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Stochastic Optimization Over Continuous
and Discrete Variables with Applications
to Concept Learning Under Noise

K. Rajaraman and P. S. Sastry

Abstract—We consider optimization problems where the objec- of learning problems is thaP is unknown. As an example,

tive function is defined over some continuous and some discrete the 2-class pattern recognition problem can be formulated by
variables, and only noise corrupted values of the objective func- choosing

tion are observable. Such optimization problems occur naturally
in PAC learning with noisy samples. We propose a stochastic _
learning algorithm based on the model of ahybrid team of R(w, x) = I{f(w, x) > 0}

learning automata involved in a stochastic game with incomplete h is the cl f discrimi t functi
information to solve this optimization problem and establish WN€r€ J(., x) is the class of discriminant functions parame-

its convergence properties. We then illustrate an application of terized byw andx is the feature vectok.
this automata model in learning a class of conjunctive logic ~ The recent work in statistical learning theory and probably

expressions over both nominal and linear attributes under noise. approximately correct (PAC) learning (see, e.g., [4] and [5])
Index Terms—Concept learning, learning automata, ODE anal- Once again makes explicit this connection between learning
ysis of learning algorithms, optimization, PAC learning, risk and optimization. To concretize a few details and to place the
minimization. results here in perspective, we briefly describe an extension
of the Tsypkin formulation along these lines following [5].
|. INTRODUCTION Qonsider a learning system interacting wit.h a teapher. The aim
, ) o is to learn an unknown concept (or function) using examples
ANY learning problems involve optimization of an un-yq\ided by the teacher. Each example consists of an instance
known functional. For instance, in pattern classificatiop € X and an outcomey € Y, where X and Y are
[1], the interest is in finding & discriminant surface (0f SOMgyjedinstanceand outcomespaces, respectively, and may be
fixed form) that_m_|n|m|zes the probability of m'SCIaSS'f'Cat'O'érbitrary sets. The examples are generated in an independent
though the statistics of the pattern classes may be unknowRy jgentically distributed (i.i.d.) manner according to an
S|m|IarIy, many learning proble'ms in adaptive control, S'gn%lnknown probability distributionPyy-, defined onX x Y.
processing, and concept learning can be looked upon as g these examples, the learning system outputs a hypothesis
optimization of a suitably defined functional. In this papefom a hypothesisspaceH based on a learning algorithp.

we present an algorithm, based on learning automata mod,g}ﬁ, hypothesish € H is a mapping from the instance space

[2], that is suitable for tackling such stochastic optimizatior, %, a decisionspaceA, which again may be an arbitrary
problems. An interesting feature of the algorithm is thale: Theerror of any hypothesis is measured throughoas
the functional to be optimized may be defined over sOMgnciion 1: V x A — . I(y, h(x)) is the loss suffered by
continuous and some discrete variables and thus it is attractjyg hypéthesish on an exaf’n’ple(x y). The loss function is

for, e.g., concept learning problems as we illustrate toward thes ;med to be known to the learner. The objective for the
end of the paper. learner is to choose a hypothesis to minimize the expected

Tsypkin [3] is among the first to formalize the unifying view|qqq Formally, define
of learning problems as the optimization of a performance '
index L(h) = E[l(y, h(x))] 1.2)
T(w) = / R(x, w)dP (1.1) h" = arg min L(h) (2.3)
X

) i where the expectation in (1.2) is w.rBxy, and h* is the
where R(x, w) is a functional of the parameter VECI®  «cqrect” concept having the minimal expected loss (or risk).
and observationx, X is the space of all vectorg, and P L(-) is called the risk function.
is a probability measure oX. The distinguishing feature ‘pafinition 1.1: Let X. V. Pyy be as above andt be the
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suitable stochastic sense)agoes to infinity, irrespective of it can be a difficult nonlinear optimization problem. When
the distribution Pxy-. eachh € H is represented by a real vector, we can also

If the functions inH can be parameterized by a vector ofise regression function learning algorithms such as stochastic
reals, then/(-) defined by (1.1) is essentially the samelds) approximations [8] to asymptotically approximafe’ [by
defined by (1.2) and thus the above definition generalizes thieservingl(y, h(x)) on the i.i.d. samples] if the function’s
classical Tsypkin formulation. This is also a generalization @ind ! are well behaved. When there are only finitely many
the original PAC notion of concept learning and it also takesamples which are repeatedly used by uniformly sampling
care of the case of noisy samples since we assumed’hat them, the stochastic approximation algorithms also amount to
is an arbitrary distribution o&X x Y. (See [5] for a discussion.) minimizing empirical risk [4].

The learning problem now is to identify (or approximate) The motivation behind our approach is that in many concept
h* defined by (1.3) given only a samp{éz;, v;), 1 < ¢ < m} learning problems, elements &f are naturally parameterized
of i.i.d. examples drawn according #xy . It may be noted by a vector of both continuous and discrete variables and thus
that given anh € H, L(h) is not available becaus€xy H may have no simple algebraic structure on it. Further, any
is unknown though for any random example, ), we can optimization technique that relies on some sort of estimated
observel(y, h(z)). A common strategy used in statisticaradient may encounter numerical problems if the loss function
learning theory for approximatinks® is the so called empirical is discontinuous.

risk minimization [4]. Define a functionaL,,, on H, called In this paper we propose a regression function learning
empirical risk, andh}, € H by algorithm based on learning automata (LA) models [2] which
. . can be used for minimizing the empirical risk without needing
Lin(h) = Ep[l(y, h(z))] a nice algebraic structure o and which does not explicitly
1 & estimate any gradients. The essence of the automata approach
T - Uy, hlwi)) (1.4) is the following. We set up a specific system of learning
- Z=1. R automata such that state of this system at any time represents
ho, = arg 1ol Loy (R) (1.5 a probability distribution oveld. At each instant we choose

an h € H at random based on the current probability

where E,,, denotes expectation with respect to the empiricdistribution. Then the value of(y, h(x)), where (z, y) is
distribution defined by the sample (ef examples). Now the next random example, is usedrasmforcement signato
suppose that the sequence of functidhg(-) converges to update the probability distribution using a learning algorithm.
L(-) uniformly over H. Then for sufficiently largem, l}jn In this paper we propose a learning algorithm and show that
will be a good approximator t&*. (See [4] for an excellent it converges to a distribution that assigns an arbitrarily high
discussion of this issue.) Thus we can think of two subparts t@eobability to a hypothesis idf that is arbitrarily close to a
learning problem: statistical and optimization [4], [5]. Ensuringlocal) minimizer of the empirical risk (or the expected risk
that the needed uniform convergence holds for the choséthere is an infinite sequence of examples i.i.d. according to
hypothesis space and obtaining some good bounds on ibey). Itis this strategy of searching in the space of probability
number of examples needed for approximatifgo a desired distributions overd (rather than ind directly) that obviates
degree constitutes the statistical part. It essentially deals witie necessity of any algebraic structure 8mrmaking the LA
the question of whether certain conclusions drawn from approach attractive. In the remaining part of this section we
given finite sample generalize well to the whole populatiogive a very brief overview of learning automata mainly to
Finding (or approximating) the actual minimizer of the empirintroduce our notation.
cal risk (or the actual risk) constitutes the optimization subpartLearning automata are adaptive decision making units that
which is the focus of this paper. Most of the computationdgarn to choose the optimal action from a set of actions by
learning theory literature concentrates on the statistical p&rteracting with a random environment [2]. The learning au-
and considerable attention has been paid to investigating, foamaton maintains, at each instdnta probability distribution
example, the sample complexities of many useful hypothesager the action set, say(k). The action at instant, a(k), is
spaces [5]-[7]. For solving the full learning problem, we alschosen at random based on this distribution. For each action
need to guarantee that algorithsh can search the spadé choice, the environment provides a stochastic response (which
to find the optimizer of empirical risk. For simple concepis a scalar) called thesinforcement This is used to update
learning problems (mostly over nominal attributes) with noisg(%) into p(k + 1) by employing a learning algorithm.
free samples, many learning algorithms are available (e.g.,Two types of learning automata, namely, finite action set
[6] and [7]). But for more complex hypothesis spaces or fdearning automata (FALA) and continuous action set learning
examples drawn according to an arbitraBgy (and thus automata (CALA) are distinguished based on whether the
allowing for any general noise) this optimization problem iaction set is finite or it is the real line [9], [10]. For a
rather difficult. FALA with, say, » actions, the action probability distribution

Given the set ofm examples,ﬁm(h) can be calculated is represented by arrdimensional probability vector and this
for any h € H and hence we can, in principle, employis updated by the learning algorithm. For CALA (whose action
a standard optimization technique to firﬁﬁn if H has a set is¥k), we represent the action probability distribution by
nice structure (for example, if7 is isomorphic to some a normal distribution. At each instant the learning algorithm
finite dimensional Euclidean space) even though in practiopdates the mean and variance of this distribution.
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For anr-action FALA, let p(k) = [pi(k) --- p-(k)] be (z1(k), z2(k), .-+, zp(k)), to denote the actions chosen by
the action probability distribution at instait Let d;, called the CALA part of the team, at instant. Let Y (k) =
reward probability ofith action, denote the expected valuga(), x(k)), Y e (Hiilsi) <« RM 2 D Each element of
of reinforcement wherith action is chosen. Wl = maxi{di} Dis a tup|e of action choices by the p|ayersl and, as per
then we desire that the learning algorithm maké) converge our notation, we denote an arbitrary elementioby (a, x).
to a probability vectorp, with p; arbitrarily close to unity. For At each instant, after the selection of actions, the environment
a CALA (whose action set i8), let 7, denote the stochastic provides a stochastic reinforcement (also called payoff) to each
reinforcement when the action selectedris=s . Then we of the automata. Let; be the payoff to thdth automaton
define the so called reward function lfy{z) = E[r,]. The player,1 <1< N+M. Itis assumed that, takes values in [0,

CALA has to maximizef(-) by observing-,. Let (u(k), o(k)) 1], for all I. Define functions™: D — [0, 1], 1 < I < N+ M,
be the mean and standard deviation of the normal distributigp

which represents the action probability distribution of the

CALA at instantk. Through the learning algorithm we ideally  F(a, x)
want thaty(k) — z, ando(k) — 0 ask — oo wherez, is a = E[rJith FALA chosea; and;jth CALA chosez;].
maximum of f. However, for analytical tractability, we do not 2.6)
let o(k) to go to zero. We keep a parameter of the algorithm, '

or, which is a suitably small positive constant, and set the goat i called the payoff function for playdr The players only

of learning as.(k) — x, ando(k) converging close toz.  (eceive the payoff (or reinforcement) signal and they have no
The system of automata considered in this paper is a ge”%%wledge of the payoff functions.

stochastic game with incomplete information played by a teampafinition 2.1: We say(a*, x*), a* = (af, -+, a%); x* =
of learning automata consisting of both FALA's and CALA'S .« ... .+  is an optimal7poin’tof the gla;me i N
In the theory of learning automata, algorithms for Iearnin(g b MR .
. . . 1) For eachi, 1 < i < N,
optimal strategies have been developed for many discrete

and continuous games [2], [10]-[12] and have been used Fi(a*, x*) > Fi(a, x"),
for adaptive decision making in many applications. However, -
there have been no results regarding algorithms for learning  for all a = (a*, - -, al_q, ai, al,q, -, a’y) such that
optimal strategies in a game consisting of both discrete and ¢, £ o*, a; € S;.
continuous parts. 2) For eachj, 1 < j < M, 3¢ > 0 such that
This game model can be used, in general, for (locally)
maximizing the empirical (or expected) risk in a concept learn- FNTi(a* x*) > FN*(a*, x),

ing problem whereH is parameterized by some continuous
and some discrete variables. We illustrate this for the case for all x such thatx € BY (x*, ¢), whereB (x*, ¢) is
of learning simple conjunctive expressions over both nominal ~ an e-ball in R centered afc*.
and linear attributes under classification noise. In this specialRemark 2.1:In the above definition, Condition 1) implies
case, it turns out that local maxima of the risk are all that wbat a* is a Nash equilibrium of the game matri/(-, x*)
need to learnh*. indexed bya;, 1 < ¢ < N. Condition 2) means that* is a
In Section Il, we formulate the hybrid game problem anbbcal maximum of F¥(a*, -).
define the notion of solutions of the game. We propose aNow the learning problem is one of identifying optimal
decentralized learning algorithm and analyze its convergerpaints of the game through repeated plays, that is, by re-
properties in Section Ill. Section IV discusses a special casep#fatedly choosing actions and receiving respective payoffs.
the game where all players receive identical payoff. SectionAs outlined in Section I, for this, each automaton maintains a
presents an application of the game formulation to incremengabbability distribution over its action set which is modified
learning of conjunctive concepts under classification noisafter each play using a learning algorithm.
Section VI concludes the paper. Let p;(k) = [pi(k), -+, pim,(K)], 1 < ¢ < N, denote
the action probability distribution of théth FALA, where
pi; (k) = Prola;(k) = a,;] anda;; is thejth action inS;. The
Il. PROBLEM FORMULATION action probability distribution ofith CALA at kth instant is
Consider a team ofV + M learning automata consistingZV (#;(k), ¢(c;(k)), which is normal distribution with mean
of N finite action set learning automata (FALA) and #;(k) and standard deviatiop(s;(k)) [the function¢(-) is
continuous action set learning automata (CALA) involved in @ven by (2.9) below]. Letc;(k) = [11;(k), o;(k)] € #2,
stochastic game with incomplete information. Let the action skt< j < M. Then thestateof ith FALA is given by p; (k)
of ith FALA be denoted bys; with |S;| = m;, 1 < i < N.Let and thestateof jth CALA is given byc;(k).
the jth CALA choose actions from the real lifg 1 < j < M. The state of the team, at instahf is given by S(k) =
Let a;(k) € S; denote the action chosen by thth (F(k), C(k)), where P(k) = [pi(k), -, pn(F)] and
FALA, i = 1,---, N, and letz;(k) € R, be the action C(k) = [e1(k), ---, en(k)], S(k) € [0, 1™mFFmy x
chosen by thejth CALA, j = 1, ---, M, at thekth instant. R2¥ 2 K. It may be noted that any point i represents
We usea(k) = (a1(k), aa(k), ---, ay(k)) to denote the a probability distribution ovefD, the set of all action tuples
actions chosen by the FALA part of the team axg:) = of the team.
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At instantk, the ith FALA choosess; (k) € S; at random  The payoff functions*(-), 1 =1, ---, N+ M, are defined
according top;(k), 1 < ¢ < N, and jth CALA chooses over the space of all tuples of actions (given By and the
z;(k) € R at random according taV(u;(k), ¢(o,;(k))), optimal points of the game defined by Definition 2.1 are those
1 < 7 £ M. Then thelth player gets two reinforcementstuples of actions which (in a special sense) “locally maximize”
from the environmenti; (k) andrj(k), 1 <1< M+ N.r(k) all payoff functions. However, since the automata learning
is the response to the action tugla(k), x(k)) and (k) is algorithm searches over the space of probability distributions

the response to the action tupla(k), p(k)). (represented by defined earlier), the algorithm converges to
Then each FALA updates its action probability distributiom point in K to maximizeg'(-) functions defined ovekC by
using the so called g_; learning algorithm as follows: (2.11). In the following two definitions, we characterize some
k1) = pi(k) + M (B)ea. — pilk 1<i<N points of £ as maximal and modal points which can be seen
pi(l+1) =pilk) + Ari(k)leq; = pilk)], == to be notions closely related to the optimal points of game.
2.7) Definition 2.2: We say (P*,C*) € K, P* =
where e,. is the unit vector of dimensionn; with a;th  (pI,---, Py), C* = (u*, ¥*), is a maximal point of
component unity andh € (0, 1) is the step size parameterthe game if
of the algorithm. 1) For eachi, 1 < i < N,
The jth CALA updates its state as follows: P i N
b G(P", C") 2 g(P, C),
i(k+1
ik +1) ) for al P € [0,1]™m*+ *+™~y such that P =
= pj (k) + AF1(pi (), 05(k), zi(k), T (), vy, (K)) P1, --, Pi_1, Pi» Pip1, - - PN, Pi iS @ probability
oj(k+1) vector andp; # p?.
= 0,(k) + AFa (i (k), o(k), zi(k), rags(k), vy (k) 2) For eachj, 1 < j < M, 3¢ > 0 such that
— AK[oj —oy] (2.8) GNP, CF) 2 gNH(PY, (i, X)),
where F(-), F»(-) are defined as for all u such thatuy € BM (u*, ) where BM (u*, €) is
r—r\ [T —p an e-ball in RM centered ap*.
Fl(/% g, , T, T/) =\ 7~ 7N 1 _ _ M
$(o) $(0) Define, forP = [p1, ---, pn], C = [B, 2], x € RY, and
/ 2 a e HZ Siv
Folpts 0, 7y 1) = <:) <u) 1 A
AT #() #(7) HY(P, x) 2 E[r;|P, CALA part chosex]
with = Z Fl((ajlv T ajw)v X) H Pljy (212)
$(0) = (0 — or)[{o > o} + 01, (2.9) o *

J(a, C) £ E[r|FALA part chosea, C]
andor, K > 0, A € (0, 1) are parameters of the algorithm.
Remark 2.2: The parameter;, above is a lower bound =/ Fl(a, x)dN(p, %). (2.13)
on the standard deviation of the normal distribution from R
which CALA choose actions. This is needed to ensure propEnen, we can writgj'(-, -) given by (2.11) as
convergence of the algorithm.

l - l S . .
Defineg': K — [0,1], 1 <1< N+ M, by g C) = ' Z T (@, 5 ajy), ©) 1:[1”% (2.14)
I, IM ?
¢'(P, O) = E[r|state ofith FALA is p;, 1 <i < N, HUP ) dN (. S )15
and the state ofth CALA is ¢;, 1 < j < M] S (P, x)dN(p, %). (2.15)
(2.10) we can correspond eadla, C) with an S = (P, C) where
where P = (py,---,py) and C = (cy, -+, cy)y ¢ = £ = [€a,s * s €ay]- We call such ar$’ as acornerpoint of K.
(i, o). AssumingF(a, x) is integrable, we can write, from It is easy to see that for each corrfer= (P, C) corresponded
(2.6) in this way with (a, C), we haveg' (P, C) = J'(a, C).
Definition 2.3: We say (a*, C*), a* = (af, ---, ay);
Jg(P, O) =/ Z Fl(a, x) H Prj AN (p, ) C* = (pu*, ¥*), is amodal pointof the game if
RM . . . .
Jts g k 1) F h, 1 <i< N
(2.11) ) For eachi, = it < N, |
where a = (a/jla T a/jN)? ® = (Nla T NM), ¥ is the Jl(a*7 C*) 2> Jl(a’ C*)7

M x M diagonal matrix with theith diagonal entry being
(¢(a,))?. [As a notation we represent such diagonal matrices 0 £ ata €S
by diagd;), whered; is theith diagonal entry.]N (g, ¥) is : AN
the multidimensional Gaussian distribution with density 2) For eachy, 1 < j < M, 3¢ > 0 such that
Netj (ot ok Netj (% *
1 Te_1 ST (@, OF) z ST (@, (i, X)),
W exp((x — p)" X7 (x — ).

foralla=(aj, ---, aj_;, a;, ajy,, - -, a}y) such that

for all g such thatu € BM (u*, €) where BV (u*, ) is
For convenience, we usg and(u, ) interchangeably. an e-ball in RM centered ap*.
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Remark 2.3:Suppose 4%, C*), C* = (u*, X*), ¥* = some discrete variables. The optimal points of the game now
diag¢(c})), is a modal point. Then, by (2.13)a*, p*) is correspond to “local” maxima of". The game formulation
arbitrarily close to an optimal point, #* is sufficiently small. presented in the previous section allows for a more general
(This is intuitively clear because, as the variance decreases,sh#ting of multiple payoffs and the optimal points are like Nash
integral in (2.13) is essentially given k'(a, u). A formal equilibria. The goal of the automata algorithm is to identify
proof follows easily by the same arguments as in [10, Lemntlaese optimal points. For this, the automata approach is to
2.4]) search in the space of probability distributions o#2rlt is

Remark 2.4:1f (a*, C*) is a modal point, we call the easy to see that thstate of the team att, S(k) = (P(k),
corresponding corner poirif?*, C*), a pure maximal point. C(k)) € K, is a probability distribution oveP. Thus, the state

Definition 2.4: (P*, C*) [resp. (a*, C*)] is a strict of the team,S(k), can converge (if at all) only to a point iq.
maximal point (resp. strict modal point) {{P*, C*) [resp. Itis for this reason that we defined maximal and modal points.
(a*, C*)] satisfies Definition 2.2 (resp. Definition 2.3) within view of Remarks 2.3 and 2.4, we wafitk) to converge
strict inequalities for both conditions 1) and 2). to some pure maximal point where the standard deviations

In the next section, we analyze the learning algorithm usedl the normal distributions representing the action probability
by the hybrid team and show that the algorithm asymptoticaldiistributions of the CALA members of the team are sufficiently
identifies the modal points and consequently, by Remark 2s3nall. This is essentially what we prove in this section.
the optimal points of the game to a good approximation. BeforeThe analysis of the longtime behavior 6{%) proceeds in
that, we state some results which will be useful in the analygiso steps. The learning algorithm presented in the previous
to follow. section specifies a stochastic difference equation which gov-

Define, forP = (p1, ---, py) andC = (cq, - -+, cp),s erns the evolution of (k). In the first step of the analysis we

obtain an ordinary differential equation (ODE) that approxi-

hig(P, C) = E[ristate ofith FALAis p;, 1 < ¢ < N, mates this difference equation. This is a standard technique

i # 1, Ith FALA chooses actioy and the in analyzing such stochastic algorithms [8], [14]. The specific
state ofjth CALAis ¢;, 1 < j < M] details of how these general techniques can be used to analyze
automata algorithms are also known (see, e.g., [15, sec. 3]).
_ Ligo , , Hence we simply state the result about the approximating ODE
- Z ] ((ahv ’ a]lfw q, a]l+17 ’ a]N)v

for our algorithm in Theorem 3.1.
The nature of our ODE approximation is such that the
solution of the stochastic difference equation and that of the
) H DPhji (2.16) ODE would be arbitrarily close for an arbitrarily long time
e by taking the stepsize), in the algorithm sufficiently small

by (2.10) and (2.14). [The summation in (2.16) is over (see, e.g., [14, ch. 2, theor. 1] and [15, sec. 3]). Thus the
1< i< N,i+1] It can be noted from (2.14) and (2.16) thafecond part of our analysis concentrates on characterizing the
. asymptotic solutions of the ODE. This is done in Theorem

1 3.2. Then, in Theorem 3.3, we provide a sufficient condition
PC)= hi, (P, Cpy,. 2.17 ' - D
g(F.C) Z (P Cpiy ( ) to ensure that the ODE solution converges to an equilibrium

=t point rather than, e.g., exhibit a limit cycle behavior. It will
Lemma 2.1: (P°, C°) where P° = [p?, ---, p&] and be seen in the next section that this condition will always be
CY = [}, -+, Y], satisfies condition 1) of Definition 2.2 satisfied for a game where all players get the same payoff. We
if and only if make the following assumptions.

Al) For each player, conditioned on the action tuple chosen

his(P°, C°) < ¢*(P°, ¢V 1<s<m;, 1<i<N. . e
us (P, C7) < g'(P7, ), =ssMe s s by the team, the reinforcement is independent of the

Corollary 2.2: Let (P°, C°) (as in Lemma 2.1) satisfy past reinforcements. _ _
condition 1) of Definition 2.2. Then, for eaghl <i < N, A2) Fl(a, x) is continuously differentiable w.r.tx for
) every a, .
his(P°, C%) = ¢'(P°, C°%), Vs such thayy, > 0. A3) For everyl anda, 3 a constant3 < oo such that
Both these results are just restatements of some of the sup ||V« F'(a, x)|| < B.

properties of Nash equilibria [12], [13]. They can be proved

directly from the definition and we skip the details. Ad) For everyl and a, Fi(a,-) has finite number of

maxima in a compact set and has no maxima at infinity.
Remark 3.1: Assumptions A2)-A4) specify smoothness
Before we present a formal analysis of the algorithm dend growth conditions on the payoff functions. Since
scribed in the previous section, we first give a simple overvie2) holds, if F(a, -) has compact support then A3) is
of our main results. automatically satisfied. These restrictions are required mainly
First consider a special case of the game where all play¢sssatisfy some integrability conditions. The class of functions
get the same payoff, that ig(-,-) = F(-,-), YI. This under these assumptions still includes a large family of
function, defined oveP, is a function of some continuous andunctions of interest.

I1l. ANALYSIS OF THE ALGORITHM
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We can write the state evolution of our algorithm as Here we used (2.12) and the fact that
S(k +1) = S(k) + AG(S(k), U(k)) Elriy,; (RIS, x] = HY*(P, p), is not dependent
on x.
where W(k) = (a(k), x(k), (n(k), ---, *n4m(K)),  3) The equations corresponding dg's are
(ri(k), -+, ryvyem(K))), and G(., -) represents the updating
given by (2.7) and (2.8). drfj - _ .
Define the piecewise continuous interpolated version of =17 (9, §=P0)1=jsM (@24

5(k) by A where, from (2.8) and (3.19),
SA(t) = S(k), te kA (K+1)N),

where )\ is the step size parameter for the learning algorithm /5 () = E[(F2(u;(k), 05(k), (k) rag;(k), 'y (k)

[see (2.7) and (2.8)]. — Klo; —or])|S].
Theorem 3.1:Given the algorithm (2.7) and (2.8), the in-
terpolated processe®\(t) converge weakly ag — 0 to S(.), We can writef7 (S) = ¢7(S) — K[o; — o], where
the unique solution of the ODE )
o "N4j ~ TNy
Bone soes ey 0= [ (M0 s
where Nanin s
7(5) = EIG(S(), W)ISK) = 5. (3.19) l( #oy) ) (rr %)
Proof: The proof follows easily by combining similar HNHTI(P x
proofs from [10] and [12]. [ | RV K H(o; )}
As outlined at the beginning of this section, in the remaining
part of the analysis we concentrate on characterizing the l( ) 1|dN(p, %) -0,
solutions of the ODE.
N+j
_d97 (S),  from (2.15)
8aj

A. Analysis of the ODE
The equivalent ODE (3.18) of our algorithm will contain Here we used (2.12) and the fact that

three sets of components corresponding torihs, 1;'s, and Elry,;(F)|S, x] = HNT/(P, p), is not dependent
a;’s, respectively. We consider each set separately below. on x. Therefore
1) The equations corresponding jp@’s are Dg+i
7(8) = S)— Klo; — o] 3.25
where, from (2-7) and (3.19), DefineT'y, ['», and ', subsets ofC, as
pSIil—i ’{Sai:
Fi3(8) =pig(1 — pig ) E[ri] ql Iy = ({8 € KIL(S) = 0) (3.26)
+ Z pzs pzq |S a; = 3] i,q
s#Eq
Iy =(){S € KIf!(S) =0} (3.27)
=pig Y, pislhia(S) = his(S)], ; ’
from (2.16) (3.21) Ly = (|{S € KIf7(S) =0} (3.28)
J

2) The equations corresponding 49’s are
du; " . That is, I'y, I's, and I's, respectively, denote the set of all
=f7(5), §=(PC)1<j<M (3.22) equilibrium points of the three sets of ODE’s given by (3.20),
Where, using (2.8) and (3.19), (3.22), and (3.24). The set of equilibrium points of ODE (3.18)
is I'inIsn Fg.

. .l
F18) = / E{ <M> S, x} Theorem 3.2:Let I'y, I's, and I's be as defined by
R ¢() (3.26)—(3.28). Then
. <$i - “j)dN(u, ) 1) all corners ofK belong tol';;
P(o;) 2) all maximal points belong tdy N I'y;
B HNYI(Px) 3) an equilibrium pointS® € 'y N Ty, is unstable if it is
[RV [( ) )} not a maximal point;
z; = 4) gll strict pure maximal points are asymptotically stable;
) < d)(o—j) )dN([l,, E) _07 5) if (P7 (Il’? 0)) S F?n » = (vab"'v Nﬂl)_; 0—_ =
SN+ (o1, ---,.o-M), then eachaj,_l < j < M,lesina
-4 (9), from (2.15) (3.23) small neighborhood [determined by the paraméteof

O the learning algorithm (2.8)] around,.
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Proof:

1) Let S* = (P*, C*) be a corner ofC. We know that
P* = [eq, -+, €qy] fOr somea; € S;; 1 <4 < N.
Therefore, from (3.21) Z?ZI(S*) =01<q<m,
1 <4 < N, since eitherp}, = 0 or p}, s # q.
Hence,S* € I';.

Let S* = (P*, C*) be a maximal point. From (3.21),

pzq Z pzs h“] hlS(S* )]7

=Pig [hz‘q(S ) —g'(5")]

by (2.17). SinceS* is a maximal point, it follows by
Corollary 2.2 tha[ff;(S*) =0,1<¢g<m;,1<i<N,
implying S* € I';y. SinceS* also satisfies condition 2)
of Definition 2.2, it follows tha{ 9g™~+7 /9y, )(S*) = 0.
Therefore, from (3.23)f/'(S*) = 0,1 < j < M,
implying S* € I's. Hence,S* € I'y N I's.

Let S = (P%, C°) belonging td’; N I's not correspond
to a maximal point. Therefore, at least one of the
conditions of Definition 2.2 is not satisfied 8.

q
01

2)
fi(57)

(3.29)

3)

a) Suppose condition 1) is not satisfied. Then, by

Lemma 2.1, J4,s such that h;,(P°, C°) >
g'(P°, C°). By continuity of the functions involved,
this inequality will hold for all pointsS in a
small neighborhood around®. This implies, by
(3.29), that for all points in this neighborhood,
(dpis/dt)(S) = f,(S) > 0if p;; # 0. Hence,
S0 is unstable.
Suppose condition 2) is not satisfied. Thatyi8,is
not a local maximum of¥+4(P°, .) for somej.
Sincedp;/dt = dg™N*i /Op; it is obvious thatu®
will be unstable.
Let SO = (P°, C°), P° = [eg, -, €y |; C°
(u°, X9, be a strict pure maximal point. Then, we know
that Q° = (a°, C°) is a strict modal point (cf. Remark
2.4). Let@" satisfy condition 2) of Definition 2.3 with
¢ = <. Define a regionS, by
S, ={(P, (n, 2°)) e K|P =
pe B, )}

where eachp;, 1 < ¢ < N, is a probability vector of
dimensionm; close toe,y, and B (x, ¢) denotes the
open ball of radiug centered ak in R,

Let S = (P, C) € S,.In P = [py,---, pn], ONly
>~ (mi — 1) components are independent since, for

eachs, Y, pix = 1. Choosep,,, ¢ # a;, as the
independent components. For these, we get

b)

4)

[pla Y pN]a

dp q
dt

where, by Taylor expansion df;,(S) aroundS°, by
(2.16) and (3.21),

= H,4(S) + higher order terms in components Bf

H“I(S) :p”I[JZ((a(l)a T, a?—la q, a?—l—la T a(l)\’)a C)
- ]Z((alv T a?\’)v C)]7
<0, Vg #a? (3.30)
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since(P?, C?) is a strict pure maximal point. Define

30y = T

5 Ho>op}, oceR  (3.31)
Consider the Lyapunov function defined o€y, for
S = (P ((p, -+, ), 2)),
M ) )
V(S) =Y [V (P, C°) = NP, C))]
j=1
M
+Y K®(o)+ Y. pg,  SES,
Jj=1 i, q: gFa;
WhereCj = ((u(]?v ) u‘(/])'flv g, N?+17 T N?\{)y EO)

We haveV (5% = 0 andV(S) > 0, VS € S, since
SO = (P°, C% is a strict pure maximal point.

T ggN+i i _i dgN+i 5
Ml 80]' 7

O i
> Pig

i, q: gFa;

J;l

+ZK[UJ

S - 30
j=1

+ Z Pial(

i, @t qFa;

—or]o; +

M

?717 q, CL?+1, T a?\’)v
0) J'((a2, -+, ay), O))

-+ higher order ternis

<0, from (3.30)

Hence,S° is asymptotically stable.

Supposes = (P7 (Il’v 0)) € F3! r = (va

o = (o1, -, on). Then, f7(S) =0, V.
Leté’ > 0. TakeK; > (1/8")supg |[0g™N 17 /90| We

can always choose such a constant by assumption A3),

since we can write, from (2.11),

alv"'v

7NA4);

agN+j T —
P C)= =
o, 5 [RM< o; )121
QFN+i
T Oz (a’ X) H Dijy, dN([l,, E)'
J 2
Let K = max; K. If 0; < 0y, — &,
” agN+J
f7(8) = a0 — Kjloj —oy]
gj
N+j
S99 | ks
aO'j
>0, by choice of K.
If c; > o+ &,
" agN+J
f7(S) = a0, — Kjo; — o1
N+j
<Y gy
aO'j
<0, by choice of K.

Therefore, all zero crossings of7(S) have to occur
within (o7, — &, o1, +¢&'). Now, it follows that all zeros
of f7 have to lie in an open ball of radiu8 centered
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ato,. Hence, every pointP, (u, o)) € I's is such that Thus @ is nonincreasing along the trajectories of the ODE.
each component o = (o1, ---, o) lies in a small Since® is bounded below and, is a bounded set, by [16,
neighborhood aroundy,. m Lemma 81, Ch. 4], asymptotically all the trajectories will be
Since the set of equilibrium points of the ODE (3.18) i§ the setk; = {(P, C) € K|(d®/dt)(P, C) = 0}.
Iy N Ty N s, in view of Theorems 3.1 and 3.2, we can ltis easy to see from (3.36) that(°, C°) € K, then by
conclude that the learning algorithm used by the team will n63.26)—(3.28)(P°, C%) € T\ NI’y N T's. Thatis,(P°, C°) is
converge to a point ik that is not a maximal point, and allan equilibrium point of the ODE (3.18). Thus the ODE has to
strict pure maximal points are locally asymptotically stabl&onverge to some equilibrium point. Now the theorem follows
Moreover, by Assertion 5 of Theorem 3.2, in any equilibriurRy noting that all equilibrium points that are not maximal
point of the ODE (3.18)(P, u, o), each component af lies Points are unstable by Theorem 3.2. n
in a small neighborhood arountg, and so asymptotica”y the Theorems 3.1 and 3.2 characterize the asymptotic behavior
action chosen by each CALA will be close to the mean (Sff our algorithm. |f, in addition, the sufficient conditions
the action probability distribution of the corresponding CALAeeded by Theorem 3.3 are met, the algorithm converges to
(See Remark 23) If we had chosen the pararnﬁteof the oOne of the maximal points of the game. Of these, the pure
algorithm to be sufficiently small, then the pure maximal poirifaximal points are stable and strict pure maximal points are
(P°, C°) that the algorithm converges to will be arbitrarilyasymptotically stable, by Theorem 3.2. We cannot, in general,
close to an optimal point of the game (cf. Definition 2.1)conclude anything about the stability of other maximal points.
still the theorem does not guarantee the convergence of figce theL . algorithm we use for FALA’s has unit vectors
algorithm to a maximal point because the ODE may exhibfs absorbing states, in practice, it is found that the algorithm
e.g., limit cycle behavior. However, we give a sufficien€onverges to one of the pure maximal points.
condition under which the algorithm converges to a maximal
point. IV. SPECIAL CASE OF GAMES WITH COMMON PAYOFF
Theorem 3.3:Suppose there is a differentiable function

. mi+---+my+2M
o xm N — %, such that for some constants,, payoff after each play. For this special case, we have

In a game with common payoff, all the players receive the

by, b, bs > 0 r; = r;, and hence™ = IV, Vi, j, whereF" is as given by
96 (P, C) = — bihiy(P, C) (3.32) (2.6). Hence the _payoff structure of the game can be defined
Ipiq by a single functionf: £ — ®
o0 agh+i )
B (P, C)= —bo 5 (P, C) (3.33) F(a, x) = E[r|ith FALA choseq; and
I 1j :
5 @J agNJ o jth CALA chosez;]. (4.37)
—— (P, 0)= —by) —— (P, C) = Ko; —o]| 334) _ _ . : : :
Jo; Jo; Similarly we will have a single functiory(-, -) in place of

for all (P, C) € K C fmt+mv+2M | et © be bounded gl(-,_ -_) and a single fun_ction](-, -) in place of Ji(-, -). In
below and suppose that there is a constant0 such that ~ addition to the Assumptions A1)-Ad) afi(-, -), we assume

the following:
Ao ={(P, C) eK|O(, C) < ¢} A5) F(a, -) vanishes outside a compact setirY .

is a bounded set. Then, the automata team using the algorithritheorem 4.1:Consider a game played by a team of FALA's

given by (2.7) and (2.8) converges to one of the maximahd CALA’s with common payoff. Then the automata team

points, for any initial condition. using the algorithm given by (2.7) and (2.8) converges to one
Proof: We have, from (3.20), (3.21), and (3.32)—(3.34) of the maximal points.

de 00 dp; 00 du; Proof: Define the function® over K by
= Z Piq + Z apy
dt i q J

Opig dt Ay dt M
> 90 do; (3.35) (P, C) = —g(P, C)+>_ K(0;)
+ = 7. . j=1
7o here (.) i iven by (3.31) J
where ®(-) is as given by (3.31).
=—bh Z highiq ) Pislhig = his] We have from (2.14), (2.16), and (2.17),
2,4 E
a 90
SaN I dus —
N P AU apr, D ©) =~ hig(P, O), (4.38)
8uj dt
00 99 (4.39)
: N+j 5= T 5 .
B S LA ) o =
i ’ = a—g +K[o;—or].  (4.40)
T, T,
=-b Z Z Z PigDislhig — his]? J J
i g s>q From Assumption A5) vanishes outside a compact set. Since

— by Z (f]H)Q — by Z (f;?)Q <0. (3.36) the second term in the definition & is strictly convex, we

7 can choose (which is the constant in the definition &f, used

J
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in Theorem 3.3) to be the value 6f just outside the support Suppose the concept learning problem hsis nominal
of g. Then the setAy, of Theorem 3.3 is bounded. Now theattributes andd{ linear attributes. Every simple conjunctive
proof follows by applying Theorem 3.3. m concept is uniquely represented by a tuple, - - -, vy 4ar),

v; C Vi, Vi. Further, forv +1 < ¢ < N + M, the
setv; is an interval, saylc;, d;]. Let n; be the number of
possible values for théth nominal attribute. Then, given any

. . . L _conjunctive conceptuy, ---, vy4ar), WE Can represent each
In this section, we illustrate an application of the hybrl%‘ for 1 < i < N, by ann; bit Boolean vector; and we
J —_— —_— L T )

automata game described in Section IV to the problem ofn represent each, for N + 1 < i < N + M, by two

learning conjunctive concepts. , _real numbers. Hence, if we have an automata team ith
The problem is to learn a concept in the form of a conjung=a; A ang ny+ - +nx FALA, where each FALA has two

tive logic expression (over a finite set of attributes) given a Sgltions: {YES, NO}, then every tuple of actions of the team
of positive and negative examples. Some of the attributes coylg, represent a unique simple conjunctive concept
be nominal while others could be linear. Each nominal attribute\y,n ' \;se this hybrid team of automata in a game with

assumes only finitely many vglues and each linear atFribLLtSmmon payoff for learning the correct concept. At each
takes val'ues from a bounded intervaldin Al exa}mples will instant each of the automata chooses an action. Recall from
be described as tuples of values for these attributes and th§é‘?:tion Il that we need to generate two reinforcements at

mayb be clahSS|f|ca:c|on r?o'se m_th; trrz:unlngk samlple. fLet Nech instant for our learning algorithm. We generate these
attributes chosen for the domain b that take values from by checking whether or not the classification by the concept

setsVi, i = 1, ---, . . corresponding to the appropriate action tuple matches with that
Definition 5.1: A concept description given by given in the training sample. For the reinforcemette action
tuple would be the actions chosen by the automata; and for
the action tuple would consist of the actions chosen in case of
is called asimple conjunctive concepthere atomis a logic FALA and the means of the action probability distributions in
expression of the fornfy; € v], v; C V;, and, further, ify; case of CALA. We shall refer to this algorithm as CLearn.
is a linear attribute them; C R is a compact interval. From the results of Section IV, we know that the automata
In the PAC learning framework described in Section |, thiam converges to one of the optimal points of the payoff
instance space of our problent;, is ], V;; the outcome function of this game (provided all the assumptions made
and decision spaces are {0, 1}; and the hypothesis space isithéection Il hold for this game’s payoff function, which is
class of all simple conjunctive concepts. The labeled exampkasily verified). Hence the next question to be answered is
are drawn w.r.t. some distributioR over X x {0, 1}. If we Wwhether the optimal points of the payoff function are a good
choose the loss function d$y, ) = I{y = a},® then the approximation to the correct concept.

V. APPLICATION OF THE HYBRID
TEAM TO CONCEPT LEARNING

atom A --- A atom,

correct concept is given by It is proved in [9] and [17] that (under some mild conditions
. on the probability distribution over our instance space and
h* = avg max E[l(y, h(z))]- (5.41) under uniform classification noise) the correct concépt

would be an optimal point of the game and, further, any action

Now, to use the automata team algorithm for this problemp|e which does not Correspond k3, would be an 0ptima|
we need to represent each concept with a pairx) (where point if and only if it corresponds to a simple conjunctive
components ofa come from discrete sets anxl is a real concept where the subset for one of the nominal attributes
vector). Then, given an examplg, y) (wheret is a tuple s null set. Since the correct concept will not contain null
of attribute values an@ is the classification as given in thesetS, correct |earning for a|go|’ithm CLearn can be ensured
training sample) we can supplfy, 2(t)) as the common rein- phy making it automatically loop back till the converged
forcement for the choice of actiofa, x) (which corresponds concept has no null sets though it cannot be proved that such
to concepth). Thus F(-, -) [defined by (4.37)] would become 3 procedure always terminates. However, in our extensive
the expected value of and the team can learh*. Hence, empirical studies, algorithm CLearn always converged to
in designing an automata team to solve the concept learniggrrect concept and never needed such looping back.
problem we need to answer two questions: i) How do We The above result is true under any general classification
formulate an automata team so that every tuple of actions @fise. Specifically, let. denote the probability with which
the team uniquely corresponds to an element of our concepé classification label of an instaneeis corrupted before
space? i) Since the automata team converges to optimal pogésng given to the learning system. The above result/thas
of F'(., .), are there optimal points other thari? (It is easy the only optimal point (modulo null sets) is still valid i, <
to see that:* would be an optimal point.) 0.5, V. [18]. However, for the case of more general noise

2A detailed description of this algorithm for concept learning can be foun_(yVhICh includes combined atmbUte_ and classification noise)
in [17] where we also discussed how such teams of FALA and CALA cdfl the examples, all we can assert is that we converge to the

efficiently learn certain special classes of disjunctive concepts. But [17] dogptimal points of the payoff function which correspond to local

not contain proof of convergence for the algorithm, though the correctness of. . : . . .
this approach for concept learning is established under the assumption {ﬁgqua of the risk function as eXplamed earlier. How gOOd

the automata team converges to the optimal points of the game. these local maxima will be as approximatorsitg which is
31{ A} is the indicator function of the event. the global maximum, is dependent on the specific application.
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TABLE | TABLE I
PERFORMANCE OF ALGORITHM CLEARN ON WINE DATABASE PERFORMANCE OF ALGORITHM DTREE ON WINE DATABASE
Noise A | CPU Time | Error rate Noise | Nodes | Average | CPU Time | Error rate
% Secs. % % Depth Secs. %
0| 0.004 4 2.6 0 6 33 2.5 6.6
5 | 0.004 6 4.0 5 8 44 3.0 10.6
10 | 0.004 8 6.6 10 12 5.3 4.0 16.0
20 | 0.004 10 6.6 20 22 6.1 5.0 32.0
30 | 0.004 13 8.0 30 30 74 7.0 426
40 | 0.004 18 12.0 40 42 8.9 10.0 58.6
The algorithm CLearn that uses the hybrid team of automata TABLE Il
model is a strictly incremental (or online) learning algorithm. ~ PERFORMANCE OFALGORITHM CLEARN ON PROBLEM 2: CaSE 1
It need not store any examples or any other detailed statistics Noise A [ CPU Time | Error rate
of the set of examples. This is a distinct advantage compared to % Secs. %
other PAC learning algorithms that can handle noisy examples. 0| 0.005 10 4.0
Further, our algorithm can be implemented in a distributed 50.005 13 3.0
fashion. 10 | 0.005 17 5.0
20 | 0.005 20 6.0
30 | 0.005 23 8.0
. . . 40 | 0.004 28 11.0
A. Simulation Studies
The algorithm CLearn has been tested on many synthetic
problems and also on many test problems from UCI machine TABLE IV

learning (ML) database [19]. In this section, we present resultS  perrormancE OF ALGORITHYM DTREE ON PROBLEM 2: CASE 1
obtained with the algorithm on one problem from the UCI ML

database [19] and on one synthetic problem. Noise | Nodes | Average | CPU Time | Error rate

For comparison purposes, we have implemented a version % Depth Secs. %
of the decision tree based algorithm [20] that can handle 2 ig i‘é (1)'2 g'g
both nominal and linear attributes effectively. We refer to this 10 16 5.9 1.0 9.0
algorithm as Algorithm DTree. 20 32 73 20 19.0

Problem 1: The first problem we consider is the Wine 30 41 6.9 2.0 23.0
recognition data from UCI ML database. These data are the 40 43 9.3 3.0 29.0

results of a chemical analysis of wines grown in the same
region but derived from three different cultivars. The analysis
determined the quantities of 13 constituents found in each o
the three types of wines and these are provided as the Valﬁggjuncnve concept be
of 13 linear attributes. We consider the problem of classifying
the first type of wine from the other two. [{Y1 € {A, O} MYz € {B, D} A {Y3 € [2.0, 4.0]}
The domain consists of 178 examples. We divide the data A {Yi € [2.0, 4.0]}].
into two sets of 103 and 75 examples and use the first one
as training set and the second as test set. We study #dixed number of preclassified examples is generated ran-
performance of the algorithms for various classification noigeomly according to a predefined probability distribution for
rates by adding noise to the training set externally. training the algorithms. For testing purposes, we generate
The results of simulation for Algorithm CLearn are given iranother set of examples with respect to the same probability
Table I. The columns in the table indicate percent classificatidistribution.
noise added to the training set, value of parameatén the The simulation results are presented below in a format
algorithm, CPU time taken for learning and the final erragimilar to the previous problem. To bring out the advantages
rate on test set after learning. Table Il contains the results fofrincremental learning algorithms such as CLearn in contrast
Algorithm DTree. In addition to noise, error rate and CPlb the decision tree algorithms, we present simulations on two
time, Table Il shows the size of the learnt decision tree tmaining sets of sizes 100 and 500 examples, respectively. In
terms of the number of nodes and the average depth of trezddition to showing the computational advantage of incremen-
Problem 2: In this problem, we consider a synthetic domaital learning, the results also show the generalization abilities
to illustrate the ability of algorithm ClLearn to learn in theof the algorithms.
presence of both nominal and linear attributes. Let the domainCase 1: Training set size= 100; test set size- 100; results
be characterized by two nominal and two linear attributes. Tlhee in Tables Il and IV.
nominal attributed’; andY; take values if A, B, C, D} and Case 2: Training set size= 500; test set size- 100; results
the linear attribute®’z and Yy from [0.0, 5.0]. Let the target are in Tables V and VI.
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TABLE V is a regression function learning technique for maximizing a
PERFORMANCE OFALGORITHM CLEARN ON PROBLEM 2: CASE 2 function over continuous and discrete variables, based only
Noise N 1 CPU Time | Error rate on noisy observations of the function values at any chosen
% Secs. % parameter settings.
0| 0.005 14 2.0 The main motivation for considering this automata model
5| 0.005 17 2.0 is its relevance to concept learning with noisy examples.
10 | 0.005 20 3.0 While learning concepts as logic expressions over nominal
20 | 0.005 24 3.0 and linear attributes (a popular representation scheme for
Zg g:ggg gg 2:3 concept learning), this regression problem is di_fficult to solve_
because the concept space may have no simple algebraic
structure on it and the loss function may be discontinuous.
The strategy underlying the automata approach, namely, that
TABLE VI of searching in the space of probability distributions over the
PERFORMANCE OF ALGORITHM DTREE ON PROBLEM 2: CASE 2 concept space rather than searching the concept space directly,
Noise | Nodes | Average | CPU Time | Error rate obviates the necessity of any algebraic structure on the concept
% Depth Secs. % space. Further, since the algorithm does not do any explicit
0 15 4.6 2 3.0 gradient estimation (unlike, e.g., the stochastic approximation
5 17 54 5 4.0 techniques), it would be numerically more robust.
10 24 6.8 18 8.0 Following the same procedure as in Section V, we can
gg gg gg ii ;;:g formulat_e the automata team to Ie_ar_n any general class of logic
40 61 8.9 58 28.0 expressions. Even for general disjunctive concepts, such an

automata team will learn a concept that is a local minimizer
of the risk. How good such a concept would be as an
approximator ofh* is application dependent.

From the simulation results, it is clear that the proposed It is also possible to use the general multiple payoff game
automata based algorithm achieves good learning. The finaddel for concept learning. Here we would be giving different
error rate of the concept learnt is always smaller. This jayoffs to different automata (or groups of automata). This,
particularly noticeable with noisy examples. The automata general, means we use some features of the structure
algorithm delivers an acceptable level of performance eveh the class of logic expressions chosen to solve diealit
under 40% classification noise while that of DTree deterioratéssignment problermore intelligently. For example, we can
badly even with less than 20% noise. The time taken by tle#ficiently learn the so calle@d-term disjunctive expressions
automata algorithm is more than that by DTree though thgth Marker attributes under classification noise using such a
difference is not very large. One of the main computationatultiple payoff game [9]. It is easy to see how this method
overheads for CLearn is generation of normal random nu®an be used for other concept spaces also, e.g., halfspaces in
bers. We were generating them as needed rather than stofifg In learning half spaces we need to learn a vector of real
a large file of numbers and reading from it. However, as thiv@lues, which can easily be done using a team of CALA only.
noise is increased, the time taken by Dtree becomes mof@d we can show, as here, that all local minima of the risk
A feature to be noted here is that the automata algorithmfighction correspond to theorrectconcept even under variable
strictly incremental while DTree (and the other deterministiglassification noise [18].
enumeration based optimization techniques used by other
algorithms in computational learning theory) are not. Thus in

problem 2, when the number of training samples is increased
to 500 the time taken by CLearn shows only a small increas
while that of DTree increases sharply. This problem woul
have been more severe for Dtree type algorithms if the numbé]
of attributes is increased. Since the automata algorithm i
essentially parallel its time complexity would scale nearly

linearly with increased number of attributes. (4]
(5]

VI. DISCUSSION
(6]

In this paper we considered a stochastic game with in-
complete information played by a hybrid team of learningl7]
automata. The team is called hybrid because some of the team
members have finite action sets while others have continuoys
action sets. We defined optimal points for the game angg}
proposed a distributed learning algorithm for learning thes
optimal strategies. In the common payoff case, the algorithm
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