation oft and B
either increase its speed beyond 3.815 or reverse its direcigBids a collision cone that is contained in the exact collision
and increase its speed beyond 0.408, to avoid a collision WEBne, keeping the heading direction.éfoutside such a cone

the obstacle. becomes a necessary condition férto avoid .
We now present three methods each of over- and under-
V. APPROXIMATING IRREGULARLY SHAPED OBJECTS approximating an object by circles. For this we define

Use of the conditions of Theorem 4 to detect collision m n
between irregularly shaped objects requires measurement of cr = U A CF = U B;. (67)
the anglet. This in turn requires construction of the cone i1 i1
&, which could pose practical difficulties due to the arbitrary
shapes of the objects under consideration. Therefore, when ghegver-Approximation
measurement of) is difficult, we propose another method. ) .
We can approximate the irregularly shaped objedtsand Method 1: Choose the circlesi; and 5; such that
B by a collection of circles each. Le#t be approximated ACC* and BCCE. (68)
by m circles Ay, Ao, ---, A, and B be approximated by: - -
circlesBy, By, - -, By, Then, by using Theorem 3 for collision  Method 2: Choose the circlest;(5;) such that any straight
between each of the: circles of 4 with each of then circles line intersectingA(B) must also interse(ﬂ:A(cB). This con-
of B, we can obtain a total ofan collision cones. The union dition implies that
of all these cones then can be meaningfully used to predict

collision between the irregularly shaped objedtsnd 5. This ACCoC?) and BC ColC?) (69)
type of approximation is standard in robot collision avoidance
literature [5]. where C@X) denotes the convex hull of the s&t Note that

It is obvious that the success of this method depends on {§9) is automatically satisfied by the approximation adopted in
choice of circles used to approximateand B. The collision Method 1, although an approximation using Method 2 may not
cone thus obtained is inexact, in contrast to the exact collisigatisfy (68). Thus Method 2 imposes a less stringent condition
cone that can be obtained using Theorem 4. In the followiigan Method 1.
analysis, we shall show that this inexact collision cone can still Method 3: Choose the circles4; and B; such that any
be used effectively for motion planning if the original objectstraight line intersecting bottd and 5 must also intersect
are either both over-approximated or both under-approximat&@th C** and C®. Note that this condition is automatically

Examples of over- and under-approximation are shown $atisfied by the approximations adopted in Methods 1 and 2.
Fig. 10(a) and (b). Supposé and B are the moving objects. Thus Method 3 imposes a condition that is less stringent than
Let A’ and B’ be the over-approximations and”’ and B” either Methods 1 or 2.
be the under-approximations of these objects, respectively. IfThus, if we denote the exact collision cone by;, and the
N(A, B) represents the exact collision cone (obtained frogpnes obtained by Methods 1, 2, and 3/ds N>, and N3,
Theorem 4), and\(A’,B’) and N (A”,B") represent the respectively, then for every over-approximation according to
collision cones obtained after over- and under-approximatingethod 1, there exists an over-approximation according to
respectively, then Method 2 and an over-approximation according to Method 3,

such that
N(A",B") C N(A,B) C N (4, B). (66)
Ng C N3 CNe C AL (70)
In the event of using circles to approximate irregularly shaped
objects, it is difficult to obtain conditions that are both ned\ote that approximations according to Methods 1 and 2 can be
essary and sufficient to predict collision. Over-approximatio#sed independent of the configuration of the objects in space.
of A and B yields a collision cone that contains the exadBut an approximation according to Method 3 is valid only for
collision cone. As a result, keeping the heading direction &f specific configuration of the objects.



CHAKRAVARTHY AND GHOSE: OBSTACLE AVOIDANCE IN A DYNAMIC ENVIRONMENT 573

TABLE |
OVER-APPROXIMATION: METHOD 1

Pairs T By 21 Collision Cone

A, By | 1291 | —2.22° | 20.39° | oc[2h.13°, ~18.18"]
Ay, By | 16.41 | —1.75° | 15.91° | a¢[29.11°, 16.71°]
Ao, By | 10.50 | —1.09° | 24.76° | a[22.55°, 50.057]
Ag, By | 14.00 | —0.82° | 18.31° 06[28.3()”. 17.940]
Az, By | 1232 ) 10.76° | 21.42° | a[31.38%, H2.67°]
A3, By | 1577 | 8.38° | 16.57% | ac[3h.937,50.17°]

TABLE I
OVER-APPROXIMATION: METHOD 2

Pairs T 6, LN Collision Cone

A, B, | 13.04 | —4.44° | 16.94° | e[26.51°, 46.087]
A1, By | 17.03 | —3.37° | 12.89° | e[30.50°, 44.87°)
Az, By 9.80 | —1.75° | 22.79° | e[23.73°,49.18°]
Az, By | 13.80 | —1.24° | 15.97° | ce[29.78°, 46.92°]
Az, By | 12.30 | 12.68° | 17.97° | e[37.64°,52.229]
Az, By | 16.23 9.57¢ 13.54° | «e[38.40°, 49.87°)

TABLE I
OVER-APPROXIMATION: METHOD 3

Pairs To 6o g Collision Cone
Ay, By | 11.02 | —3.64° | 20.16° | ac]21.10°,47.599)
Ay, By | 11.07 | 6.22° | 20.08° | ac[32.22°, 50.897]

Example 8: Consider an engagement between two irreg- (©)
ularly shaped objects4 and 5 shown in Fig. 11(a), with
Vi=2,Vg=15,08=060°68y =0° andy = 40°. Then, by
using the conditions of Theorem 4, the exact collision coize B. Under-Approximation
is given by «e[27.48°,49.72°]. If we now over-approximate ) .

A andB by ea[ch of the thre]e methods discussed in the above/1€tod 1: Chooje the cwclesﬁliBand B; such that
section, we get the following results. ¢C"cA and C"CB. (71)

Method 1: Refer to Fig. 11(a). We approximaté by three Method 2: Any straight line intersecting*(C*) must also
circles A;, A, and Az of radii 2.3, 2.2, and 2.3 units anfl  intersect.A(13). This implies that
by two circlesB; and B, of radii 2.2 units each. The total c* C Co(A) and C® C Co(B). (72)

number of (A;, B;) pairs is thus six (see Table I). Taking a\ote that (72) is automatically satisfied by (71), but the

union of all the six collision cones, the final collision cahe  onyerse is not true. Hence, Method 2 imposes a less stringent
is found to beae[22.55°,52.67°]. condition than Method 1

_Method 2: Refer to Fig. 11(b). We approximat by three  \aihod 3: Choose the circlesd; and 5; such that any
grclgs “ﬁl’fc‘f..’ “243 ofhraiu 1.8 e.ai:]; gncB by two ?lrcles 4 straight line intersecting botd* and C® must also intersect
1B, of radii 2 each. Again, siX.A;, B;) pairs are formed )" 1 204 B Note that this condition is automatically

(see Table Il). Taking a union of all the six collision CONCsatisfied by the conditions used in Methods 1 and 2, although

the final collision coneV: is found to bewe[23.73°,52.22°]. the converse is not true. Thus. method 3 imposes a less
Method 3: Refer to Fig. 11(c). In this case, we approximate ) ' P

A by o ices 4 of radh 23 cac anh by a | CnOton b iher of Vet 1 an2 [
single circle5; of radius 1.7. The total number &f4,, ;) PP ' y

pairs is thus two (see Table Ill). Taking a union of the twgpprommatmq ac_cordlng tq Method 1, ‘there exists an
collision cones, the final collision con&’; is found to be under-approximation according to Method 2 and an under-
ve[24.40°, 50 89’°] approximation according to Method 3, such that

It is seen that (70) is satisfied. By choosing a larger N3 CN2 C N C N (73)
number of circles to approximatd and /3, an even closer Again, approximations according to Methods 1 and 2 can be
approximation to the exact collision cone can be obtained. used independent of the configuration of the objects in space,

Fig. 11. Example 8 (a) Method 1, (b) Method 2, and (c) Method 3.
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whereas an approximation according to Method 3 is valid onjy4]
for a specific configuration of the objects. [15]
[16]

VI. CONCLUSIONS [17]

Most of the earlier literature on collision avoidance strate-
gies were restricted to static environments. Although the
has been considerable interest in recent times on the more
realistic dynamic environment, even these impose restrictiof8]
on the shapes of the robot and the obstacle (i.e., they are
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C.-F. Lin, Modern Navigation, Guidance, and Control Processingn-
glewood Cliffs, NJ: Prentice-Hall, 1991.

A. S. Locke,Guidance Princeton, NJ: Van Nostrand, 1955.

T. Lozano-Perez, “Spatial planning: A configuration space approach,”
IEEE Trans. Comput.vol. C-32, pp. 108-120, Feb. 1983.

D. G. Luenbergerl.inear and Nonlinear Programming Reading, MA:
Addison-Wesley, 1984.

] H. Noborio, T. Naniwa, and S. Arimoto, “A quad-tree based path

planning algorithm for a mobile robot,J. Robot. Syst.vol. 7, pp.
555-574, July 1990.

M. Papageorgiou and T. Bauschert, “Stochastic optimal control of
moving vehicles in a dynamic environmentyit. J. Robot. Res.vol.

13, pp. 343-354, Aug. 1994.

assumed to have some regular shapes such as circles or cof®@xH. L. Pastrick, S. M. Seltzer, and M. E. Warren, “Guidance laws for

polygons). In this paper, we have relaxed the assumptions on
static environments, and on the regularity of the obstaclggy)
and the robot’'s shapes, and proposed the collision cone as
an aid to collision detection and avoidance. An importa 12
contribution of this paper is that well-known results from
guidance theory in the aerospace literature have been suitaBRy
modified and extended to yield concepts directly useful in the
context of robot collision avoidance problems. These results]
are generalized to enable collision prediction between two
irregularly shaped moving objects. Using the collision congs)
concept, some simple strategies by which collision can be
avoided, are discussed.

This paper gives a preliminary—but fairly in-depth—studyyg)
of the novel collision cone approach as a viable collision
detection and avoidance tool in a 2-D dynamic environmerﬁﬂ
To allow this approach to be used in a practical situation
we need to examine how the collision cone concept, and
the avoidance strategies arising out of it, can be extend
to a realistic situation where the robot tries to circumvent
several moving obstacles while attempting to reach a specifi@l
stationary or moving goal point. [30]
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