
542 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

Stochastic Optimization Over Continuous
and Discrete Variables with Applications

to Concept Learning Under Noise
K. Rajaraman and P. S. Sastry

Abstract—We consider optimization problems where the objec-
tive function is defined over some continuous and some discrete
variables, and only noise corrupted values of the objective func-
tion are observable. Such optimization problems occur naturally
in PAC learning with noisy samples. We propose a stochastic
learning algorithm based on the model of ahybrid team of
learning automata involved in a stochastic game with incomplete
information to solve this optimization problem and establish
its convergence properties. We then illustrate an application of
this automata model in learning a class of conjunctive logic
expressions over both nominal and linear attributes under noise.

Index Terms—Concept learning, learning automata, ODE anal-
ysis of learning algorithms, optimization, PAC learning, risk
minimization.

I. INTRODUCTION

M ANY learning problems involve optimization of an un-
known functional. For instance, in pattern classification

[1], the interest is in finding a discriminant surface (of some
fixed form) that minimizes the probability of misclassification
though the statistics of the pattern classes may be unknown.
Similarly, many learning problems in adaptive control, signal
processing, and concept learning can be looked upon as the
optimization of a suitably defined functional. In this paper
we present an algorithm, based on learning automata models
[2], that is suitable for tackling such stochastic optimization
problems. An interesting feature of the algorithm is that
the functional to be optimized may be defined over some
continuous and some discrete variables and thus it is attractive
for, e.g., concept learning problems as we illustrate toward the
end of the paper.

Tsypkin [3] is among the first to formalize the unifying view
of learning problems as the optimization of a performance
index

(1.1)

where is a functional of the parameter vector
and observations , is the space of all vectors, and
is a probability measure on . The distinguishing feature
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of learning problems is that is unknown. As an example,
the 2-class pattern recognition problem can be formulated by
choosing

where is the class of discriminant functions parame-
terized by and is the feature vector.1

The recent work in statistical learning theory and probably
approximately correct (PAC) learning (see, e.g., [4] and [5])
once again makes explicit this connection between learning
and optimization. To concretize a few details and to place the
results here in perspective, we briefly describe an extension
of the Tsypkin formulation along these lines following [5].
Consider a learning system interacting with a teacher. The aim
is to learn an unknown concept (or function) using examples
provided by the teacher. Each example consists of an instance

and an outcome , where and are
called instanceandoutcomespaces, respectively, and may be
arbitrary sets. The examples are generated in an independent
and identically distributed (i.i.d.) manner according to an
unknown probability distribution , defined on .
Using these examples, the learning system outputs a hypothesis
from a hypothesisspace based on a learning algorithm.
Any hypothesis is a mapping from the instance space

to a decisionspace , which again may be an arbitrary
set. Theerror of any hypothesis is measured through aloss
function, : . is the loss suffered by
the hypothesis on an example . The loss function is
assumed to be known to the learner. The objective for the
learner is to choose a hypothesis to minimize the expected
loss. Formally, define

(1.2)

(1.3)

where the expectation in (1.2) is w.r.t. , and is the
“correct” concept having the minimal expected loss (or risk).

is called the risk function.
Definition 1.1: Let be as above and be the

learning algorithm used by the learner. Let be the
hypothesis output by the algorithm aftertraining examples
are processed. Then the algorithmprobably approximately cor-
rectly (PAC) learns if converges to (in some

1IfAg is the indicator function of the eventA.
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suitable stochastic sense) asgoes to infinity, irrespective of
the distribution .

If the functions in can be parameterized by a vector of
reals, then defined by (1.1) is essentially the same as
defined by (1.2) and thus the above definition generalizes the
classical Tsypkin formulation. This is also a generalization of
the original PAC notion of concept learning and it also takes
care of the case of noisy samples since we assumed that
is an arbitrary distribution on . (See [5] for a discussion.)

The learning problem now is to identify (or approximate)
defined by (1.3) given only a sample ,

of i.i.d. examples drawn according to . It may be noted
that given an , is not available because
is unknown though for any random example , we can
observe . A common strategy used in statistical
learning theory for approximating is the so called empirical
risk minimization [4]. Define a functional on , called
empirical risk, and by

(1.4)

(1.5)

where denotes expectation with respect to the empirical
distribution defined by the sample (of examples). Now
suppose that the sequence of functions converges to

uniformly over . Then for sufficiently large ,
will be a good approximator to . (See [4] for an excellent
discussion of this issue.) Thus we can think of two subparts to a
learning problem: statistical and optimization [4], [5]. Ensuring
that the needed uniform convergence holds for the chosen
hypothesis space and obtaining some good bounds on the
number of examples needed for approximatingto a desired
degree constitutes the statistical part. It essentially deals with
the question of whether certain conclusions drawn from a
given finite sample generalize well to the whole population.
Finding (or approximating) the actual minimizer of the empiri-
cal risk (or the actual risk) constitutes the optimization subpart
which is the focus of this paper. Most of the computational
learning theory literature concentrates on the statistical part
and considerable attention has been paid to investigating, for
example, the sample complexities of many useful hypotheses
spaces [5]–[7]. For solving the full learning problem, we also
need to guarantee that algorithm can search the space
to find the optimizer of empirical risk. For simple concept
learning problems (mostly over nominal attributes) with noise-
free samples, many learning algorithms are available (e.g.,
[6] and [7]). But for more complex hypothesis spaces or for
examples drawn according to an arbitrary (and thus
allowing for any general noise) this optimization problem is
rather difficult.

Given the set of examples, can be calculated
for any and hence we can, in principle, employ
a standard optimization technique to find if has a
nice structure (for example, if is isomorphic to some
finite dimensional Euclidean space) even though in practice

it can be a difficult nonlinear optimization problem. When
each is represented by a real vector, we can also
use regression function learning algorithms such as stochastic
approximations [8] to asymptotically approximate [by
observing on the i.i.d. samples] if the functions
and are well behaved. When there are only finitely many
samples which are repeatedly used by uniformly sampling
them, the stochastic approximation algorithms also amount to
minimizing empirical risk [4].

The motivation behind our approach is that in many concept
learning problems, elements of are naturally parameterized
by a vector of both continuous and discrete variables and thus

may have no simple algebraic structure on it. Further, any
optimization technique that relies on some sort of estimated
gradient may encounter numerical problems if the loss function
is discontinuous.

In this paper we propose a regression function learning
algorithm based on learning automata (LA) models [2] which
can be used for minimizing the empirical risk without needing
a nice algebraic structure on and which does not explicitly
estimate any gradients. The essence of the automata approach
is the following. We set up a specific system of learning
automata such that state of this system at any time represents
a probability distribution over . At each instant we choose
an at random based on the current probability
distribution. Then the value of , where is
the next random example, is used asreinforcement signalto
update the probability distribution using a learning algorithm.
In this paper we propose a learning algorithm and show that
it converges to a distribution that assigns an arbitrarily high
probability to a hypothesis in that is arbitrarily close to a
(local) minimizer of the empirical risk (or the expected risk
if there is an infinite sequence of examples i.i.d. according to

). It is this strategy of searching in the space of probability
distributions over (rather than in directly) that obviates
the necessity of any algebraic structure onmaking the LA
approach attractive. In the remaining part of this section we
give a very brief overview of learning automata mainly to
introduce our notation.

Learning automata are adaptive decision making units that
learn to choose the optimal action from a set of actions by
interacting with a random environment [2]. The learning au-
tomaton maintains, at each instant, a probability distribution
over the action set, say . The action at instant, , is
chosen at random based on this distribution. For each action
choice, the environment provides a stochastic response (which
is a scalar) called thereinforcement. This is used to update

into by employing a learning algorithm.
Two types of learning automata, namely, finite action set

learning automata (FALA) and continuous action set learning
automata (CALA) are distinguished based on whether the
action set is finite or it is the real line [9], [10]. For a
FALA with, say, actions, the action probability distribution
is represented by an-dimensional probability vector and this
is updated by the learning algorithm. For CALA (whose action
set is ), we represent the action probability distribution by
a normal distribution. At each instant the learning algorithm
updates the mean and variance of this distribution.
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For an -action FALA, let be
the action probability distribution at instant. Let , called
reward probability of th action, denote the expected value
of reinforcement whenth action is chosen. If
then we desire that the learning algorithm make converge
to a probability vector, , with arbitrarily close to unity. For
a CALA (whose action set is ), let denote the stochastic
reinforcement when the action selected is . Then we
define the so called reward function by . The
CALA has to maximize by observing . Let
be the mean and standard deviation of the normal distribution
which represents the action probability distribution of the
CALA at instant . Through the learning algorithm we ideally
want that and as where is a
maximum of . However, for analytical tractability, we do not
let to go to zero. We keep a parameter of the algorithm,

, which is a suitably small positive constant, and set the goal
of learning as and converging close to .

The system of automata considered in this paper is a general
stochastic game with incomplete information played by a team
of learning automata consisting of both FALA’s and CALA’s.
In the theory of learning automata, algorithms for learning
optimal strategies have been developed for many discrete
and continuous games [2], [10]–[12] and have been used
for adaptive decision making in many applications. However,
there have been no results regarding algorithms for learning
optimal strategies in a game consisting of both discrete and
continuous parts.

This game model can be used, in general, for (locally)
maximizing the empirical (or expected) risk in a concept learn-
ing problem where is parameterized by some continuous
and some discrete variables. We illustrate this for the case
of learning simple conjunctive expressions over both nominal
and linear attributes under classification noise. In this special
case, it turns out that local maxima of the risk are all that we
need to learn .

In Section II, we formulate the hybrid game problem and
define the notion of solutions of the game. We propose a
decentralized learning algorithm and analyze its convergence
properties in Section III. Section IV discusses a special case of
the game where all players receive identical payoff. Section V
presents an application of the game formulation to incremental
learning of conjunctive concepts under classification noise.
Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider a team of learning automata consisting
of finite action set learning automata (FALA) and
continuous action set learning automata (CALA) involved in a
stochastic game with incomplete information. Let the action set
of th FALA be denoted by with , . Let
the th CALA choose actions from the real line, .

Let , denote the action chosen by theth
FALA, , and let , be the action
chosen by the th CALA, , at the th instant.
We use to denote the
actions chosen by the FALA part of the team and

, to denote the actions chosen by
the CALA part of the team, at instant. Let

, . Each element of
is a tuple of action choices by the players, and, as per

our notation, we denote an arbitrary element ofby .
At each instant, after the selection of actions, the environment
provides a stochastic reinforcement (also called payoff) to each
of the automata. Let be the payoff to theth automaton
player, . It is assumed that takes values in [0,
1], for all . Define functions : , ,
by

th FALA chose and th CALA chose

(2.6)

is called the payoff function for player. The players only
receive the payoff (or reinforcement) signal and they have no
knowledge of the payoff functions.

Definition 2.1: We say , ;
, is anoptimal pointof the game if

1) For each , ,

for all , such that
, .

2) For each , , such that

for all such that , where is
an -ball in centered at .

Remark 2.1: In the above definition, Condition 1) implies
that is a Nash equilibrium of the game matrix
indexed by , . Condition 2) means that is a
local maximum of .

Now the learning problem is one of identifying optimal
points of the game through repeated plays, that is, by re-
peatedly choosing actions and receiving respective payoffs.
As outlined in Section I, for this, each automaton maintains a
probability distribution over its action set which is modified
after each play using a learning algorithm.

Let , , denote
the action probability distribution of theth FALA, where

Prob and is the th action in . The
action probability distribution of th CALA at th instant is

, which is normal distribution with mean
and standard deviation [the function is

given by (2.9) below]. Let ,
. Then thestateof th FALA is given by

and thestateof th CALA is given by .
The state of the team, at instant, is given by

, where and
,

. It may be noted that any point in represents
a probability distribution over , the set of all action tuples
of the team.
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At instant , the th FALA chooses at random
according to , , and th CALA chooses

at random according to , ,
. Then the th player gets two reinforcements

from the environment: and , .
is the response to the action tuple and is
the response to the action tuple .

Then each FALA updates its action probability distribution
using the so called learning algorithm as follows:

(2.7)

where is the unit vector of dimension with th
component unity and is the step size parameter
of the algorithm.

The th CALA updates its state as follows:

(2.8)

where are defined as

with

(2.9)

and , , are parameters of the algorithm.
Remark 2.2:The parameter above is a lower bound

on the standard deviation of the normal distribution from
which CALA choose actions. This is needed to ensure proper
convergence of the algorithm.

Define : , , by

state of th FALA is

and the state ofth CALA is

(2.10)

where and ,
. Assuming is integrable, we can write, from

(2.6)

(2.11)
where , is the

diagonal matrix with the th diagonal entry being
. [As a notation we represent such diagonal matrices

by diag , where is the th diagonal entry.] is
the multidimensional Gaussian distribution with density

For convenience, we use and interchangeably.

The payoff functions , , are defined
over the space of all tuples of actions (given by) and the
optimal points of the game defined by Definition 2.1 are those
tuples of actions which (in a special sense) “locally maximize”
all payoff functions. However, since the automata learning
algorithm searches over the space of probability distributions
(represented by defined earlier), the algorithm converges to
a point in to maximize functions defined over by
(2.11). In the following two definitions, we characterize some
points of as maximal and modal points which can be seen
to be notions closely related to the optimal points of game.

Definition 2.2: We say ,
, , is a maximal point of

the game if

1) For each , ,

for all such that
, , , is a probability

vector and .
2) For each , , such that

for all such that where is
an -ball in centered at .

Define, for , , , and
,

CALA part chose

(2.12)

FALA part chose

(2.13)

Then, we can write given by (2.11) as

(2.14)

(2.15)

We can correspond each with an where
. We call such an as acornerpoint of .

It is easy to see that for each corner corresponded
in this way with , we have .

Definition 2.3: We say , ;
, is a modal pointof the game if

1) For each , ,

for all , such that
, .

2) For each , , such that

for all such that , where is
an -ball in centered at .
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Remark 2.3:Suppose ( ), ,
diag , is a modal point. Then, by (2.13), ( ) is
arbitrarily close to an optimal point, if is sufficiently small.
(This is intuitively clear because, as the variance decreases, the
integral in (2.13) is essentially given by . A formal
proof follows easily by the same arguments as in [10, Lemma
2.4].)

Remark 2.4: If is a modal point, we call the
corresponding corner point , a pure maximal point.

Definition 2.4: [resp. ] is a strict
maximal point (resp. strict modal point) if [resp.

] satisfies Definition 2.2 (resp. Definition 2.3) with
strict inequalities for both conditions 1) and 2).

In the next section, we analyze the learning algorithm used
by the hybrid team and show that the algorithm asymptotically
identifies the modal points and consequently, by Remark 2.3,
the optimal points of the game to a good approximation. Before
that, we state some results which will be useful in the analysis
to follow.

Define, for and ,

state of th FALA is

th FALA chooses action and the

state of th CALA is

(2.16)

by (2.10) and (2.14). [The summation in (2.16) is over,
, ]. It can be noted from (2.14) and (2.16) that

(2.17)

Lemma 2.1: where and
, satisfies condition 1) of Definition 2.2

if and only if

Corollary 2.2: Let (as in Lemma 2.1) satisfy
condition 1) of Definition 2.2. Then, for each, ,

such that

Both these results are just restatements of some of the
properties of Nash equilibria [12], [13]. They can be proved
directly from the definition and we skip the details.

III. A NALYSIS OF THE ALGORITHM

Before we present a formal analysis of the algorithm de-
scribed in the previous section, we first give a simple overview
of our main results.

First consider a special case of the game where all players
get the same payoff, that is, , . This
function, defined over , is a function of some continuous and

some discrete variables. The optimal points of the game now
correspond to “local” maxima of . The game formulation
presented in the previous section allows for a more general
setting of multiple payoffs and the optimal points are like Nash
equilibria. The goal of the automata algorithm is to identify
these optimal points. For this, the automata approach is to
search in the space of probability distributions over. It is
easy to see that thestate of the team at , ,

, is a probability distribution over . Thus, the state
of the team, , can converge (if at all) only to a point in.
It is for this reason that we defined maximal and modal points.
In view of Remarks 2.3 and 2.4, we want to converge
to some pure maximal point where the standard deviations
of the normal distributions representing the action probability
distributions of the CALA members of the team are sufficiently
small. This is essentially what we prove in this section.

The analysis of the longtime behavior of proceeds in
two steps. The learning algorithm presented in the previous
section specifies a stochastic difference equation which gov-
erns the evolution of . In the first step of the analysis we
obtain an ordinary differential equation (ODE) that approxi-
mates this difference equation. This is a standard technique
in analyzing such stochastic algorithms [8], [14]. The specific
details of how these general techniques can be used to analyze
automata algorithms are also known (see, e.g., [15, sec. 3]).
Hence we simply state the result about the approximating ODE
for our algorithm in Theorem 3.1.

The nature of our ODE approximation is such that the
solution of the stochastic difference equation and that of the
ODE would be arbitrarily close for an arbitrarily long time
by taking the stepsize,, in the algorithm sufficiently small
(see, e.g., [14, ch. 2, theor. 1] and [15, sec. 3]). Thus the
second part of our analysis concentrates on characterizing the
asymptotic solutions of the ODE. This is done in Theorem
3.2. Then, in Theorem 3.3, we provide a sufficient condition
to ensure that the ODE solution converges to an equilibrium
point rather than, e.g., exhibit a limit cycle behavior. It will
be seen in the next section that this condition will always be
satisfied for a game where all players get the same payoff. We
make the following assumptions.

A1) For each player, conditioned on the action tuple chosen
by the team, the reinforcement is independent of the
past reinforcements.

A2) is continuously differentiable w.r.t. for
every .

A3) For every and , a constant such that

A4) For every and , has finite number of
maxima in a compact set and has no maxima at infinity.

Remark 3.1:Assumptions A2)–A4) specify smoothness
and growth conditions on the payoff functions. Since
A2) holds, if has compact support then A3) is
automatically satisfied. These restrictions are required mainly
to satisfy some integrability conditions. The class of functions
under these assumptions still includes a large family of
functions of interest.
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We can write the state evolution of our algorithm as

where ,
, and represents the updating

given by (2.7) and (2.8).
Define the piecewise continuous interpolated version of

by

where is the step size parameter for the learning algorithm
[see (2.7) and (2.8)].

Theorem 3.1:Given the algorithm (2.7) and (2.8), the in-
terpolated processes converge weakly as to ,
the unique solution of the ODE

(3.18)

where

(3.19)

Proof: The proof follows easily by combining similar
proofs from [10] and [12].

As outlined at the beginning of this section, in the remaining
part of the analysis we concentrate on characterizing the
solutions of the ODE.

A. Analysis of the ODE

The equivalent ODE (3.18) of our algorithm will contain
three sets of components corresponding to the’s, ’s, and

’s, respectively. We consider each set separately below.

1) The equations corresponding to’s are

(3.20)

where, from (2.7) and (3.19),

from (2.16) (3.21)

2) The equations corresponding to’s are

(3.22)

where, using (2.8) and (3.19),

from (2.15) (3.23)

Here we used (2.12) and the fact that
, is not dependent

on .
3) The equations corresponding to’s are

(3.24)

where, from (2.8) and (3.19),

We can write , where

from (2.15)

Here we used (2.12) and the fact that
, is not dependent

on . Therefore

(3.25)

Define , , and , subsets of , as

(3.26)

(3.27)

(3.28)

That is, , , and , respectively, denote the set of all
equilibrium points of the three sets of ODE’s given by (3.20),
(3.22), and (3.24). The set of equilibrium points of ODE (3.18)
is .

Theorem 3.2:Let , , and be as defined by
(3.26)–(3.28). Then

1) all corners of belong to ;
2) all maximal points belong to ;
3) an equilibrium point, , is unstable if it is

not a maximal point;
4) all strict pure maximal points are asymptotically stable;
5) if , ;

, then each , , lies in a
small neighborhood [determined by the parameterof
the learning algorithm (2.8)] around .
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Proof:

1) Let be a corner of . We know that
for some , .

Therefore, from (3.21), , ,
, since either or , .

Hence, .
2) Let be a maximal point. From (3.21),

(3.29)

by (2.17). Since is a maximal point, it follows by
Corollary 2.2 that , , ,
implying . Since also satisfies condition 2)
of Definition 2.2, it follows that .
Therefore, from (3.23), , ,
implying . Hence, .

3) Let belonging to not correspond
to a maximal point. Therefore, at least one of the
conditions of Definition 2.2 is not satisfied by .

a) Suppose condition 1) is not satisfied. Then, by
Lemma 2.1, such that

By continuity of the functions involved,
this inequality will hold for all points in a
small neighborhood around . This implies, by
(3.29), that for all points in this neighborhood,

if . Hence,
is unstable.

b) Suppose condition 2) is not satisfied. That is,is
not a local maximum of for some .
Since it is obvious that
will be unstable.

4) Let , ;
, be a strict pure maximal point. Then, we know

that is a strict modal point (cf. Remark
2.4). Let satisfy condition 2) of Definition 2.3 with

. Define a region by

where each , , is a probability vector of
dimension close to , and denotes the
open ball of radius centered at in .

Let . In , only
components are independent since, for

each , . Choose , , as the
independent components. For these, we get

higher order terms in components of

where, by Taylor expansion of around , by
(2.16) and (3.21),

(3.30)

since is a strict pure maximal point. Define

(3.31)

Consider the Lyapunov function defined over, for
,

where , , , .
We have and , since

is a strict pure maximal point.

higher order terms
from (3.30)

Hence, is asymptotically stable.
5) Suppose , ;

. Then, , .
Let . Take . We

can always choose such a constant by assumption A3),
since we can write, from (2.11),

Let . If ,

by choice of

If ,

by choice of

Therefore, all zero crossings of have to occur
within . Now, it follows that all zeros
of have to lie in an open ball of radius centered
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at . Hence, every point is such that
each component of lies in a small
neighborhood around .

Since the set of equilibrium points of the ODE (3.18) is
, in view of Theorems 3.1 and 3.2, we can

conclude that the learning algorithm used by the team will not
converge to a point in that is not a maximal point, and all
strict pure maximal points are locally asymptotically stable.
Moreover, by Assertion 5 of Theorem 3.2, in any equilibrium
point of the ODE (3.18), , each component of lies
in a small neighborhood around and so asymptotically the
action chosen by each CALA will be close to the mean of
the action probability distribution of the corresponding CALA
(see Remark 2.3). If we had chosen the parameterof the
algorithm to be sufficiently small, then the pure maximal point
( ) that the algorithm converges to will be arbitrarily
close to an optimal point of the game (cf. Definition 2.1).
Still the theorem does not guarantee the convergence of the
algorithm to a maximal point because the ODE may exhibit,
e.g., limit cycle behavior. However, we give a sufficient
condition under which the algorithm converges to a maximal
point.

Theorem 3.3:Suppose there is a differentiable function
: , such that for some constants

(3.32)

(3.33)

(3.34)

for all . Let be bounded
below and suppose that there is a constant such that

is a bounded set. Then, the automata team using the algorithm
given by (2.7) and (2.8) converges to one of the maximal
points, for any initial condition.

Proof: We have, from (3.20), (3.21), and (3.32)–(3.34),

(3.35)

(3.36)

Thus is nonincreasing along the trajectories of the ODE.
Since is bounded below and is a bounded set, by [16,
Lemma 81, Ch. 4], asymptotically all the trajectories will be
in the set .

It is easy to see from (3.36) that if , then by
(3.26)–(3.28), . That is, is
an equilibrium point of the ODE (3.18). Thus the ODE has to
converge to some equilibrium point. Now the theorem follows
by noting that all equilibrium points that are not maximal
points are unstable by Theorem 3.2.

Theorems 3.1 and 3.2 characterize the asymptotic behavior
of our algorithm. If, in addition, the sufficient conditions
needed by Theorem 3.3 are met, the algorithm converges to
one of the maximal points of the game. Of these, the pure
maximal points are stable and strict pure maximal points are
asymptotically stable, by Theorem 3.2. We cannot, in general,
conclude anything about the stability of other maximal points.
Since the algorithm we use for FALA’s has unit vectors
as absorbing states, in practice, it is found that the algorithm
converges to one of the pure maximal points.

IV. SPECIAL CASE OF GAMES WITH COMMON PAYOFF

In a game with common payoff, all the players receive the
same payoff after each play. For this special case, we have

, and hence , , , where is as given by
(2.6). Hence the payoff structure of the game can be defined
by a single function :

th FALA chose and

th CALA chose (4.37)

Similarly we will have a single function in place of
and a single function in place of . In

addition to the Assumptions A1)–A4) on , we assume
the following:

A5) vanishes outside a compact set in .

Theorem 4.1:Consider a game played by a team of FALA’s
and CALA’s with common payoff. Then the automata team
using the algorithm given by (2.7) and (2.8) converges to one
of the maximal points.

Proof: Define the function over by

where is as given by (3.31).
We have from (2.14), (2.16), and (2.17),

(4.38)

(4.39)

(4.40)

From Assumption A5) vanishes outside a compact set. Since
the second term in the definition of is strictly convex, we
can choose (which is the constant in the definition of used
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in Theorem 3.3) to be the value of just outside the support
of . Then the set of Theorem 3.3 is bounded. Now the
proof follows by applying Theorem 3.3.

V. APPLICATION OF THE HYBRID

TEAM TO CONCEPT LEARNING

In this section, we illustrate an application of the hybrid
automata game described in Section IV to the problem of
learning conjunctive concepts.2

The problem is to learn a concept in the form of a conjunc-
tive logic expression (over a finite set of attributes) given a set
of positive and negative examples. Some of the attributes could
be nominal while others could be linear. Each nominal attribute
assumes only finitely many values and each linear attribute
takes values from a bounded interval in. All examples will
be described as tuples of values for these attributes and there
may be classification noise in the training sample. Let the
attributes chosen for the domain be that take values from
sets , .

Definition 5.1: A concept description given by

atom atom

is called asimple conjunctive conceptwhere atom is a logic
expression of the form , , and, further, if
is a linear attribute then is a compact interval.

In the PAC learning framework described in Section I, the
instance space of our problem,, is ; the outcome
and decision spaces are {0, 1}; and the hypothesis space is the
class of all simple conjunctive concepts. The labeled examples
are drawn w.r.t. some distribution over . If we
choose the loss function as ,3 then the
correct concept is given by

(5.41)

Now, to use the automata team algorithm for this problem
we need to represent each concept with a pair (where
components of come from discrete sets and is a real
vector). Then, given an example (where is a tuple
of attribute values and is the classification as given in the
training sample) we can supply as the common rein-
forcement for the choice of action (which corresponds
to concept ). Thus [defined by (4.37)] would become
the expected value of and the team can learn . Hence,
in designing an automata team to solve the concept learning
problem we need to answer two questions: i) How do we
formulate an automata team so that every tuple of actions of
the team uniquely corresponds to an element of our concept
space? ii) Since the automata team converges to optimal points
of , are there optimal points other than? (It is easy
to see that would be an optimal point.)

2A detailed description of this algorithm for concept learning can be found
in [17] where we also discussed how such teams of FALA and CALA can
efficiently learn certain special classes of disjunctive concepts. But [17] does
not contain proof of convergence for the algorithm, though the correctness of
this approach for concept learning is established under the assumption that
the automata team converges to the optimal points of the game.

3IfAg is the indicator function of the eventA.

Suppose the concept learning problem has nominal
attributes and linear attributes. Every simple conjunctive
concept is uniquely represented by a tuple ,

, . Further, for , the
set is an interval, say, . Let be the number of
possible values for theth nominal attribute. Then, given any
conjunctive concept , we can represent each

, for , by an bit Boolean vector; and we
can represent each , for , by two
real numbers. Hence, if we have an automata team with
CALA and FALA, where each FALA has two
actions: {YES, NO}, then every tuple of actions of the team
will represent a unique simple conjunctive concept.

We use this hybrid team of automata in a game with
common payoff for learning the correct concept. At each
instant each of the automata chooses an action. Recall from
Section II that we need to generate two reinforcements at
each instant for our learning algorithm. We generate these
by checking whether or not the classification by the concept
corresponding to the appropriate action tuple matches with that
given in the training sample. For the reinforcementthe action
tuple would be the actions chosen by the automata; and for
the action tuple would consist of the actions chosen in case of
FALA and the means of the action probability distributions in
case of CALA. We shall refer to this algorithm as CLearn.

From the results of Section IV, we know that the automata
team converges to one of the optimal points of the payoff
function of this game (provided all the assumptions made
in Section II hold for this game’s payoff function, which is
easily verified). Hence the next question to be answered is
whether the optimal points of the payoff function are a good
approximation to the correct concept.

It is proved in [9] and [17] that (under some mild conditions
on the probability distribution over our instance space and
under uniform classification noise) the correct concept
would be an optimal point of the game and, further, any action
tuple which does not correspond to, would be an optimal
point if and only if it corresponds to a simple conjunctive
concept where the subset for one of the nominal attributes
is null set. Since the correct concept will not contain null
sets, correct learning for algorithm CLearn can be ensured
by making it automatically loop back till the converged
concept has no null sets though it cannot be proved that such
a procedure always terminates. However, in our extensive
empirical studies, algorithm CLearn always converged to
correct concept and never needed such looping back.

The above result is true under any general classification
noise. Specifically, let denote the probability with which
the classification label of an instanceis corrupted before
being given to the learning system. The above result thatis
the only optimal point (modulo null sets) is still valid if

, [18]. However, for the case of more general noise
(which includes combined attribute and classification noise)
in the examples, all we can assert is that we converge to the
optimal points of the payoff function which correspond to local
maxima of the risk function as explained earlier. How good
these local maxima will be as approximators to, which is
the global maximum, is dependent on the specific application.
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TABLE I
PERFORMANCE OFALGORITHM CLEARN ON WINE DATABASE

The algorithm CLearn that uses the hybrid team of automata
model is a strictly incremental (or online) learning algorithm.
It need not store any examples or any other detailed statistics
of the set of examples. This is a distinct advantage compared to
other PAC learning algorithms that can handle noisy examples.
Further, our algorithm can be implemented in a distributed
fashion.

A. Simulation Studies

The algorithm CLearn has been tested on many synthetic
problems and also on many test problems from UCI machine
learning (ML) database [19]. In this section, we present results
obtained with the algorithm on one problem from the UCI ML
database [19] and on one synthetic problem.

For comparison purposes, we have implemented a version
of the decision tree based algorithm [20] that can handle
both nominal and linear attributes effectively. We refer to this
algorithm as Algorithm DTree.

Problem 1: The first problem we consider is the Wine
recognition data from UCI ML database. These data are the
results of a chemical analysis of wines grown in the same
region but derived from three different cultivars. The analysis
determined the quantities of 13 constituents found in each of
the three types of wines and these are provided as the values
of 13 linear attributes. We consider the problem of classifying
the first type of wine from the other two.

The domain consists of 178 examples. We divide the data
into two sets of 103 and 75 examples and use the first one
as training set and the second as test set. We study the
performance of the algorithms for various classification noise
rates by adding noise to the training set externally.

The results of simulation for Algorithm CLearn are given in
Table I. The columns in the table indicate percent classification
noise added to the training set, value of parameterin the
algorithm, CPU time taken for learning and the final error
rate on test set after learning. Table II contains the results for
Algorithm DTree. In addition to noise, error rate and CPU
time, Table II shows the size of the learnt decision tree in
terms of the number of nodes and the average depth of tree.

Problem 2: In this problem, we consider a synthetic domain
to illustrate the ability of algorithm CLearn to learn in the
presence of both nominal and linear attributes. Let the domain
be characterized by two nominal and two linear attributes. The
nominal attributes and take values in and
the linear attributes and from [0.0, 5.0]. Let the target

TABLE II
PERFORMANCE OFALGORITHM DTREE ON WINE DATABASE

TABLE III
PERFORMANCE OFALGORITHM CLEARN ON PROBLEM 2: CASE 1

TABLE IV
PERFORMANCE OFALGORITHM DTREE ON PROBLEM 2: CASE 1

conjunctive concept be

A fixed number of preclassified examples is generated ran-
domly according to a predefined probability distribution for
training the algorithms. For testing purposes, we generate
another set of examples with respect to the same probability
distribution.

The simulation results are presented below in a format
similar to the previous problem. To bring out the advantages
of incremental learning algorithms such as CLearn in contrast
to the decision tree algorithms, we present simulations on two
training sets of sizes 100 and 500 examples, respectively. In
addition to showing the computational advantage of incremen-
tal learning, the results also show the generalization abilities
of the algorithms.

Case 1: Training set size 100; test set size 100; results
are in Tables III and IV.

Case 2: Training set size 500; test set size 100; results
are in Tables V and VI.
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TABLE V
PERFORMANCE OFALGORITHM CLEARN ON PROBLEM 2: CASE 2

TABLE VI
PERFORMANCE OFALGORITHM DTREE ON PROBLEM 2: CASE 2

From the simulation results, it is clear that the proposed
automata based algorithm achieves good learning. The final
error rate of the concept learnt is always smaller. This is
particularly noticeable with noisy examples. The automata
algorithm delivers an acceptable level of performance even
under 40% classification noise while that of DTree deteriorates
badly even with less than 20% noise. The time taken by the
automata algorithm is more than that by DTree though the
difference is not very large. One of the main computational
overheads for CLearn is generation of normal random num-
bers. We were generating them as needed rather than storing
a large file of numbers and reading from it. However, as the
noise is increased, the time taken by Dtree becomes more.
A feature to be noted here is that the automata algorithm is
strictly incremental while DTree (and the other deterministic
enumeration based optimization techniques used by other
algorithms in computational learning theory) are not. Thus in
problem 2, when the number of training samples is increased
to 500 the time taken by CLearn shows only a small increase
while that of DTree increases sharply. This problem would
have been more severe for Dtree type algorithms if the number
of attributes is increased. Since the automata algorithm is
essentially parallel its time complexity would scale nearly
linearly with increased number of attributes.

VI. DISCUSSION

In this paper we considered a stochastic game with in-
complete information played by a hybrid team of learning
automata. The team is called hybrid because some of the team
members have finite action sets while others have continuous
action sets. We defined optimal points for the game and
proposed a distributed learning algorithm for learning these
optimal strategies. In the common payoff case, the algorithm

is a regression function learning technique for maximizing a
function over continuous and discrete variables, based only
on noisy observations of the function values at any chosen
parameter settings.

The main motivation for considering this automata model
is its relevance to concept learning with noisy examples.
While learning concepts as logic expressions over nominal
and linear attributes (a popular representation scheme for
concept learning), this regression problem is difficult to solve
because the concept space may have no simple algebraic
structure on it and the loss function may be discontinuous.
The strategy underlying the automata approach, namely, that
of searching in the space of probability distributions over the
concept space rather than searching the concept space directly,
obviates the necessity of any algebraic structure on the concept
space. Further, since the algorithm does not do any explicit
gradient estimation (unlike, e.g., the stochastic approximation
techniques), it would be numerically more robust.

Following the same procedure as in Section V, we can
formulate the automata team to learn any general class of logic
expressions. Even for general disjunctive concepts, such an
automata team will learn a concept that is a local minimizer
of the risk. How good such a concept would be as an
approximator of is application dependent.

It is also possible to use the general multiple payoff game
model for concept learning. Here we would be giving different
payoffs to different automata (or groups of automata). This,
in general, means we use some features of the structure
of the class of logic expressions chosen to solve thecredit
assignment problemmore intelligently. For example, we can
efficiently learn the so called-term disjunctive expressions
with Marker attributes under classification noise using such a
multiple payoff game [9]. It is easy to see how this method
can be used for other concept spaces also, e.g., halfspaces in

. In learning half spaces we need to learn a vector of real
values, which can easily be done using a team of CALA only.
And we can show, as here, that all local minima of the risk
function correspond to thecorrectconcept even under variable
classification noise [18].
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