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Obstacle Avoidance in a Dynamic
Environment: A Collision Cone Approach

Animesh Chakravarthy and Debasish Ghose

Abstract—A novel collision cone approach is proposed as an aid
to collision detection and avoidance between irregularly shaped
moving objects with unknown trajectories. It is shown that
the collision cone can be effectively used to determine whether
collision between a robot and an obstacle (both moving in a
dynamic environment) is imminent. No restrictions are placed
on the shapes of either the robot or the obstacle, i.e., they can
both be of any arbitrary shape. The collision cone concept is
developed in a phased manner starting from existing analytical
results—available in aerospace literature—that enable prediction
of collision between two moving point objects. These results are
extended to predict collision between a point and a circular
object, between a point and an irregularly shaped object, between
two circular objects, and finally between two irregularly shaped
objects. Using the collision cone approach, several strategies that
the robot can follow in order to avoid collision, are presented. A
discussion on how the shapes of the robot and obstacles can be
approximated in order to reduce computational burden is also
presented. A number of examples are given to illustrate both
collision prediction and avoidance strategies of the robot.

Index Terms—Collision cone, dynamic environments, obstacle
avoidance, path planning.

I. INTRODUCTION

OBSTACLE avoidance is a fundamental requirement in
motion planning of a mobile robot. Several papers

addressing this issue have appeared in robotics literature [6],
[8], [13], [23], [24]. Motion planning can be categorized [6] as
static (when the obstacles are stationary in the environment)
or dynamic(when the obstacles are capable of movement and
may even change shape and size). The environment could
be completely known (when the trajectory of the obstacles is
known a priori) or partially known (when obstacle trajectory
is unknown or information about it is incomplete). This
classification is not universal and an alternative classification
is available in [8]. To date, a major research effort in this
area has been applied to analyze and solve the problem of
motion planning in a completely known environment with
largely static and, to some extent, moving obstacles [23].
Their primary goal was to determine a collision-free path
from a starting point to a goal point while optimizing some
performance criterion. Configuration space approach, Voronoi
diagrams, retraction methods, potential functions, visibility
graphs, accessibility graphs, tangent graphs, etc. ([6], [8],
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[16]) are some of the techniques which have been reasonably
successful in achieving this goal. While these approaches
are justifiable for a completely known environment, a par-
tially known dynamic environment—which is a more realistic
framework in situations where obstacle motion cannot be
predicted—requires a different approach. In fact, dynamic
motion planning is more difficult than static motion planning
even when complete information about the environment is
available. This is shown by several available complexity
results for motion planning [21].

Recent advances in robotics technology has made possible
the development of autonomous and semiautonomous robotic
systems for land, air, and underwater operations. These robots
use sophisticated onboard sensors to perceive their environ-
ment and use this information to plan and execute tasks [2],
[3], [22], [23], [29]. Their primary use is in uncertain envi-
ronments characterized by the presence of moving obstacles
with unpredictable trajectories. Motion planning of robots
in uncertain and unpredictable environments has attracted
the attention of robotics researchers only recently [1], [7],
[9]–[12], [19], [26], [25], [28].

In this paper, we present a novel approach called the
collision cone approachwhich is ideally suited for automated
guided vehicles or autonomous mobile robots. The method is
new in the sense that it uses concepts which have their roots in
aerospace literature rather than in robotics. The only relevant
paper in the robotics literature that uses a similar concept is
that by Tychonievichet al. [27].

The specific problem considered in this paper is that of a
mobile robot avoiding one or more moving obstacles with
unknown trajectories, based on sensor information collected
by the robot. The robot and the obstacles are both assumed
to move only by translation in a two-dimensional (2-D)
space. Unlike previous literature, no assumptions are made
on the shape of the robot or obstacles (i.e., they need not be
polygons—convex, or otherwise). They can be of any arbitrary
shape but with the constraint that each is a single rigid body
without relative motion between points on the body. Thus,
this approach is more suitable for the problem of obstacle
avoidance of an automated guided vehicle or a mobile robot
in a workspace consisting of moving obstacles, rather than for
motion planning of robotic manipulators.

This paper is motivated by the conviction that collision
avoidance and collision achievement are, in principle, two
aspects of the same problem. In the robotics literature, the
problem of collision avoidance has attracted a considerable
amount of attention. On the other hand, collision achievement
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Fig. 1. Collision geometry between two point objects.

(or interception) has been of primary concern mainly in the
aerospace guidance literature [14], [30]. For example, some
of the problems addressed in the guidance literature involve
the guidance of a missile to intercept an aircraft, guidance of
a torpedo to intercept a ship, etc. The problem of achieving
collision or interception is a long-standing area of research
in the aerospace literature and has evolved into a reasonably
complete theory, especially in the missile guidance literature,
over the past five decades. Though the problem of collision
avoidance in the robotics literature is of a more recent vintage,
it has also witnessed intense research activity in recent years.
However, to date there has been almost no cross-fertilization
of ideas between the two areas. The main reason for this
is the apparent dichotomy between them in terms of their
objectives, operating environments, vehicle dynamics, sensor
systems, performance capabilities, etc. With the present day
technological advances (especially in sensor systems) and
the stringent performance requirements on intelligent robotic
vehicles [3], it is felt that many of the advances in the area
of aerospace guidance theory has considerable relevance in
robotics too.

Our purpose is to show that the fundamental concepts used
for achieving intercept between bodies in motion can also be
used to formulate strategies for collision avoidance. In doing so
we extend these fundamental concepts to situations relevant to
the collision avoidance problem in robotics, and derive several
results that are new not only in robotics but also in aerospace
guidance.

The literature on interception problems has mainly focussed
upon conditions of collision between two moving point objects
based on their instantaneous velocities. In the context of col-
lision avoidance between robots it is not sufficient to consider
an object as a point mass. Its physical shape and size, and its
position and orientation in space, are of prime importance. We
first extend the existing theory for predicting collision between
point objects to obtain more general conditions to predict
collision between objects of arbitrary shapes and sizes. Based
on these results thecollision coneis presented as a fundamental
concept used for the purpose of collision avoidance. We restrict
our study to the 2-D planar case in this paper.

This paper is organized as follows. In Section II, we review
some results well-known in the aerospace guidance literature
and illustrate some basic concepts through simple examples
which also show how the collision cone can be obtained
for a simple initial geometry between a point robot and a

Fig. 2. A typical (V�; Vr) trajectory.

circular object. In Section III, we formalize the concept of the
collision cone and present analytical results to obtain the exact
collision cone between a point and a circular object, between
a point and an irregularly shaped object, between two circular
objects, and finally, between two irregularly shaped objects.
In Section IV, we discuss some simple strategies for collision
avoidance based on the collision cone concept. In Section V,
we examine the possibility of simplifying the computation of
the collision cone by approximating irregularly shaped objects
as a collection of circular objects. We conclude the paper in
Section VI with a general discussion on the applicability of
the collision cone approach.

II. COLLISION BETWEEN POINT OBJECTS

The engagement geometry for an interception problem is
given in Fig. 1. Here, and are two point objects, moving
at constant velocities and respectively. The behavior
of the line-of-sight (LOS) is characterized by the following
kinematic equations:

(1)

(2)

where and are the relative velocity components (with re-
spect to along, and perpendicular to, the LOS, respectively.
Since we consider only the instantaneous velocities of the point
objects, and are assumed to be constants. Differentiating
(1) and (2), we get

(3)

(4)

Dividing (3) by (4) and cross-multiplying, we get

(5)

which, on integration, yields the following relation:

(6)

where and are the relative velocity components at
some initial time Equation (6) shows that the
trajectory on the plane is a circle with center at the
origin and radius equal to the initial relative velocity between

and This also implies that the relative velocity is a
constant with respect to time. Also, from (3), (4), and (6),
it is evident that the trajectories in the plane have
a time history shown in Fig. 2. Next, we state the following
well-known results ([14], [15], [20], [30]).
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Lemma 1: The set of points satisfying the condition
(for example, point in Fig. 2) are stationary points on the

plane.
Proof: implies that Substituting

this in (3) and (4) yields and
Lemma 2: If two point objects are moving with constant

velocities (i.e., constant speed and direction), then and
together form a necessary and sufficient condition for

collision.
Proof: From Lemma 1, and implies that

and for all future time. But implies that
the LOS does not rotate in space and implies
that distance between the two objects reduces until collision
occurs, thus proving sufficiency.

To prove necessity, let the two objects collide at time
In the time preceding the distance between the objects was
obviously decreasing, thus implying that If the
positions of the objects are projected back to any time
the resulting figure formed is a triangle with the LOS atas
one side and the collision point as the opposite vertex so that
successive lines of sight at times are parallel to each
other. Thus, From Lemma 1, we can see that

implies that thus
proving necessity.

Example 1: Consider an initial geometry between a point
object and a circle with

and Let be a point on
the circle at an angle with reference to Then,
by using (1) and (2), and the conditions indicated in Lemma
2, it can be shown that is on a collision course with point

if See Fig. 3(a).
If we now consider all the points on the circle then,

by using (1) and (2) (and Lemma 2) for each such point,
we get a corresponding value of that causes to collide
with that point. The collection of all the values ofdefines a
cone such that if lies in this cone then will eventually
collide with We refer to this cone as the collision cone. In
this example, it is found that the collision cone is defined by

See Fig. 3(b).
Example 2: Consider another initial geometry between

and with
and Again, is a point on the circle at
Now, will collide with if or
The two values of correspond to collision occurring at
different points in space and at different instants of time.

Again, if we consider collision between and each point
on and consider the collection of all such values ofwe
find that the collision cone is now split into two cones, and
is defined by See
Fig. 3(c). We call this a split collision cone.

Lemma 3: If two point objects and are moving with
constant velocities and (Fig. 1), and the initial position
of only is fixed; then, as long as there exists a
for which is on a collision course with

Proof: Let Then, the collision condi-
tion (indicated in Lemma 2) is defined by

(a)

(b)

(c)

Fig. 3. (a) Collision geometry for Example 1, (b) collision cone for Example
1, and (c) collision cone for Example 2.

Substituting for and from (1) and (2), we get

(7)

Therefore,

(8)

(9)

Thus, from (9), as long as there exists a that
satisfies the conditions for collision. When we get

which is not a collision condition.
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Fig. 4. Collision geometry between a point and a circle.

III. T HE COLLISION CONE

In the previous section, we illustrated the concept of a
collision cone with the help of two examples. The collision
cone can be used to predict the possibility of collision between
two objects and to design collision avoidance strategies. In this
section, we shall derive the necessary and sufficient conditions
that enable the determination of the collision cone.

A. Collision Between a Point and a Circular Object

In Fig. 4, is a point object, while is a circle of radius
and with center at The velocities of and are denoted

by and respectively. For any point (parametrized
by the angle on the circle we can write the relative
velocity components of as

(10)

(11)

Lemma 4: The point object is headed for a collision with
the circle if and only if there exists a ray passing
through for which is called
the collision point).

Proof: Follows from Lemma 2.
Now, let us define the relative velocity components of

(the upper tangent to the circle from point as
and and those of (the lower tangent to the circle
from point as and These expressions
are obtained from (10) and (11) by substituting and

respectively.
Lemma 5: At any given time, if then

there exists exactly one ray where is a point on the
circle that satisfies

Proof: Consider an arbitrary point on the circle
defined by the angle From (10), it is obvious that

is a continuous function of Thus,
implies that there exists at least onefor which
It remains to be shown that this point is unique. Putting

in (10), we get

(12)

Since is a periodic function with period successive
that satisfy occur at intervals of The

angle is always bounded in the sense that where
For we have and

obviously this interval is insufficient to allow for more than
one value of for which

We now convert the condition into an
equivalent condition with reference to for which
and are obtained from (10) and (11) by putting
Now, consider the inequality

(13)

Substituting the expressions for and by putting
and respectively in (10), we get

(14)

Substituting and simplifying, we get,

(15)

We omit the subscript in the above equation for conve-
nience, and henceforth denote and simply by

and Thus, (15) can be written as

(16)

Lemma 6: If a point and a circle of radius are moving
with constant velocities such that they satisfy (16) at any given
instant in time, then they will continue to satisfy (16) for all
future time.

Proof: Define a function as

(17)

Differentiating (17) with respect to we get

(18)

Using (5), we get

(19)

Putting and in (19), we get

Thus, since remains unchanged with time, if
initially, it remains so for all future time.

Lemma 6 is thus a generalization of Lemma 1.
Consider Fig. 2 (where and are, in fact, and

Consider a trajectory starting at some initial
point Then, two cases are of interest.

Case 1:
This implies that the collision point lies on the line

(Fig. 4), i.e., is a straight line. So, is
a stationary point on the plane (Lemma 1).
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Case 2:
In this case, a trajectory originating from the third (fourth)

quadrant moves into the second (first) quadrant, crossing the
line. At the crossing point implying that

is an extremum at that instant (say at time Since
is negative for and positive for all is also

a minimum at Let We have to determine
the conditions for which since this implies collision.
Multiplying both sides of (4) by we get

(20)

which, on integration, yields

(21)

where If the initial conditions are such that
they satisfy then, from Lemma 6, we
know that even at

But Therefore,
These results automatically lead to the following theorem.

Theorem 1: If a point and a circle are moving with constant
velocities such that their initial conditions satisfy

and (22)

then they are headed for a collision. The above conditions are
both necessary and sufficient for a collision to occur.

Proof: Follows from the analysis given above.
Putting (22) reduces to and which

are the conditions for collision between two point objects
(Lemma 2). Substituting and from (1) and (2) in (16),
we get

(23)

Equation (23) can be interpreted as follows. Given
and there exists a range of that

satisfy (23) and for which Let us denote this range
by Now, if has a velocity vector at an angle

such that then collision is inevitable. We call
this cone, with vertex at and angular limits defined by

and as thecollision cone. To determine the collision
cone we first rewrite (16) as

(24)

where

(25)

Also, we define the following quantities:

(26)

The collision cone comprises of those values ofthat satisfy
(24) and yield We define a set as

(27)

and we rewrite (24) as

(28)

We now define two more sets and as

(29)

(30)

The collision cone is then obtained as a setdefined as

(31)

The set is obtained through the following cases.
Case 1: If then is null.
Case 2: If then

(32)

Case 3: If then spans the whole space,
i.e.,

(33)

To determine we rewrite as

(34)

Now, defining

(35)

so that is in the first quadrant, we may rewrite (34) as

(36)

We define the two values of that satisfy (36) with a strict
equality, as and Then, can be obtained from:

Case 1: If then is null.
Case 2: If then and

(37)

where

(38)

Case 3: If then and

(39)

where

(40)
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Case 4: If then spans the whole space,
i.e.,

(41)

To determine we rewrite as

(42)

Define

(43)

so that lies in the second quadrant. From (42)

(44)

We define the values of that satisfy (44) with a strict
equality, as and Then the set is obtained from:

Case 1: If then is null.
Case 2: If then and

(45)

where

(46)

Case 3: If then and

(47)

where

(48)

Case 4: If then
The boundaries of are then determined as

follows.

1) If and/or then is null.
2) If both and then

a) If and then

(49)

b) If and
then

(50)

c) In all other cases, is null.

3) For all other cases,

a) If and then

b) If and then

c) If and then

Fig. 5. Collision region in the(V�0; Vr0) plane.

Example 3: Let the initial geometry be identical to that in
Example 1. This corresponds to

Since we use (32) to obtain
From (35), and

From (43), and Since
and (49)

should be used to determine Since
from (38) we get Since from (46)
we get Therefore,

Thus, from (31)
from which the collision cone is obtained as

Example 4: Let the initial geometry be identical to that in
Example 2. This corresponds to

Since (33) is used to determine
From (35), and

From (43), and Since
and

(50) should be used to determine Since
from (40) we get and

Since from (48) we get
and Therefore,

.
Consequently, from (31) the collision cone is obtained as

A representation of the collision cone in the space
can be obtained by rearranging the terms in (22) to yield the
initial conditions that lead to collision as

and (51)

Equation (51) represents a sector-shaped region in the
plane, and is shown in Fig. 5.

Equation (31) gives the collision cone between a point
and a circle Let be an open circle containing all the
points in the interior of Then the collision cone between
and is the open cone obtained by removing the boundaries
of the collision cone given by (31).
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Fig. 6. Definition of conesE1; E2; E3:

B. Collision Between a Point and an Irregularly Shaped Object

It is possible to adapt Theorem 1 [and (31)] to obtain
equivalent conditions that can be used to predict collision
between a point and an irregularly shaped object. Before doing
so, we give a few useful definitions [17]. A setin a linear
vector space is said to be a cone with vertex at the origin
if implies that for all Fig. 6 shows
three different types of cones and each with vertex
angle These cones differ from one another in the following
manner: is convex and has is nonconvex and
has is nonconvex and has We shall use the
notations and respectively, to define these three
different types of cones.

Consider Fig. 7(a) and (b), each of which shows the engage-
ment geometry between a point objectand an irregularly
shaped object We can construct a cone with vertex at

such that is the smallest cone that contains the object
i.e., is the intersection of all cones that containand have
vertices at The vertex angle of is denoted by and its
boundaries are and It can be seen that the cone in
Fig. 7(a) is of the type and that in Fig. 7(b) is of type
These cases are now considered separately.

Case 1: .
We construct a circle contained in such that and

are tangential to Let have radius and center
at a distance from Note that any choice of and
should satisfy This is illustrated in Fig. 7(a).
Assuming that moves with a velocity identical to that of
we can state the following lemma.

Lemma 7: If is on a collision course with if
and only if is on a collision course with

Proof: From Lemma 4, for to be on a collision course
with it is both necessary and sufficient that there exists a
ray passing through that has
It can be seen that the ray will always pass through
thus implying that is on a collision course with This
proves sufficiency.

The necessity is proved similarly. Let be on a collision
course with This implies that there exists a point D on
which is the point of collision [see Fig. 7(a)]. The ray
obviously must pass through

As mentioned earlier, from Fig. 7(a), we can see that

(52)

For a given any circle with radius and with center at
a distance from A satisfying (52) will satisfy Lemma 7.

(a) (b)

Fig. 7. Collision geometry between a point and an irregularly shaped object
(a)  <� and (b) >�:

Case 2: .
See Fig. 7(b). Here, we construct an open circle con-

tained in the complement of the cone such that and
are tangential to the closure of Note that does not

have any points in common with or
Lemma 8: If then is on a collision course with
if and only if is not on a collision course with and

Proof: To prove necessity, let be on a collision course
with Then there exists a ray passing through that
has Obviously, can never pass
through thus implying that is not on a collision course
with

Sufficiency is then proved as follows. From Lemma 3, as
long as there exists a ray that has

If is not on a collision course with then
the ray will not pass through Since lies in the
complement of therefore will have to pass through
some point lying in It can be seen that will then
always pass through, thus implying that is on a collision
course with

From Fig. 7(b), we see that

(53)

For a given any circle that satisfies (53) will satisfy
Lemma 8. Substituting (52) [or (53)] in (22), we get

and (54)

where represents the initial value of Equation (54)
is necessary and sufficient condition for collision between

and Thus (54), with the inequality replaced by a
strict inequality, is the necessary and sufficient condition for
collision between and These conditions can thus be used
as necessary and sufficient condition for collision between
and (in the manner stated by Lemmas 7 and 8). Since these
conditions are invariant with respect to the choice of the circles

or (so long as (52) or (53) is satisfied), we can discard
or entirely, and take and to represent the initial

relative velocity components of the angular bisector offor
and of the angular bisector of the complement of

for
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Fig. 8. Collision geometry between two circles.

The case when is a limiting case for both and
and the corresponding collision cone can be obtained

by using either Case 1 or Case 2 above with appropriate
modifications for the limiting value.

Theorem 2: The collision cone between a point and an
irregularly shaped object, both moving at constant velocities
on a plane, is obtained as follows. Letin (35) and (43) be
replaced by Now

1) If then the collision cone is obtained from (31),
with as the initial angle of the angular bisector of the
cone

2) If then the collision cone is the complement of
the cone obtained from (31) with as the initial angle
formed by the angular bisector of the complement of
the cone

Proof: Follows from Lemmas 7 and 8, and the arguments
given above.

Example 5: Let the values of and be the same
as in Example 2, but let the now be replaced by some
irregularly shaped object such that Then from
(31) and Theorem 2, we see that is headed for a collision
with if its velocity vector lies inside the angular bounds

If then the collision cone is
defined by If then the collision
cone is defined by

C. Collision Between Two Circular Objects

Theorem 2 can be extended to enable detection of collision
between two circular objects. Consider the engagement geom-
etry in Fig. 8, where and are two circles of radii
and moving with velocities and respectively. The
lines and are the common tangents to the circles,
intersecting at Note that these tangents form a cone of the
type

Theorem 3: The collision cone between two circles moving
with constant velocities on a plane is given by (31) within
(35) and (43) equal to and as the initial angle
of the line joining the centers of the two circles.

(a)

(b)

Fig. 9. Collision geometry between two irregularly shaped objects (a) <�

and (b) >�:

Proof: Superposing onto the problem reduces to
one of collision prediction between a point and a circle of
radius It is easy to see that the angle subtended
by theenlargedcircle at thereducedpoint [i.e., as
defined in Fig. 7(a)] is equal to defined in Fig. 8. The proof
then follows from 1) in Theorem 2.

D. Collision Between Two Irregularly Shaped Objects

We now extend Theorem 3 to predict collision between two
irregularly shaped objects and moving with constant
velocities on a plane. Note that when and are both
irregularly shaped, it is difficult to superpose the shape of

onto that of We therefore adopt a different approach.
Consider the irregularly shaped objects as given in Fig. 9.
Several possibilities then arise.

Case 1:
Refer Fig. 9(a). Here, the objects are well separated and we

can construct a cone of the type with the smallest vertex
angle such that and are each contained on opposite sides
of the vertex. Let denote the vertex angle, and and

be the boundaries that intersect at vertexWe can then
draw two circles, one contained in the cone and the
other contained in the cone Let and be these
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circles, of radii and with centers at a distance of
and respectively, from This is illustrated in Fig. 9(a).
If we now assume that and are moving with velocities
identical to those of and respectively, then we have the
following lemma.

Lemma 9: If is on a collision course with if
and only if is on a collision course with

Proof: If is on a collision course with then
there exists a ray (where is a point on and

is a point on passing through both and
and satisfying Now if
represents any ray parallel to then it is evident that

At least one such ray
(where is a point on and is a point on can be
drawn, thus implying that is on a collision course with
The necessity of the condition can be proved similarly.

Case 2: .
In this case, we can construct a cone of typesuch that

1) The boundaries of the cone touch bothand
2) The whole of is enclosed in the closed cone and the

whole of is enclosed in the closure of the complement
of This is illustrated in Fig. 9(b).

Before we obtain the collision cone betweenand some
construction is necessary [see Fig. 9(b)]. Draw lines and

that are parallel to and respectively, such that
is contained in the parallelogram We can then draw
two circles and such that and are tangential
to while and are tangential to Let
denote the open circle of If we now assume that and

are moving with velocities identical to those of and
respectively, we can state the following lemma.

Lemma 10: If is on a collision course with
if and only if is not on a collision course with and

Proof: Let be on a collision course with Then there
exists a ray (where is a point on passing
through that has If
(where is a point on denotes any general ray parallel
to, and in the same direction as then

Obviously, it is impossible to construct such
a ray that passes through thus implying that is
not on a collision course with

The sufficiency part is then proved as follows. We know
from Lemma 3 that as long as there exists a ray

(where is a point on such that
If is not on a collision course with

then can never pass through and will therefore
pass through any point lying in the complement of Now,
if (where is a point on denotes any general
ray parallel to, and in the same direction as then

It can be seen that will
always pass through thus implying that is on a collision
course with

Theorem 4: The collision cone between two irregularly
shaped objects and moving with constant velocities on a
plane is obtained as follows: Let in (35) and (43) be equal
to Now

1) If then the collision cone is obtained from
(31), with as the initial angle formed by the angular
bisector of the cone .

2) If then the collision cone is the com-
plement of the cone obtained from (31), with as
the initial angle formed by the angular bisector of the
complement of the cone .

3) If will collide with for any heading
direction of except when .

Proof: From Lemmas 9, 10, and Theorem 3.

IV. OBSTACLE AVOIDANCE

The collision cone concept described thus far provides
a convenient means to determine whether any two moving
objects are on a collision course. The collision cone concept
also helps to reduce the engagement between two irregularly
shaped objects into an equivalent engagement between a point
and a circle. In practice, the method by which the robot
determines an imminent collision would depend on its on-
board sensors. For example, suppose the robot can measure
the relative velocity components with respect to the moving
obstacle, then it can directly use (16) to predict a collision.
However, note that it is not easy to obtain the relative
velocities by using simple Doppler radars (as is done in
aerospace applications) when the physical size of the objects
are significant compared to the distance between them. In the
case of automated vehicles in a factory environment, relative
velocities may be obtained by using an overhead sensor to
track the vehicle movements and transmit information to the
robot [18]. Alternatively, if the robot is equipped with an
inertial platform which provides it with its own velocity
information, and radar sensors which provide it with the
obstacles’ instantaneous velocity information then the results
given in Section III can be directly used to obtain the collision
cone and thus predict an imminent collision.

If a robot is headed for a collision with some object in
its environment (i.e., the robot’s velocity vector lies inside
the collision cone), it can adopt any of the following three
strategies to avert collision.

1) The robot can maintain its heading direction constant;
but change its speed so as to make its velocity vector
lie outside the collision cone. This is equivalent to the
robot speeding up, slowing down, or reversing to avoid
colliding with the obstacle.

2) The robot can keep its speed constant; but change its
heading direction until its velocity vector lies outside
the collision cone. This is equivalent to the robot turning
away from its original path.

3) The robot can change both its speed and its heading di-
rection until its velocity vector lies outside the collision
cone.

For 1) the robot has to apply a longitudinal acceleration (i.e.,
an acceleration along its heading direction); for 2) it has to
apply a lateral acceleration (i.e., an acceleration perpendicular
to its heading direction); while for 3) both longitudinal and
lateral acceleration are required. The precise strategy to adopt
would depend on the longitudinal/lateral acceleration limits of
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the robot, its kinematic constraints, and the time within which
the robot should pull its heading out of the collision cone.

From the preceding discussion, it is evident that the range of
speeds of the robot that will make its current heading direction
lie outside the collision cone is given by where

is defined as

(55)

(56)

(57)

We first determine the set For the
equation is quadratic in Denoting its
roots by and we find that,

(58)

(59)

where and are as defined in (25) and (26).
For the equation is linear

in and its root is denoted by Let

Now, can be obtained as follows.
Case 1: If and

1) if then and

or (60)

2) if then and

(61)

Case 2: If and

1) if then and

or (62)

2) if then and

(63)

Case 3: If and

1) if then includes all values of
2) if then is null.

Case 4: If then and

1) if then
2) if then
3) if then is null.

Case 5: If then and

1) if then
2) if then
3) if then is null.

Case 6: If then and

1) if then
2) if then
3) if then is null.

Case 7: If then and

1) if then
2) if then
3) if then is null.

The set can be determined from the following.
Case 1: If then

(64)

Case 2: If then

(65)

Finally, from the above, the set is obtained as follows.
Case 1: For

1) If then
2) If then in (60).
3) If then
4) If then

Case 2: For

1) If then
2) If then in (62).
3) If then
4) If then

Case 3: If and

1) if then
2) if then

Case 4: If and

1) if then
2) if then .
3) if then

Case 5: If and

1) if then .
2) if then

Case 6: If and

1) if then .
2) if then

Case 7: If and

1) if then
2) if then .
3) if then

The detailed derivations for the above results are available
in [4].

Example 6: Consider the initial geometry as in Example 1.
Let the robot have a heading direction defined by
Then, with its present speed it is headed for a collision
with the obstacle. To determine the speed the robot must
attain (while maintaining we proceed as follows.
For this geometry,

Therefore, from (58) and (59), we obtain
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and As we have
and So, Case 2(3)

above is used to determine Therefore,
if the robot reduces its speed to a value below 1.637, it can
avoid a collision with the obstacle.

Example 7: Consider the initial geometry as in Example 2.
Let the robot have a heading direction defined by
Then, with its present speed it is headed for a collision
with the obstacle. For this geometry,

Therefore, from (58) and (59),
we obtain and As

we have and also
So, Case 2(2) above is used to determine

or Therefore, the robot must
either increase its speed beyond 3.815 or reverse its direction
and increase its speed beyond 0.408, to avoid a collision with
the obstacle.

V. APPROXIMATING IRREGULARLY SHAPED OBJECTS

Use of the conditions of Theorem 4 to detect collision
between irregularly shaped objects requires measurement of
the angle This in turn requires construction of the cone

which could pose practical difficulties due to the arbitrary
shapes of the objects under consideration. Therefore, when the
measurement of is difficult, we propose another method.
We can approximate the irregularly shaped objectsand

by a collection of circles each. Let be approximated
by circles and be approximated by
circles Then, by using Theorem 3 for collision
between each of the circles of with each of the circles
of we can obtain a total of collision cones. The union
of all these cones then can be meaningfully used to predict
collision between the irregularly shaped objectsand This
type of approximation is standard in robot collision avoidance
literature [5].

It is obvious that the success of this method depends on the
choice of circles used to approximateand The collision
cone thus obtained is inexact, in contrast to the exact collision
cone that can be obtained using Theorem 4. In the following
analysis, we shall show that this inexact collision cone can still
be used effectively for motion planning if the original objects
are either both over-approximated or both under-approximated.

Examples of over- and under-approximation are shown in
Fig. 10(a) and (b). Suppose and are the moving objects.
Let and be the over-approximations and and
be the under-approximations of these objects, respectively. If

represents the exact collision cone (obtained from
Theorem 4), and and represent the
collision cones obtained after over- and under-approximating,
respectively, then

(66)

In the event of using circles to approximate irregularly shaped
objects, it is difficult to obtain conditions that are both nec-
essary and sufficient to predict collision. Over-approximation
of and yields a collision cone that contains the exact
collision cone. As a result, keeping the heading direction of

Fig. 10. Over- and under-approximations.

outside such a cone is a sufficient condition for to
avoid Similarly, since under-approximation of and
yields a collision cone that is contained in the exact collision
cone, keeping the heading direction ofoutside such a cone
becomes a necessary condition forto avoid

We now present three methods each of over- and under-
approximating an object by circles. For this we define

(67)

A. Over-Approximation

Method 1: Choose the circles and such that

and (68)

Method 2: Choose the circles such that any straight
line intersecting must also intersect This con-
dition implies that

Co and Co (69)

where Co denotes the convex hull of the set Note that
(69) is automatically satisfied by the approximation adopted in
Method 1, although an approximation using Method 2 may not
satisfy (68). Thus Method 2 imposes a less stringent condition
than Method 1.

Method 3: Choose the circles and such that any
straight line intersecting both and must also intersect
both and Note that this condition is automatically
satisfied by the approximations adopted in Methods 1 and 2.
Thus Method 3 imposes a condition that is less stringent than
either Methods 1 or 2.

Thus, if we denote the exact collision cone by and the
cones obtained by Methods 1, 2, and 3 as and
respectively, then for every over-approximation according to
Method 1, there exists an over-approximation according to
Method 2 and an over-approximation according to Method 3,
such that

(70)

Note that approximations according to Methods 1 and 2 can be
used independent of the configuration of the objects in space.
But an approximation according to Method 3 is valid only for
a specific configuration of the objects.
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TABLE I
OVER-APPROXIMATION: METHOD 1

TABLE II
OVER-APPROXIMATION: METHOD 2

TABLE III
OVER-APPROXIMATION: METHOD 3

Example 8: Consider an engagement between two irreg-
ularly shaped objects and shown in Fig. 11(a), with

and Then, by
using the conditions of Theorem 4, the exact collision cone
is given by If we now over-approximate

and by each of the three methods discussed in the above
section, we get the following results.

Method 1: Refer to Fig. 11(a). We approximate by three
circles and of radii 2.3, 2.2, and 2.3 units and
by two circles and of radii 2.2 units each. The total
number of pairs is thus six (see Table I). Taking a
union of all the six collision cones, the final collision cone
is found to be

Method 2: Refer to Fig. 11(b). We approximate by three
circles of radii 1.8 each; and by two circles

of radii 2 each. Again, six pairs are formed
(see Table II). Taking a union of all the six collision cones,
the final collision cone is found to be

Method 3: Refer to Fig. 11(c). In this case, we approximate
by two circles of radii 2.1 each; and by a

single circle of radius 1.7. The total number of
pairs is thus two (see Table III). Taking a union of the two
collision cones, the final collision cone is found to be

It is seen that (70) is satisfied. By choosing a larger
number of circles to approximate and an even closer
approximation to the exact collision cone can be obtained.

(a)

(b)

(c)

Fig. 11. Example 8 (a) Method 1, (b) Method 2, and (c) Method 3.

B. Under-Approximation

Method 1: Choose the circles and such that

and (71)

Method 2: Any straight line intersecting must also
intersect This implies that

Co and Co (72)

Note that (72) is automatically satisfied by (71), but the
converse is not true. Hence, Method 2 imposes a less stringent
condition than Method 1.

Method 3: Choose the circles and such that any
straight line intersecting both and must also intersect
both and Note that this condition is automatically
satisfied by the conditions used in Methods 1 and 2, although
the converse is not true. Thus, method 3 imposes a less
stringent condition than either of Methods 1 and 2.

As in the case of over-approximation, for every under-
approximation according to Method 1, there exists an
under-approximation according to Method 2 and an under-
approximation according to Method 3, such that

(73)

Again, approximations according to Methods 1 and 2 can be
used independent of the configuration of the objects in space,



574 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 5, SEPTEMBER 1998

whereas an approximation according to Method 3 is valid only
for a specific configuration of the objects.

VI. CONCLUSIONS

Most of the earlier literature on collision avoidance strate-
gies were restricted to static environments. Although there
has been considerable interest in recent times on the more
realistic dynamic environment, even these impose restrictions
on the shapes of the robot and the obstacle (i.e., they are
assumed to have some regular shapes such as circles or convex
polygons). In this paper, we have relaxed the assumptions on
static environments, and on the regularity of the obstacles’
and the robot’s shapes, and proposed the collision cone as
an aid to collision detection and avoidance. An important
contribution of this paper is that well-known results from
guidance theory in the aerospace literature have been suitably
modified and extended to yield concepts directly useful in the
context of robot collision avoidance problems. These results
are generalized to enable collision prediction between two
irregularly shaped moving objects. Using the collision cone
concept, some simple strategies by which collision can be
avoided, are discussed.

This paper gives a preliminary—but fairly in-depth—study
of the novel collision cone approach as a viable collision
detection and avoidance tool in a 2-D dynamic environment.
To allow this approach to be used in a practical situation
we need to examine how the collision cone concept, and
the avoidance strategies arising out of it, can be extended
to a realistic situation where the robot tries to circumvent
several moving obstacles while attempting to reach a specified
stationary or moving goal point.
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