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Integration of Reactive Behaviors
and Enhanced Topological Map for
Robust Mobile Robot Navigation

Byeong-Soon Ryu and Hyun Seung Yang

Abstract—A navigation system for an autonomous mobile
robot working in indoor environments is presented. The system
takes advantage ofdeliberative(plan-based) approach andreactive
(behavior-based) approach. In the reactive part of the system are
local behaviors that are independent, action-generating entities.
We also provide higher-level deliberative modules that make
interactions manageable so the system can accomplish more
meaningful tasks. The deliberative modules control the activation
and deactivation of individual local behaviors based on current
situations, representing the position of the robot and the path to
the goal.

The situation is determined by a mapping subsystem consisting
of an enhanced topological map, a localization module and a
planning module. The use of the explicit world model, especially
in a topological manner, makes it possible to reliably localize
the robot and plan an efficient path. This paper also provides
a detailed description of a localization module based on dead
reckoning, and a planning module that selects an efficient and
reliable path.

Index Terms—Enhanced topological map, mobile robot navi-
gation, reactive behavior.

I. INTRODUCTION

I N ORDER for an autonomous mobile robot to accomplish
given tasks in the real world environment, it must make

decisions and execute actions in real-time as well as cope with
various uncertainties. These uncertainties arise from various
reasons: knowledge about the environment is partial and
approximate; environmental changes are dynamical and can
be only partially predicted; the robot’s sensors are imperfect
and noisy; and the robot’s control is imprecise [1].

A. Control Architectures

Traditionaldeliberative approachesto planning and control-
ling mobile robots have been criticized for not being able to
adequately cope with uncertain and complex environments.
As an alternative, a number ofreactive approacheshave
been proposed. In the reactive approach, systems consist of
collections of localbehaviorsthat are independent and action-
generating entities [2], [3]. This approach handles uncertainty
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and unpredictable changes well by giving up the idea of
modeling and reasoning about the environment and the future
consequences of actions. The global, goal-directed behaviors
of such systems are not explicitly planned; instead, they
typically emerge from interactions among local behaviors.

The idea of achieving global goals by cooperation among
local behaviors is very attractive because it can reduce the
complexity of the problem and improve the robustness of
the system. To be successful, however, such systems should
provide a mechanism that can make cooperation manageable
[4]. The problem is that as complexity increases, interaction
between behaviors also increases to the point where it becomes
difficult to predict overall system behavior. Furthermore, it
is quite difficult to make systems where such meaningful
behavior as office delivery can emerge from simple behaviors.
For those reasons, purely reactive systems that provide only
very simple combination mechanisms have been limited to
such simple applications as obstacle avoidance and open-space
exploration.

One way to solve this problem is to limit interactions by
adding a top-down constraint that takes advantage of regularity
and knowledge in the operational domain in order to coor-
dinate actions. This strategy is embodied in the deliberative
approach, which hierarchically partitions problems into man-
ageable subtasks and explicitly controls interactions between
them [4]. As the deliberative modules utilize environmental
models, such meaningful tasks as office delivery can also be
accomplished.

A number of systems that realize the idea of integration
have been proposed since the end of the 1980’s [1], [5]–[8].
Although they share the idea of integration, each differs
from the others in the way it represents world models, se-
lects relevant behaviors, and combines outputs of selected
behaviors. Payton represents the world in grid-type models,
and then plans paths on the grids [5]. His behaviors are
reflexive and combined with a “winner-take-all” mechanism.
Arkin utilizes a meadow map but it is unclear how this
map is related to the motor and perception schemas [6].
Behaviors, called motor schemas, are combined by the so-
called “potential field.” Mataric represents the world with
active nodes linked topologically [7]. She provides localizing
and planning methodologies, but they are too simple to cope
with sensory uncertainties. Behaviors are controlled under the
subsumption architecture. Saffiotti has not kept any global
model but utilizes thelocal perceptual spacethat provides the
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context[1]. The activation of his fuzzy behaviors is determined
by the context and the output of relevant behaviors are then
combined into a resulting command by a fuzzy “or” operation
and defuzzification. His work has influenced us to use similar
selection and combination methods. His work, however, does
not provide the localization and planning mechanisms which
our work does. Chunget al. integrate a topological map with
reactive behaviors [8]. Their behaviors produce outputs of two
types: vector and permission ring. The integration is achieved
by two modules: acoordinatorselects relevant behaviors and
then ablendercombines the outputs generated by the selected
behaviors. Although they provide the means of using the
topological map and localizing the robot, their localization
scheme has the weaknesses of ignoring the metric information.

B. World Models

In this paper, the robot’s working environment is repre-
sented in anenhanced topological map(ETMap). The ETMap
has basically a topological structure that consists of node
and links. However, it is more enhanced than traditional
topological maps in that it utilizes rough metrical information
and provides localization and planning methodologies that are
efficient and reliable even with imprecise sensors. In fact,
a variety of maps and corresponding algorithms to localize
the robot and plan the optimal path have been proposed for
mobile robot navigation. These approaches are of three types:
grid-based approach, geometric approach, and topological ap-
proach.

The grid-based approaches [9], [10] are adequate for local
navigation like obstacle avoidance. However, they are rarely
used in localization since they have a high computational
cost in matching the sensed features against the internal en-
vironment model. In the geometric approaches [11]–[13], the
environment is represented with geometric beacons on a three-
dimensional (3-D) coordinate system; then the position of the
robot is estimated by matching the sensed features against the
world models. Various techniques (e.g., Kalman filtering) have
been proposed to combine over time the estimates provided
by a number of sensory matching techniques. However, those
algorithms are vulnerable to sensing errors and environmental
uncertainties because they rely on precise metrical information.

In contrast, topological approaches are known to be able
to overcome the fragility of purely geometrical methods since
they do not require precise metrical information [14]–[18].
Furthermore, the elements of the topological map are strongly
related to the semantics of the environments while the other
two maps put more emphasis on geometrical information.
Therefore, the topological map is more capable than the others
in managing reactive behaviors.

Previous work on the topological map, however, has not
provided reliable localization methods. Most researchers have
concentrated only on adjacency relationships to distinguish
between nodes with landmarks of identical type and similar
sensory information. However, when the adjacent nodes have
similar sensory information, their systems may not distinguish
between the nodes because the robot’s sensors are imperfect
and may miss several landmarks. To solve this problem,

Fig. 1. CAIR-2.

we propose a localization algorithm that utilizes metrical
information and dead reckoning. We also propose a planning
algorithm that considers sensory uncertainties. The localization
module first finds a possible location and then fine-tunes its
location by detecting the landmarks. The planner selects a
path so that there are no ambiguous landmarks within the
selected interval. Thus, the localization modules don’t have
to disambiguate among similar landmarks.

C. Mobile Robot CAIR-2 and the Simulator

We have implemented and tested the proposed navigation
system both on a simulator and a real mobile robot, CAIR-2,
shown in Fig. 1. It is approximately 100 cm tall and 60 cm
(diameter) wide, and has two driving wheels. It is equipped
with 16 ultrasonic rangefinders for measuring ranges between
30 and 300 cm and eight infrared sensors for proximity
sensing within 30 cm. Two video cameras with a pan-and-
tilt mechanism attached on the head are used for object
recognition, scene understanding, target tracking, and stereo
vision.

The simulator shown in Fig. 2, has the same wheel config-
uration as CAIR-2. It also has a positional error whose degree
can be set manually. In the simulator, the robot’s footprints are
marked in dotted lines and the estimated positions of the robot
are marked in small circles. In the current implementation, it
has only ultrasonic rangefinders, so the landmark detectors
utilize only these ultrasonic rangefinders. Unfortunately, the
ultrasonic rangefinders don’t provide enough information to
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Fig. 2. Mobile robot simulator which has almost the same wheel configuration as CAIR-2. The robot’s footprints are marked in dots and the estimated
positions of the robot are marked in small circles.

Fig. 3. Block diagram of the proposed navigation system architecture.

distinguish locations. However, several experiments show that
the control and mapping systems proposed here are capa-
ble of reliably guiding the robot using only the ultrasonic
rangefinders.

II. NAVIGATION SYSTEM ARCHITECTURE

Fig. 3 depicts a block diagram of the proposed navigation
system architecture. The system consists of three functional
subsystems: a mapping subsystem, a control subsystem, and
a perception subsystem. We have designed each subsystem to
be independent from the others, so that we can modify one of
them without changing the rest.

Most tasks to be accomplished by mobile robots are nav-
igational ones; i.e., the robots must navigate autonomously
from one place to another. Thus, a human operator gives the

robot his instructions with a world model. In this paper, we
propose anenhanced topological mapas a world model. The
map represents the world in a topological manner with rough
metrical information and provides information to two modules:
a position estimatorand aplanner. Those modules determine
the current situation of the robot, and are capable of coping
with environmental and sensory uncertainties.

The control subsystem is composed of various modules
called behaviors, each of which has its own goal and runs
independently from the others. As mentioned earlier, behaviors
are good at coping with uncertain and dynamic environments,
however, some additional mechanisms to manage the be-
haviors are required to be really useful in the real world
applications. For this reason, the proposed system provides two
modules. One is acoordinatorthat controls the activation and
deactivation of certain behaviors according to the current situ-
ation determined by the mapping subsystem, and the other is a
blenderthat combines the multiple action commands produced
by the activated behaviors into one composed for the actuators.

The perception subsystem also consists of independent
computational modules calledperceptors. They are structured
hierarchically from raw sensory data to high-level abstract
information. Since each of these has its own thread of com-
putation, delay in a perceptor does not cause delay in the
other perceptors. Therefore, theAvoid Obstaclebehaviors can
obtain the raw ultrasonic data whenever they want, even
if some time-consuming perceptors like ascene analyzeris
still processing visual data. Use of a global storage called
blackboard for communications among the perceptors and
other two subsystems also makes the system more manageable
and extensible.

III. M APPING SUBSYSTEM

A. Enhanced Topological Map

The basic structure of theenhanced topological map
(ETMap) is a topological model consisting of nodes and links.
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(a)

(b)

Fig. 4. (a) Typical indoor environment and (b) its corresponding ETMap. In
both (a) and (b), R1–7 represent the rooms. In (b) boxes represent nodes while
lines represent links and numbers on the lines are approximate distances in
meters between the nodes.

However, it is different from traditional topological maps in
that it is designed with special emphasis on the efficient and
reliable localization and navigation of mobile robots even with
imprecise sensors and simple perception modules. As a result,
it has the following three characteristics:

• topological structure with rough metrical information;
• reliable localization algorithm based on dead reckoning;
• planning algorithm for reliable localization and navigation

which considers sensory uncertainties.

Fig. 4 shows a typical indoor environment and the corre-
sponding ETMap. As shown in the figure, the ETMap has a
topological structure where nodes arelandmark places(LP’s)
and arcs areadjacency links(ALinks). The LP’s are drawn in
rectangles while the ALinks are drawn in lines. In addition to a
pure topological structure, the ETMap has such rough metrical
information as the length and orientation of the ALinks,
although need not be precise. Indeed, in our implementation,
the length precision is about 10 cm and four primary directions
(north, south, east, and west) are exploited.

1) Landmark Places:The Landmark Places (LP’s) that
correspond to the nodes of the ETMap are places where
several landmarks can be detected and the robot can localize
itself. A variety of sensors are available to detect landmarks.
Examples of such landmarks detectable by ultrasonic range
finders are “DOOR,” “OPEN (JUNCTION),” and so on.

Fig. 5. Adjacency links and neighborhood links.

Each of the LP’s has not only landmark types but also such
landmark information as landmark direction and the extent to
which landmarks are observable.

An LP is somewhat similar to thedistinctive place(DP)
proposed in [15]. However, the LP has explicit information
about landmarks while the DP is defined implicitly with a
distinctiveness measure. On the other hand,Gatewayproposed
in [19] is a subset of the LP. While Gateway only marks the
transition from one space to another, the LP also provides the
means of localizing the robot even within adjacent spaces.

2) Adjacency Links:LP’s are linked together by Adjacency
Links (ALinks). ALinks represent spatial adjacency, i.e., there
is no other LP between two LP’s linked with an ALinks. As
in Fig. 4, ALinks have rough metrical information such as
length and orientation of links. In addition, ALinks also have
the same information about landmarks as LP’s.

The reason why the ALinks have information about land-
marks is that there are some transient landmarks that can be
detected only by detecting transitions in perceptual states. For
example, when we consider node 1 in Fig. 4, the robot can
detect “SOUTH_OPEN” and recognize node 1 when the robot
moves from node 0 to node 1. However, it can’t recognize
node 1 with “SOUTH_OPEN” when it moves from node
2 because the link between node 2 and node 1 also has
“SOUTH_OPEN.”

3) Neighborhood Links:Besides ALinks, the ETMap has
auxiliary links called neighborhood links(NLinks). While
ALinks denote physical adjacency, NLinks denote logical
adjacency, which we callneighborhood. We define the neigh-
borhood of an LP (starting LP) as a set of LP’s that can
be reached by the robot from the starting LP without an
abrupt change of orientation. Fig. 5 illustrates the difference
between ALinks and NLinks. Although we consider only
linear paths, the same concept of NLinks can be adapted
to curved paths such as outdoor roads. NLinks are set au-
tomatically using the ALinks when the robot initializes the
ETMap.

The major reason why we use NLinks is to find more
efficient paths. Generally, the robot pays a high price to detect
a landmark. The more information the landmark gives, the
higher the cost. This cost influences not only computation
time but also robot speed. For example, if the robot detects a
landmark with its vision sensor that takes about 1 s to process
and has to take an image at least every 50 cm not to miss
the landmark, then the robot’s speed can’t exceed 50 cm/s.
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Fig. 6. Distance intervals.

However, if the robot can detect a landmark and localize itself
using only cheap sensors like ultrasonic range finders, it can
move faster. Moreover, if the robot can localize itself even
while skipping some landmarks, it can move at maximum
speed. Therefore, by navigating along NLinks, we can obtain
a more efficient path.

Another important difference between ALinks and NLinks
is that the former represent the structure of the environment
while the latter represent the information related to navigation.
NLinks have a selected set of landmarks for efficient and re-
liable navigation while the ALinks have all landmarks related
to the links. In addition, each NLinks keeps a list of behavior
modules selected by the coordinator to be activated when the
robot navigates along the NLink.

4) Distance Intervals:To plan the path and localize the
robot, the system introduces some notions ofdistance intervals
(DI’s) as shown in Fig. 6. TheTarget Interval(TI) denotes the
interval where the robot can detect landmarks. The other two
intervals are wider than the TI due to dead-reckoning error.
The Estimated Interval(EI) is the interval within which the
estimation lies when the robot is actually in the TI. Since the
robot knows only the estimation of its position, it uses the EI
to localize itself. ThePlanning Intervalis the interval within
which the robot actually lies when the estimation of its position
lies within the EI. The PI refers to the actual position of the
robot when it estimates that its position is within the EI. So
the PI is used by the path planner.

Assume that the dead-reckoning error isand proportional
to the distance traveled, then each interval is defined as
follows:

(1)

B. Localization

Localization is a critical issue in mobile robot navigation.
Although various localization schemes for topological maps
have been proposed, most previous works using topological
approaches have inherent limitation in that it concentrates only
on finding distinctive places to localize the robots but seldom
uses metrical information. Even if they provide probabilistic

or heuristic tools to select the best possible one among similar
places, they have inherent limitation since they ignore metrical
information. Suppose a robot is navigating down a corridor
that has two adjacent and similar doors as shown in Fig. 7.
Since the robot’s sensors are imperfect, one of the doors can
be missed. For example, if the robot should miss door 1 and
detect a door in front of door 2, it might be unable to decide
whether it is door 1 or door 2 unless it refers to such metrical
information as the traveled distance.

On the contrary, the algorithm proposed in this paper
can solve this problem by utilizing dead reckoning. It first
calculates the EI of the target location and then navigates until
the estimation of position using dead reckoning falls into the
EI. Finally, it fine-tunes the robot’s position using sensor-based
landmark detection algorithms. This idea was motivated by the
human behavior under the similar situation. When we enter an
unfamiliar area, we look up the map and look for landmarks
marked in the map. We may not evaluate the probabilities
but rather try to find distinctive landmarks. In addition, we
often estimate the possible distance of the landmark so that
we can realize in case we proceed too far without detecting
any landmark.

Since the EI’s in Fig. 7 are not overlapped, the algorithm
can decide which door it has detected. Then, how does the
algorithm estimate the EI? Is it possible to estimate the EI
reliably with only dead reckoning? Generally speaking, it
is hard to use dead reckoning alone because it has a large
cumulative error. We can see in Fig. 2 that there is a large
difference between the actual and the estimated positions.

However, we have found that theprojected traveled distance
(PTD), which is the traveled distance projected to the major
axis of the robot’s motion, can be estimated quite reliably
within the small error bound when the motion of the robot
is linearly constrained. The motion of the robot is linearly
constrained when the robot navigates along a linear corridor,
along a linear wall, along a linear road, or continuously aiming
at a static target. Such situations are common in the robot’s
working environments. In a sense, an indoor environment can
be regarded as a combination of linear corridors.

Below is a brief description of the proposed algorithm.
Step 1: We assume that the initial configuration of the robot

is known although it need not be very precise.
Step 2: It selects the next place from the path planned

by the planner. The planner plans the path so that any path
between adjacent places is linear.

Step 3: It extracts information on the EI of that place. The
EI is precalculated with a constant error ratio for every NLink
when the robot plans the path.

Step 4: It resets the orientation of the robot so that the
direction of the path to be followed becomes zero. Since we
know the initial configuration, there is no problem in resetting
the orientation at the initial place. However, at other places,
the orientation of the robot should be estimated before reset
because the configuration of the robot at that time is only
estimated by dead reckoning and thus may have a lot of error
in its orientation. We have developed an algorithm to estimate
the orientation using ultrasonic range finders and the Hough
transform [20].
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Fig. 7. An illustration of the proposed localization scheme. The width of the Estimated Interval is proportional to the distance from starting position.

Step 5: While the robot navigates along the path, it esti-
mates the PTD and moves to Step 6 when the PTD gets into
the EI.

Step 6: It invokes the landmark detection modules related
to the place.

Step 7: If any landmark detection module detects a land-
mark, this means that the target place is recognized. If the
target place is the goal place, quit navigation. Otherwise, go
to Step 2.

Step 8: If the PTD exceeds the EI without detecting any
landmark, the localization module signals the robot to invoke
the failure recovery module.

1) Projected Traveled Distance:We are now going to
show that the Projected Traveled Distance (PTD) can be
estimated quite reliably. We prove it analytically and then
show some experimental results.

The kinematics of a robot with two driving wheels is given
as follows:

(2)

where the state of the system (2), is the position
of the wheel axis center, and the orientation of the
robot, with respect to the -axis. The velocities and
are the tangent velocities of each wheel at its center of rotation
and is the distance between the wheels. Suppose the state
of the robot at time is and the robot
moves with certain linear and angular velocities,and
respectively, for the time interval Then the new state of
the robot, is obtained as follows:

(3)

When the robot moves along a wall, it rarely changes
its direction except when it avoids obstacles. Generally, the
number of obstacles is relatively small and the influence of the
obstacles can be ignored. Therefore, and the equation
becomes

(4)

Then, the position of the robot aftertime steps, is

(5)

Let be a proportional error in velocity and
be an estimation of the state of the robot at time

Then the estimation of the position of the robot at timeis

(6)

When the initial position is given, becomes identical to
The positional error at time is then

given as follows:

(7)

Let be the total distance traveled so that it satisfies
Several experiments show that the’s are small
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Fig. 8. Simulated robot movement along thex-axis. The dots represent real
positions of the robot while the small circles denote the estimated positions.

Fig. 9. Simulated robot movement along a corridor.

TABLE I
RESULTS OF THE SIMULATIONS

Fig. 10. CAIR-2 navigating down a corridor. Position and sonar measure-
ments were collected while CAIR-2 navigates and plotted offline. Although it
looks curved due to the position estimation errors, corridor is actually straight.

enough to ignore, and for a quite small constant
in most cases. Therefore, (7) can be simplified as follows:

(8)

Considering the characteristics of the sine and cosine func-
tions around the origin, is relatively smaller than and

is tolerable for qualitative indoor navigation. For instance,
suppose the directional erroris 10 then and become

and , respectively, when the robot moves 10
m, is only 15 cm while is 174 cm. Therefore, the PTD
can be quite reliably estimated as long as the robot moves
along a wall.

Figs. 8 and 9 show the experimental results in simulation.
The robot moves along the-axis in Fig. 8 and along a
corridor in Fig. 9. In those figures a dotted line denotes
the robot’s trail while the small circles denote the estimated
positions. Table I shows the actual and estimated positions and
positional errors of those experiments.

In Fig. 10, CAIR-2 navigates along a corridor and the sonar
measurements are plotted with the estimated positions of the
robot. In this experiment, the actual PTD is 1590 cm and the
estimated PTD is 1582 cm. This means a 0.50% error.

TABLE II
MEASURED POSITIONS AND CORRESPONDINGERRORSWHEN CAIR-2
RAN TEN TIMES BETWEEN (0, 0) AND (1000, 0) ALONG A CORRIDOR

In the final experiment, CAIR-2 ran ten times between two
locations, (0,0) and (1000,0), along a corridor adjusting its
direction using the estimated direction of the wall. Table II
shows the list of the actual positions measured by the authors
and the corresponding positional errors. In those experiments,
the errors in estimating thevalue, or the PTD, do not exceed
3%; when the robot moves 10 m, the error does not exceed 30
cm. Thus, the PTD can be estimated quite accurately and used
to localize the robot with the proposed localization scheme.

2) Failure Detection and Recovery:The planning algo-
rithm described in the next subsection selects a path and
corresponding landmarks so that only one location in the path
has the selected landmarks. So, the localization algorithm
doesn’t have to distinguish among the locations. Instead, it
must concern itself with the situation where it doesn’t detect
any landmarks in the EI. When such a situation occurs, the
localization module signals “Failed to Detect” and invokes
the recovery module.

There may be many possible approaches to recovery. In our
case, the recovery module let the robot turn around and search
for the landmarks again more cautiously within the EI.

C. Planning with Sensory Uncertainty

As explained before, we plan the optimal path not on
the ALinks but on the NLinks for more efficient navigation.
Efficiency is achieved by skipping several LP’s. However, at
the same time, the planner should be concerned with reliable
sensing. The proposed localization algorithm first finds the EI
using dead reckoning and then detects the landmarks within the
EI. In order for the algorithm to be successful, the landmarks
must be unique in the EI. In other words, there should be
only one door in the EI when we try to find a door. However,
because of cumulative dead reckoning error, the EI becomes
wider as the distance of the NLink becomes longer. Therefore,
we should select the longest NLink where EI has at least one
landmark unique in the EI and reliably detectable.

Fig. 6 defines three distance intervals. In order to check how
reliable the NLinks are, the planner compares the landmarks
included in the PI. The PI is divided into three subintervals:
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TABLE III
A CERTAINTY MATRIX FOR THE LANDMARKS

pre-TI, TI, and post-TI. Let the subintervals be denoted simply
by A, B, and C, respectively. Then they are defined as follows:

(9)

A NLink is reliable if at least one landmark included in the
sub-interval B is not included in A and C. Since the sensors
are not perfect, we represent the sensory uncertainties with
probabilities.

The probabilities that the robot detects or does not detect
the target LP, or detects a wrong LP are

(10)

where the and denote the probabilities that the
robot detects or doesn’t detect the landmarks included in the TI
when the robot is actually in sub-interval “”. Fail occurs when
the robot passes over the EI without detecting any landmarks
andFalseoccurs when the robot detects the landmarks in the
wrong sub-interval. The latter is more critical and should be
avoided because if the robot moves in the wrong way, it is
hard to recover. Therefore, we check the false situation at first
and discard it if exceeds a certain amount.

In order to evaluate the and we first evaluate
the probabilities related to each of the landmarks. We use
a similar certainty matrix which Nourbakhshet al. used for
their mobile robot [17]. The certainty matrix for ultrasonic
range finders is shown in Table III. The value of a certainty
matrix at represents the probability that the robot detects
landmark when the landmark is actually The probability
can be written as

Suppose a sub-interval, having a set of landmarks,
The probability, that the robot detects a landmark,
within the subinterval is where

denotes a probabilistic “or” operation. When the planner
selects a set of landmarks, to be detected for localization,
the probability for each landmark included in the should
be combined. Therefore, the probability that the robot
detects any landmark included in the within the subinterval

is obtained as follows:

(11)

The probability, that the robot doesn’t detect any
landmarks within the sub-interval is then

The probabilities given in (10) provide the reliability of the
NLinks. For the sake of efficient navigation, they should be
combined with other costs such as the length of the NLinks
and the sensory cost. We define the cost in terms of time. Each
landmark restricts the speed of the robot to a certain degree.
Therefore, the maximum speeds of the robot within PI’s are
determined by the selected landmarks. In other places outside
the PI’s, the robot can move at maximum speed. Therefore,
the cost is defined as follows:

if
otherwise

(12)

where and are defined as follows:

(13)

where the and are the starting and end point of the EI
as depicted in Fig. 6, and is the maximum velocity and

is the minimum of constrained maximum velocities related
to the selected landmarks; i.e., the robot can not exceedin
detecting the selected landmarks. The definition of
implies that the robot scans the EI once more. The false
situation is pre-checked with small constant

With the definition of the cost, the planner selects the
optimal path and corresponding sets of landmarks. First,
it selects a set of landmarks for each NLink so that the

and are high and thus eventually the cost of
the NLink becomes lower. It then applies Dijkstra’s shortest
path algorithm to find the lowest cost path.

IV. CONTROL SUBSYSTEM

A. Reactive Behaviors

In order to cope with a complex, uncertain and dynamically
changing environment, we designed the control subsystem to
be reactive. Many independent and reactive behavior modules
cooperate to make the overall behaviors of the robot feasible.
The most important factors considered by us in designing the
behaviors areextensibilityandinformation loss. The advocates
of the behavior-based controller argue that complex behavior
emerges from cooperation among multiple local behaviors.
However, the real world is very complex, so a lot of behaviors
are needed to cope with such an environment. Therefore, the
controller should be easily extensible. Among previous work,
Arkin’s motor schemas[6] and Saffiotti’sfuzzy behaviors[1]
are more adequate than the others in this sense. Their systems
have no interconnections among behaviors and allow easy
add/removal of behaviors into/from the controller.

Those systems having no inter-connections among behav-
iors should provide an additional mechanism to blend the
action commands produced by multiple independent behaviors.
Such a mechanism helps a system to be extensible, but the
system may suffer from information loss. Since the behaviors
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(a) (b)

(c) (d)

Fig. 11. Inherent limitations of the potential field approach: (a) a trap
situation due to local minima (b) no passage between closely spaced obstacles
(c) oscillations in the presence of obstacles (d) oscillations in narrow passage.

use virtually direct information, they exhibit little information
loss. However, the blending module gets the information only
indirectly via behavior output. Thus, the blending module may
not notice exactly why certain behaviors produce such and
such outputs, and it may produce unwanted result.

This kind of problem can be found in thepotential field
approach, which is very popular and attractive because of
its elegance and simplicity. Koren and Borenstein [21] have
pointed out the inherent limitation of this approach as il-
lustrated in Fig. 11. The first problem, the local minima,
is not the problem of the potential field approach but the
problem of purely reactive systems. Such a problem can be
resolved integrating the deliberative approach. The remaining
three problems are due to the information loss between the
behaviors and the blending module. For example, Fig. 11(b),
both obstacle1 and obstacle2 produce repulsive forceand

respectively, which are combined into This repulsive
force is then combined with attractive force into a resultant
force which makes the robot turn right. As a result, the
robot can not pass between the obstacles in spite of the
sufficient opening of the passage. Such a mistake is due to the
repulsive forces. The can be translated into this statement:
“Go in the direction opposite to the obstacle 1,” while the
expected statement is: “Don’t go in the direction of obstacle 1.”
Therefore, the information that the robot can go any direction
except toward obstacle 1 is distorted and lost.

In order to take “extensibility” and “no information loss,”
we have designed the behaviors as computational modules
that run independently without any inter-connections with
other behaviors and produce action commands in desirability
functions. More precisely, we say that each behavioris
implemented as Fig. 12 and produces an action command in
a desirability function as follows:

(14)

Saffiotti [1] also used the notion of desirability. However,
our work is different from his in that our behaviors are
computational modules while his behaviors are fuzzy rules.
We decided to build the behaviors computationally rather than
logically (with fuzzy rules) since the former provides more
efficient and flexible implementation.

Fig. 12. Frame of a behavior.

B. Blender

As many behaviors can be simultaneously active in the con-
troller, each aiming at one particular goal, many desirabilities
are produced. All these desirability functions are merged into
a composite. Then the defuzzification module converts the
resulting tradeoff desirabilities into one crisp control decision.

Fig. 13 illustrates how multiple action commands are
merged into a composite one. In this figure, the-axis
represents the directions. “Goal” denotes the action command
produced by theMove to Goalbehavior—its current task is
to orient the robot toward the goal which is about 10left,
while “avoid” is the action command produced by theAvoid
Obstaclebehavior. TheAvoid Obstaclebehavior has found
a small obstacle at the front. The desirability produced by
the Avoid Obstaclebehavior denotes that the robot should
not move forward, but this doesn’t prevent it from going in
other directions.

In the current implementation, the desirabilities are com-
bined by a simple summation. Although this summation makes
the action command exceed the maximum of the probability
value, it is not serious in this case because we need only a
direction which has a maximum desirability. The composite
action command is represented as “SUM” in Fig. 13.

The composite action command is then defuzzified to get
an actual action command used to control the actuators. There
are also many kinds of defuzzifing methods. In this paper, we
take an action command having “maximum desirability” as an
input to the actuators. Another possible method is “center of
mass.” In this method, the center of mass of the desirability
distribution is selected. However, this method may produce
undesirable result. Consider the case illustrated in Fig. 13. The
composite action command has two peaks and the center of
mass is the center of these two peaks; this can make the robot
run into the obstacle. In contrast, the “maximum desirability”
method does not suffer from such a problem, however, it may
cause oscillation between the two peaks.

C. Coordinator

We hypothesize that many behavior modules are needed
to make the system more intelligent and reliable. They need
not, however, be active all the time. We need only a subset
of behaviors active at any one time. For example, a behavior
“Pass the doorway” is not needed when the robot explores an
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Fig. 13. Action commands ofMove to Goal(goal), Avoid Obstacle(obst) and their composition (SUM).

TABLE IV
CORRESPONDENCESBETWEEN THE NLINK TYPES AND THE BEHAVIORS

open space. A module called “coordinator” is exploited for this
purpose. It manages the activation of the behaviors according
to the situation.

As the robot navigates, the situation continuously changes.
In order to cope with such changes, the robot should be able
to recognize the situation. The proposed system recognizes
the situation using the localization module and the planning
module, which are described in the previous section. Since we
use a topological map, the situation can be determined only
roughly, i.e., one example of a possible description of the
situation is “the last identified location is Room #1024 and
the robot is navigating toward Room #1025.” However, it is
sufficient for the coordinator because a more precise variation
of the situation can be handled by the behaviors.

The coordinator selects a set of behaviors according to
the current and next locations. In fact, the corresponding
sets of the behaviors for each NLinks are determined in the
initialization time when the map is prepared. As mentioned
earlier, the robot navigates along the NLinks so that the robot’s
situations correspond to the NLinks. Table IV shows some
correspondence between the NLink types and the behaviors.
The NLink type is defined by the types of the current and
next locations.

When the robot recognizes that it has reached a sub-goal
node and is going to navigate to the next subgoal along the

NLink, the coordinator deactivates the previously activated
behaviors and activates the behaviors that correspond to the
NLink.

We may find robot systems that function similar as our
Coordinator. For instance, Brooks’ subsumption architecture
has no separate module to select behaviors but the behaviors
are layered so that higher-level behavior can inhibit or sub-
sume lower-level behavior [2]. Saffioti’s system, on the other
hand, has control structures that are a set of landmarks [1].
The possibility of certain landmarks being detected effects the
activation of the behaviors. The advantage of our coordinator
over the above mentioned work might be that it utilizes an
enhanced topological map that provides efficient and reliable
localization and planning mechanisms.

V. EXPERIMENTAL RESULTS

Figs. 14 and 15 show the results of our experiments. In these
experiments, the robot navigated in the environment illustrated
in Fig. 4. The robot is commanded to navigate from place
0 to place 10 in the first experiment and from places 0 to
14 in the other. In the second experiment, we cut the link
between places 0 to 14 intentionally to test the localization
algorithm over the long run. The robot successfully reached its
goal position in both experiments. It is remarkable that in the
second experiment, the robot overcame a large positional error
that occurred in the corridor linking places 0–1. The results
prove that the proposed localization scheme is reliable even
with a somewhat large positional error and imprecise sensors.

In each experiment, the planner selected the paths “
” and “ ”

respectively. The robot went to place 10, directly skipping
all places from place 14 in experiment 1, but it visited place
12 when it went from places 9–14. This was because the
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Fig. 14. Experiment 1: navigate from place 0 to place 10.

Fig. 15. Experiment 2: navigate from place 0 to place 14.

distance between places 9–14 was long, and place 13 was
sensed instead of place 14.

In addition, the proposed control architecture has been
proven valid by several real world experiments. Two major
experiments/demonstrations were conducted during the ’93
Taejon World Exposition and the 4th Annual Mobile Robot
Competition sponsored by IJCAI and AAAI held in Montreal,
P.Q., Canada, in 1995. In the ’93 World EXPO, CAIR-2 reli-
ably demonstrated reactive behaviors such as “Avoid obstacles
and spectators” and “Track a moving visual landmark” in an
outdoor environment for three months. And in the mobile
robot competition, we won the first place award in the “Office
Delivery” event that tested autonomous navigation ability in
an office-like indoor environment. CAIR-2 used almost the
same control architecture as the one proposed in this paper
(we have improved it since the competition) and has proven
the feasibility of the control architecture. A detailed description
of the competition can be found in [8] and [22].

VI. CONCLUSION AND FUTURE WORK

We have described a new control architecture for an au-
tonomous mobile robot. The proposed navigation system in-
tegrates the advantages ofreactive approach anddeliberate

approach. In order to integrate them, we provided two mod-
ules: one for selecting the relevant behaviors and the other for
blending multiple action commands. We also concentrated on
describing the mapping system, on which the behavior selec-
tion modules highly depend. The mapping system represents
the environment in anenhanced topological map(ETMap)
and provides a localization module and a planning module for
efficient and reliable navigation.

The proposed system was implemented and tested on both
a real mobile robot, CAIR-2 and a simulator. The experiments
show that the proposed system can accomplish the assigned
tasks even with imprecise sensors like ultrasonic range finders.

Although the proposed system was tested only for indoor
navigation consisting of straight corridors, a similar idea can
be applied to other applications such as curved corridors and
outdoor navigation with ALV’s (autonomous land vehicle)
with minor modification. We are planning to extend our work
to more complex environment.
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