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An Alternative Solution to the Model Structure
Selection Problem

Eduardo M. A. M. Mendes and Steve A. Billings

Abstract—An  alternative solution to the model structure the desired dynamical invariants of the original system. The pri-
selection problem is introduced by conducting a forward search  mary objective is to show that the use of identification schemes
through the many possible candidate model terms initially and which return many good models is worth exploring.

then performing an exhaustive all subset model selection on the M d hich f hausti h lated
resulting model. An example isincluded to demonstrate that this alty Procedures wihich periorm exhaustive Search or relaie

approach leads to dynamically valid nonlinear models. approaches have been investigated since the 1960s [e.g.,
[4]-[7]]- An excellent description of such methods and many
|. INTRODUCTION others is given in [8]. Typically, these procedures consider all

subsets of all sizes, and require that the number of data points
I N THE FIELD of control engineering the task of systems at |east as great as the number of regressors (or terms).
identification usually consists of determining a discretyith these procedures it is possible to obtain the best model
linear or nonlinear mathematical model of a stochastic contigl e5ch size. Different criteria have been devised in order to
system from the measurements of input and output signafoose the optimal model and related good models. In [9] an
Although today’s literature on parameter estimation schemggorithm was proposed for searching for all subsetg of
is vast, the final product of such schemes is often one singl&s variables out of using the usualL.-norm of deviations.
model which hopefully reproduces the system characteristic§y/hereas Narula and Wellington [10] used the-norm (i.e.,
In traditional regression analysis, the problem of detectinginimization of the sum of absolute deviations to find the
an appropriate model based upon a subset of the original sepg&t models ofy variables out of ak-variable trial model),

candidates consists of [1] several authors [1], [8], [11] warned users of such procedures
1) the computational algorithm used to provide informatioabout the computational demands imposed by generating all
for the analysis; possible subsets. In [8] it is argued that an exhaustive search
2) the criterion used to analyze the candidates and seledbaall best fitting subsets is not feasible for trail models with
subset; more than 25 terms. Such a pitfall has been used to advocate
3) the estimation of the coefficients in the final model.  the use of nonoptimal procedures suctspwise regression

In [2] it is argued that it is unlikely that there is a single beswvhich often refers to an algorithm proposed by Efroymson
model but rather several equally good ones. This suggests thalld], and otherforward [13] and backwardalgorithms [See
evaluation of a fairly large number of models might be desirablig], for details]. These procedures are not without problems. In
When only dynamically validated models are of interest, cril4] it has been shown thatepwise regressiomoes not always
teria which incorporate such information during the process sficceed in selecting the best subset of a determined size from a
identification should be used. In the context of neural netwotkal model when the chosen criterion is the minimization of the
models, it has been shown that the minimization of the me&wplained variance. The reason for this is thi@pwise regres-
squared errors is likely to be a necessary condition for the mo@&n minimizes the increment to explained variance and not
to reproduce the dynamical invariants of the original system, eKplained variance itself. Boya# al. [14] argued thabptimal
itis definitely not sufficient [3]. These authors used such a stategression(an exhaustive-like approach) and interdependence
ment to justify the utilization of posterioritests and to conse- algorithms should be applied in place stepwise regression
quently verify the model’s validity. In this paper similar test@ind principal components analysis insofar as subset selection
will be introduced as a tool for selecting not only one singlis concerned.
model but a family of models which can adequately reproduceThis paper uses both ideas, that fisfward and exhaus-
tive-like searches to select models which can reproduce
adequately the dynamical invariants of the system under inves-

. . ) tigation. Briefly, the procedure adopted here will be to conduct
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complexity and fitting accuracy. An example is provided tonodels. To this end, consider the polynomial NARMAX model
demonstrate the benefits of the new approach. The main poibésed upon (1) in the following form:
of the paper are summarized in Section V.
y(k) = \Ij;u(k - 1)®yu + \Ijgu,e(k - 1)621’11,9 + G(If) (2)

Il. BACKGROUND MATERIAL where ¥, (k — 1) includes a constant and all the output and
input terms as well as all combinations up to degreed time
k — 1. These terms will henceforth be referred topscess
terms The vector®,,, are the parameters of such terms. The
A. NARMAX Approach matrix W7, (k — 1) Zj';md the vecto®,,,. are defined likewise.

The nonlinear difference equation model, known as the Now[ (% — 1) will be referred to amoise terms

Linear Auto Regressive Moving Average with eXogenous in- Unfortunately (2) is not suitable for estimating the parameters
puts (NARMAX) model [15] provides a unified representationf a polynomial NARMAX model because the noise terms are
for a wide class of nonlinear systems. Leontaritis and Billingsot known. However the noise sequertg) can be estimated
[15] showed that several well-known models such as the Hainteractively as
merstein, Wiener and bilinear models are special cases of the .
NARMAX model [16]. This model can represented as follows: £(k) = y(k) — 9(k|©) 3)

This section reviews the concepts used later in the paper.

y(k) = F (y(k — 1), ..., yk —ny),ulk —d), ..., whereé(k) is the residual at timé andy(k|©), the prediction

of y(k), can be written as
wll—d—m) (k- 1),k —n) +ek) @ OTYP i
§(k|©) = Uy, (k= 1)Oyu + V) e (k— 1)Oyue.  (4)

where vue

y(k), u(k) ande(k) output, input and noise, respec- Finally, substituting (4) into (3) and rearranging the order
tively; yields

Ty, Ty ANA7e corresponding maximum lags; T A

{e(t)} accounts for possible noise, uncer- y(k) =27k - 1)O + &(k) )

P ;ae'lr‘;'yes unmodeled dynamics; where " (k — 1) = (W00 = 1) Wh,e(k — 1)] and&T =

F some nonlinear function, the form [@;fu égme . Equation (5) clearly belongs to the linear regres-
of which is usually unknown. sion mode

Equation (1) is typically used in identification procedures since ne
e(k) is unknown in practice. Insofar as such procedures are con- y(k) = Zpi(’“)ei +&k), k=1,...,N (6)
cerned, the inclusion of monomialsd(¥:) is mainly to avoid the im1
bias in the parameters.

Becausé& can assume a variety of forms, the identification O\f/here i
nonlinear systems becomes a much more difficult task than theN data length; : .
linear counter-part, where the major difficulty is to determine pi(t) column-vectors which represerocessand noise
the system order. The uniqueness of the representation was ad- terms

dressed in [17] where the NARMAX model was referred to as Za nakmnt;err:)f 2L§$Zi:rljsct2 %ﬂuergpal:ggrs;
the recursive representation of a system. ’ u wn p : '

For many real sampled nonlinear systems, the exé}fzﬁ IS tl'le sdurgrlna'uct)n Ofi pro?esgt:]ermzslandn r'10t|sefter|ps. i
NARMAX models, described by the functior in (1), are e extended least squares algorithm [21] consists of estimating

very difficult to determine. Therefore, it is often necessari/zzzr:ﬁfss(;i:gﬁfet ?ensc:o;[SZIrsl gflenga(lizjrgté);?r;t:weerr;igual

to Zpglz)ro;‘(mateg by scr)]me functtl)on. Polynom|a(Ij N?‘]RMN[( i corporatéd into the matri¥™ (k — 1) and a new set of param-

models have been shown to be a very good choice [18]. . . : . . .
e . . ersO is estimated. This process is repeated until the residual

The theoretical justification for using polynomial NARMAX guence converges or a%redetermingd number of iterations is

models to represent nonlinear systems have been given in [ hieved

Being linear-in-the-parameters, the polynomial models ¢ eved.

readily be estimated using linear least squares methods as ca%”eﬂy’ th_e_ basic prlnC|p_Ie of the orthogona_ll estimator pro-
be seen in Section II-B. posed by Billingset al. [20] is to replace the original set of re-

gression vectors by orthogonal vectors. The parameters asso-
. _ ciated with new vectors are such that the contribution of each
B, Orthogonal Least-Squares Estimator With Structure vector can be measured independently of the rest of the vec-
Detection (OLS-ERR) tors and these can then be related back to original model terms
In this section the orthogonal least-squares estimator welhd variables. This simple result makes possible the selection of
structure detection proposed by [20] is reviewed. In order to prieelevant terms in a polynomial model and unlike principal com-
vide a practical application of such an estimator, all explanatiopenents and other similar methods the final model is expressed
will be based upon the estimation of polynomial NARMAXin terms of the original system variables.
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In the orthogonal estimator the parameter estimation is peepresented as, ,,,—, (7%, n1, - - . , 7., ). However, for the sake
formed for a linear-in-the-parameters model which is closebf brevity, the argumeri is dropped.
related to (6) and which can be represented as If the window of length(n,, — 1) x T, defined by the model,
is sufficiently short such that

y(k) =Y wi(k)gi +&k), k=1,...,N gk — 1) my(k —2) ~ -
i=1 w(k — 1) ~u(k —2) ~ --

%

y(k —ny)

y=[wy ... wp, |G+E=WG+¢ @) - u(k — ny) 11)

then (10) can be rewritten as
where the orthogonal vectors and the parameters are con-
structed from (6). The original parametéff the model in (6)
can be calculated from thigy; } 1%, . y(k) ~ Z Cpm—p(Ns- -5 o)

As stated before, a great advantage of the orthogonal esti- (R
mator is the possibility of selecting the relevant vectors (terms) ta .
as a by-product. To demonstrate this, consider again the orthog- X Z Zy(k = DPfulk —1)™7*. (12)
onal regression (7). In doing so, it is assumed that the orthog- m=0p=0

onal propertyw;w; = 0for i # j holds. Therefore, if (7)is  Definition 111 [23]: The constants 37" ¢, ,._,
multiplied by itself and the time average is taken, the following,,, .. »,.) in (12) are the coefficients of theerm clusters
equation can be derived: Q,vum—», Which contain terms of the forg(k—i)Pu(k—j)™ ?
- form = 0,...,£andp = 0,...,m. Such coefficients are
iny _ L Z Gwlw; + 1 e (8) calledcluster coefficientar)d are represented Bgp ,,m—». 0
N N &~ N Clearly, the set of candidate terms for a NARX model is the

union of all possible clusters up to degree
The output variancg®y/N consists of two terms. The first
term >"1° g?wlw; /N is the part of the output variance ex-D. Fixed Points

plained by the regressors whereas the second4€§iN ac- ¢ fixed points of a map are defined as those points for

coqnts for the .unexplained variance. Owing to the orthogoqﬁhichy(k) — y(k+1), ¢ € Z and usually constitute the starting
estimator, the increment toward the overall output variance &“Jint in the analysis of nonlinear systems [24].

each regressor (term or vector) can be computed independentlwsua"y the fixed points are computed for the autonomous

2 T, ing thi i i : ) i o
asg;w; w;. Expressing this quantity as a fraction of the overallgsion of the system under investigation. If the original poly-
output variance yields therror reduction error(ERR) nomial is nonautonomous, then sék — i) = 0,i = 0,1, ...

g2wFw; so that the only remaining terms are those involving the
——, 1<i<ne. (9) output. The resultant equation (or model) can be considered
vy as an autonomous polynomial and can therefore be used for

ERR can be used as a simple and effective means of selectiagulating the fixed points. All the possible clusters of an

the most relevant regressors in a forward-regression manr@gtonomous polynomial with degree of nonlinearityare

Ty Ny

[ERR]; =

Therefore, ERR imposes a hierarchy of terms according to th&ls = constant, §2,,, {,2,..., Q.

contribution toward the overall output variance. Based upon this definition and using the cluster coefficients,
the fixed points of an autonomous polynomial with degree of

C. Term Clustering nonlinearity? can be calculated by finding the roots of the fol-

The deterministic part of a NARMAX model, that is, a NARX!OWINg “clustered polynomial”
model, can be expanded as the summation of terms with d%rlcu(k)[ bt S pyk) 4 (5, — Dy(k) + 5o = 0, (13)
grees of nonlinearity in the rande< m < ¢. Eachmth-order v v 4 -

term can contain ath-order factor iny(k — n;) and a(m — whereX, = ¢y is a constant. From (13) it can be seen that an
p)th-order factor inu(k — n;) and is multiplied by a coefficient autonomous polynomial with degree of nonlineafityill have
Cp.m—p(N1,---,7m) as follows [22]: £ fixed points if>> . # 0. It should be pointed out that the fixed

points are important in the model structure problem [25].

m My ,Ny

a4
yB) =D 3" pm p(na,- -y nm) E. Correlation Tests

m=0 p=0 n1,nm

» m In the theory of linear systems, the usual statistical approach
% H y(k — n;) H w(k — n;) (10) to validating_identifie(_j linear mode_ls consists of computing the
paiy autocorrelation function of the residuals and the cross-correla-

i=r+l : : ; .
tion function between the residuals and the input [26].
wherey e =370 L. 3 ) and the upper limit s, It has been shown that acceptable predictions over different

if the summation refers to factors #{k — »,) or n,, for fac- data sets are produced only if the model is unbiased. If the model
tors inu(k — n;). In discrete models estimated from data gerstructure and the estimated parameters are correct then the pre-
erated from nonlinear continuous systems, the term coefficiedistion error sequencé(%) should be unpredictable from all
depend on the sampling tinfg and should therefore be strictlylinear and nonlinear combinations of past inputs and outputs and
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this will hold if and only if the following conditions are satisfiedlag, respectivelym is the usual embedding dimension exten-
[27]: sively used in the literature. The space defined as above is de-
notedmodel structure spag®SS) [30]. In this reference a sub-

ee(7) =E[E(k — m)E(k)] = 8(7) regionQ of the MSS is defined where the best estimated models
Pug(r) =Eu(k —7)¢(k)] =0, Vr are located in accordance with the free parameters. It has been
Do (1) =E |:(U,2(I{} —7)— UQ—(k)) 5(/{)} =0, V7 demonstrated that botN, the number of data points, and the
o noise terms are extremely important and can determine whether
D,ore2(7) =E [(uQ(k —-7)— uQ(k)) SQ(k)} =0, V7 an estimated model reproduces the desired dynamical character-
B ey(eay (1) =EIE(R)E(R — 1 = u(k —1— )] =0, 7 20 istics or not. For instance, it can be shown that a model with 18

process terms and 20 linear noise terms reproduces the double
(14)  scroll attractor of Chua’s circuit [31]. Butif no noise terms were
wheres(r) is theKronecker deltaThe overbar indicates meanincluded in the final model, this very same model (structure) ex-
value andE[e] denotes the mathematical expectation. When ioits a completely different motion. In the light of these simple
inputis available, that is, the data are a time series, the followiRgt striking results, the subregiad should always be defined

correlations test functions should be used [28]: in terms not only of( 7%, n;,, max(n,, n.)) but also ofN, the
noise variance and noise terms.

e (1) =E [(f(k) - @) (€(k —7) - @)} = (1) As for the influence of the sampling time on the identification
_ i 2.\ _m=as)] of valid models, the discussion in [32] provides clear evidence
@5,(52,)(7) =k [(S(k) S(k)) (5 (k—7)-¢ (k))} =0 that the cautious use of higher degree of nonlinearity can in-
Bprror (1) =E [(52(,€) _ 52—(,€)) (52(,f — ) — %ﬂ crease drastically the number of good modeM;oreqyer, _such
models can have,, greater than the values specified in [30].
=6(7). (15) Therefore, it is conjectured that the number of valid models

Recently two new correlation functions were introduced it (T, 72p, 2y, IV, 0¢, nOise termgis much greater than previ-

existent correlation tests (14). These two correlation functioAss€cond search over a predetermined identified model is worth
defined in terms of delayed outputs are considering. These results appear to contradict a recent numer-

L L ical experiment conducted in [33]. In this papiéf models were
Doy (1) =E [(yg’(k) - yé’(k)) (52(k —7)— SQ(k))} estimated from data generated by the Lorenz [34] and Réssler
=ke(r), [35] equations. They reported that 99% of the estimated models
. . were unstable and that only about 0.04% of the model exhibit
D yeyuzy(T) =E [(yé’(/ﬂ) - yﬁ(/%‘)) (UQ(/%‘ —7) = UQ(/%‘))} some chaotic motions but not which were necessarily valid. The

=ked(7) (16) reason for these low figures appears to be the estimation of
_ ] _ models with 60 coefficients and no noise terms.
where the constarit; is defined in [29]. The next example will be used to introduce the concept of

The underlying rationale of the correlation tests (14)~(16) {fodel familiesAlso it will be shown that if the correct number
that for a model to be statistically valid, there should be no prgf nojse terms is chosen rather large models can be identified.
dictable termg inthe re_3|duals. I_—|0_wev_er, in practlc_e only afinite Example 1: Consider the set of normalized equations (x, y,
data length will be avallabl_e. This |mpI|e_s that confldencg banq§ of Chua’s circuit [31]. The equations of motion of such a
should be used to reveal if the correlation between variableg:|gyit were used to generate data for identification purposes.
S|gn|f|c§1nt or not. For largeV the 95% .clonﬁdence bqnds arerhe resultant data of the-coordinate sampled &, = 0.15
approximately+1.96/v/N and any significant correlation will \ere then corrupted by white noise so that the signal-noise ratio
be indicated by one or more points of the function lying outsidgas approximately 42 dB. The number of data points considered
these bands. in this analysis wagV = 1801.

To demonstrate that even for a large number of terms a rea-
I1l. JUSTIFICATION FORPERFORMING ASECOND TERM SEARCH  gonably good model can be estimated, certain conditions must

There is a considerable literature on the subject of selectibf satisfied: 1, < ny max Wheren, max is the upper bound
of the “best” subset out of a trial model. As pointed out in théor the number of degrees of freedom (DOF) required to de-
introduction, the majority of procedures used in practice do nggribe the system dynamics and 2)spuriousclusters should
take into consideration dynamical characteristics of the systel# in the final model. To avoid the presence of such clusters, it
Instead they rely on statistical measures. In this section an @&s been shown that the fixed points and consequently the re-
tempt to justify a second term search over a predetermined tiged clusters can be estimated directly from the data using the
model is made. To this end, it is necessary to introduce sofi@cedure of Glover and Mees [36] as described in [37]. Once
important concepts. the true clusters are determined, the next step is to then roughly

The structure of identified models can be characterizébin estimate the value of, ... This can be done visually for
N? space by a point of coordinatés;, n,,, max(n,, n,) = m)
whereT, is the sampling timenp is the number of terms al- ‘This seems to be true even for rather coarse values, oHowever, it is

. . . worth mentioning that ifT’; is increased beyond a certain value defined by the
lowed in the final model andhax(ny,n,) = m is the max- sampling theorem (two times the Nyquist frequency), the information about the
imum value between the maximum values of output and inpsitstem dynamics will be lost and cannot be retrieved by estimation procedures.
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Fig. 1. Estimation of:,. ... Using data from the-coordinate of Chua’s circuit corrupted by white noise, showing plots of the time series generated by different

terms of the clustef? s . The vertical axis is the magnitude of the series whereas the horizontal axis is the number of data points. Note that with only 200 points

the maximum lage,. max Can be estimated.

data originated from sampling a continuous-time system. Befn, greater than ok, .« this relation is no longer observed.
fore showing this procedure, it is worth mentioning that in [30These ideas are better illustrated in Fig. 1(a)—(e). Clearly, it can
it is suggested that the lower bound provided by Takens’ thee seen that terms such @§: — 1)y(k — 8)? no longer de-
orem [38] is often larger than necessary [39] and could thergeribe a similar trajectory as that of terms ligék — 1) or
fore be used as an estimategf ,,,... The minimum number of y(k — 1)y(k — 3)2. This pattern has been observed not only for
degrees of freedom,_.,;» can be obtained, for instance, fromChua’s circuit but also for other systems such as Duffing—Ueda
estimates of the fractal dimensidd. n, min is always larger [43], Duffing—Holmes [44], etc. From these figureg max =
than Dg [40]. Abarbanelet al. have recently devised methodss is a rough estimate of the maximum number of degree of
for detecting the minimum embedding dimension [41]. Suchfeeedom valid for identification purposes because for lags higher
dimension can also be estimated as a by-product of Savit ahdn six the cubic terms no longer have similar trajectories to
Green’s procedure [42]. those of terms of lags lower than six. Values beyond this upper
The procedure used to obtain a rough estimate,0f,.x iS bound appear not to be recommendable for identification of dy-
based upon the fact thgtk — 1) = --- =~ y(k — n, max) for namically valid models. In [45], it is stated that models with
appropriate values of the sampling tirife. Since the identi- n,, = 6 do not reproduce the chaotic effects as accurately as
fied models are usually nonlinear, it is conjectured that a simrodels with3 < =, < 6. It is believed that, although it might
ilar relation involving nonlinear terms is also valid. For valuebe possible to identify models with, > 6, they are bound
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(@) (b)

Fig. 2. (a) Double scroll attractor obtained from data generated by thiifallimodel with one noise term. (b) Spiral-like attractor obtained from data generated
by the fulltrial model with five noise termsI'p = 3 was used.

to produce spurious dynamics because of the presence of eptiegsent in the trial model. It seems that the orthogonal estimator
Lyapunov exponents, as discussed in [37], which causes oviertrying to accommodate the model coefficients in order to pre-
fitting due to the introduction of higher lag terms. These ternserve the location of the fixed points. This becomes more diffi-
also tend to explain the noise in the data. cult when a large number of terms is involved in the calculation
Taking into consideration all the previous discussiotr,ial  due to ill-conditioning of the numerical solution. The primary
model with n,, = 5 and? = 3 was chosen. Only linear and cubigproblem is not only to obtain a similar location of the fixed
terms were allowed due to the attractor’'s symmetry detectpdints but also stable models. This could be rather difficult to
by Glover and Mees’ procedure. The total number of (processjhieve since it has been shown that small variations in parame-
terms of the resultaritial model is 40 (plus noise terms), thatters lead to completely different dynamical behaviors. The same
is, all terms were then forced in the regression. conclusion has been stated in [47] for high dimensional systems.
It is important to note that the noise terms play an importamterefore, variations of the combination of linear and cubic
role in the determination of the validity of an identified modelterms could lead to the identification of valid models which were
Forinstance, if only a single noise term was included irtthed  not selected by the OLS-ERR procedure. This statement justi-
model reproduces the dynamical invariants fairly well despities a second search over a model previously identified using
the excessive number of terms. Fig. 2(a) shows the double scenlth a procedure. Apart from the computational demands im-
attractor reproduced from the identifiedal model. Note how- posed by an exhaustive search, it will be shown that a sub-op-
ever that the noise terg(k — 1) is not enough to “bleach” the timal procedure can result in better models in cases where the
data and therefore the residuals are correlated [see especiall5-ERR procedure fails to detect a few good models.
Fig. 3(a)]. As more noise terms are included in the model, it canThe set of models which exhibits similar characteristics will
be observed that 1) all correlation functions lie inside the rée denoted as thrmodel family In the case of models identified
spective confidence bands and 2) several different chaotic nfimm the z-coordinate of Chua’s equations theodel familyis
tions are registered indicating extreme sensitivity to parame##r models withn, < n,m.x = 6 and linear and cubic terms.
estimatior? Fig. 2(b) shows a chaotic motion which resembleghis constitutes amodel familysince the fixed points calculated
the spiral attractor. Table | displays the Lyapunov spectrum fisom the model equation for each member are similar and more-
the two models. Note that these models dimension over- over placed near the original fixed poirits —1.5, 1.5). Several
parametrizedvhich can cause a large variety of dynamical banembers may exhibit very similar dynamical characteristics and

haviors not exhibited by the original system. could, therefore, be considered as “optimal” models. This will
The fixed points of therial model are (0,1.564, —1.564) be illustrated shortly. O

which compares quite well with the fixed points calculated from

the equations of Chua’s circuid, 1.5, —1.5). When compared IV. SECOND SEARCH PROCEDURE

to the previous model for the-coordinate of Chua’s circuit, it One method of selecting subsets (or terms) in regression

can be noticed that the location of the fixed pomt; remain glz Jbiems isstepwise regressiofi2] or closely related proce-
most constant regardless of the number of terms in the modgl

h h . d th V the effecti | res, called forward selection and backward elimination. The
Throughout it is assumed that only the effective clusters d&ficiencies of these one-variable-at-time methods have been

2Theiler and Eubank [46] have shown that the bleaching is more eﬁectigélscussed in [1] and [11]. Hocking [11] pOi_ntS _OUt that “the
when the order of the moving average part) is large. primary problems are that 1) the procedure implies an order of
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TABLE |
COMPARISON BETWEEN THE ORIGINAL LYAPUNOV SPECTRUM OFCHUA’S
CIRCUIT AND THAT OF THE FULL TRIAL MODEL

Double Scroll Spiral
Original | Estimated® | Original | Estimated®
0.23 0.2108 0.09 0.1089
True 0 -0.0000626 0 -0.0003333
-1.78 -2.363 -1.49 -2.187
Spurious - -2.538 - -2.26
- -2.984 - -3.079

“One single noise term
bFive linear noise terms

[48]-[50] has been shown to be very efficient in most cases. A
similar procedure can be found in [51]. In this case the authors
incorporate statistical tests in order to avoid the inclusion of
unwanted terms.

An obvious alternative to circumvent the aforementioned
problems is to evaluate all possible subsets, that is, to consider
all 2"» — 1 choices of equations involving 2, . . . , n,, variables
from the original set of:, variables. The so-called all subset
selection procedures are methods of selecting variables that
minimize a determined criterion such as the minimum residual
sum of squares using some ingenious numerical techniques.
These methods have been discussed by several authors and

importance to the variables, an order that may be misleadigiount to selecting the “best” model from a particular set of
procedure fails to detect important variables.” Although theg@d [11].

problems occurred in such procedures an alternative methodll subset selection procedures usually demand lots of com-
using the orthogonal estimator with structure selection [13jutation time. Hocking and Leslie [52] developed a procedure
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for determining the subset of each size with minimum residual 5) Rissanen’sninimal description lengtiMDL) [58]

sum of squares without evaluating all possible regressions. Sev- 1

eral other procedures have been published using the same kernel ~ MDL = 3 (Nlog, [02(ny)] +nplog, N) . (21)

idea (see for example [6] and [14]). When the number of vari- o _ . )

ables to be selected is very large, the all subset procedures bd? the criteria described aboveZ(n,) is the variance of

come nonviable. This is often the case when trying to fit a nof1€ residuals associated to thg-term model. Some of the

linear model to data. criteria listed above and others available in the literature are
In this section a method denoted henceforth assgeond 1USt modifications of the AIC criterion [e.g., [57], [59], [60]].

search proceduravhich incorporates the advantage of forwardf? [61] asymptotic comparisons of some of these criteria
and all subset methods is proposed. Three examples are p&3 Peen made. Stone has shown that there is an asymptotic
vided to illustrate the benefits of applying such a prOcedur(équwalence between cross-validation and AIC. Other criteria

Numerous interesting issues concerning identification are afch as Mallow'sC), [62], PRESS [63] andnodel entropy

discussed and solutions are reported. But first, a brief reviewlGf] €an also be used as a tool for selecting a model which is

some available information criteria is made. a compromise between goodness of fit and complexity. The
trade-off model structure is indicated by the valuengffor
A. Information Criteria which the chosen criterion reached a minimum value. For a

review of some of these criteria refer to [65].

b Ongd of t.tped{ssr‘es \t/vhen d|fferetﬂt modzlsd strgcturﬁshhaveNote that the choice of stopping rule depends upon 1) the ob-
een identined 1S how to compare them and decide WhiCh OG; e and 2) the estimation method. In the case of estimation

(or Qnes) is the best. In' statistical terms, .the'.\ most ”atufa' onlinear polynomial models, the estimation method used is
straightforward method is to evaluate prediction error varianc o orthogonal estimator with structure detection. This estimator
of the different models over new data, that is, data not used {Qr ) .- "2 1, order by which the terms are selected. When calcu-
structure selection and parameter estimation. This procedur?at%g an information criterion. the user should be aware that
called cross-validation [53]. In this method, if a model predic& ’

: . e minimum value depends upon the chosen structure. Varia-
Eztstte%%\ije; the new data set then it should be considered aS{{0fs in this structure will lead to a different choice of number

) L of terms.
Ljung and Glad [54] argued that cross-validation always The model selection problem using information criteria is still

requires a fresh amount of data for model comparison, ag active field of research. For instance, a new model selection

therefore not all ava|IabIe_ information is used for identificatio riterion based on the Fisher information matrix was recently
When the model comparison has to be made over the same %%osed in [66]

used for estimation, a simple prediction error criterion cannot
be used. The reason for this is that a larger model always gives ) 5 n T

a lower variance of prediction errors. Therefore, a trade-off FIC(ny) = Nog(ny) + ¢ log, det ZPinﬁ (22)
between the number of terms in a model and its capacity to i=1

reduce the variance of the prediction errors should be soug)lqhere%2 (n,) andg? are the variance of the residuals obtained
In the field of statistics, this trade-off is achieved by differerfrom the process of identification of+a,-term model and the
methods which are, in general, based upon information theorke$! model, respectively.

ical principles [54]. These methods have similar characteristics,The quantity(}"" | P,P}) can be interpreted as the amount
that is, they consist of a determined function which increase§ information in the conditional Fisher matri& defined as
with the number of termén,,) and decreases with the numbep 2 (Z;‘zl PiP;f). The main property of the Fisher Informa-
of data points(V). Minimizing this function with respect to tion Criteria (FIC) is that the conventional penalty term is re-
n, penalizes models which contain an excessive number gced by a term that is proportional to the logarithm of the sta-
parameters or models with large variance of the predictidistical information contained in a,-term model.

errors. Despite the good characteristics, the FIC criterion demands
The most well-known methods available in the literature arfeeavy computations, when nonlinear models are concerned. For
1) Akaike’s information criterior{AIC) [55] such models, the number of terms can well exceed thousands

and therefore the estimation @g might lead to spurious results

_ . 2
AIC(a) = Nlog, [o¢(np)] +any, a>0.  (17) mainly due to ill-conditioned problems. Such problems also oc-

2) Final prediction error(FPE) [55] curred when criteria such as Mallows, [62] are used. It is
N +n conjectured that the usefulness of criteria which explicitly use
FPE= N log, [07(n,)] + Nlog, N np~ (18) the variance of the residuals of the full model is rather limited
i ) ) o in nonlinear identification problems.
3) éngdrln’slaw of iterated logarithm criterior(LILC) In the context of nonlinear polynomial models information

criteria have been suggested by Kortmann and Unbehauen [67]
LILC = Nlog, [gg(np)] + 2n,log, log, N. (19) as a means of determining a clear stopping rule for the number
4) Bayesian information criterioBIC) or Schwarz cri- of terms. Whereas i_n [68] _the Schwarz criterion i_s used as a
k stopping rule for radial basis function models, the information
terion [57] criteria can also be seen as the quantity to be minimized in the
BIC = N log, [o—g(np)] + nplog, N. (20) all subset selection methods.
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In Example 1, the second search procedure is performed in
order to minimize the difference between the first Lyapunov
exponent estimated from the original system and the one cal-
culated from the model’s equation estimated directly from the
data. The above criterion was adopted to access the validity of
the models in terms of dynamical characteristics which cannot
be done using the usual information criteria. It will be shown

that several models can be identified using such a procedure. 05

Example 1: Consider again Chua’s circuit equations used in
Example 1 presented in Section Il to demonstrate that when -1 : 5 5 2
the model structure is correct even models with a rather large T

number of terms can reproduce the desired characteristics. A _ _ _ _
set of 1750 data points without noise contamination were cdjg: 4 Autocorrelation of the residuals obtained during the process of
. . identification of models from data of thecoordinate of Chua’s circuit. In this
sidered to demonstrate the benefits of a second search ovggrdcular case, the model contains 16 process terms and 20 linear noise terms.
pre-defined set of terms. In this work, this set of terms is alwaysriance of residuals is7 = 8.319 x 10-°.
a model estimated using the orthogonal estimator with structure
detectior? Typically, this model contains more terms than are TABLE 1l
necessary. LYAPUNOV EXPONENTS FORMODELS IDENTIFIED FROM NOISE-FREE DATA. A

The experiment in this example was conducted as fok SINGLE TIME-SERIES OF THEz-COORDINATE OF CHUA’S CIRCUIT WAS
ONSIDERED ALTHOUGH THERE IS NOCONTAMINATION, TEN LINEAR NOISE

lows. Only models withn, = 5, 10 linear noise terMs TerusWEREALLOWED IN THE FINAL MODEL. OLS-ERRWAS USED TO
UT(k—1)=¢&(k—i), i=1,2,...,10) and a total number SELECT THE STRUCTURE AND ESTIMATE THE PARAMETERS

of terms less than 26 were used to define the subregion Lyapunov Spectrum
Q (TS = 0.15,7’Lp < 25, Ny = 5, N = 1730, O¢ = np True Exponents Spurious Exponents Dy
0, noise terms= 10 linear). This represents only a fraction M ]k A M As
of the valid models identified from the data generated by TRUE] 023 | 00 -1.78 - - [213
integrating Chua’s equations. A small change in the number of Zé7 S 21f6f9
noise terms can lead to vglld modgls whlch_were not considered—=——teer To0m008 T 1898 T 2305 T 4534 | 20235
as such when another noise configuration is adopted. 131702655 1600603 1 -1.953 | 3547 | 3.728 | 2.133

The first step is then to estimate models with increasing com- ~ 13™ | 0.1854 | 0.00028 | -0.6054 | -0.6312 | -3.691 | 2.307

plexity using the OLS-ERR procedure. A set of 25 models with _12 - Inf

the number of terms varying from 1 to 25 were identified from - - - - - d

the nmsg-free data of thecoordmat(_a of Chua’s circuit. In [45, 5 1000235 | 006372 | 01583 | 6.8 T -133¢ [ 1349

p. 858] it is suggested to use 20 linear terms in order to pro- — 8 | 0.00212 | -0.3836 | -0.388 | -1.143 | -1.95 | 1.006

duce unbiased models. These authors stated that the residua_ 7 | 0.00349 | 0.00179 | -0.01731 | -1462 | -1.829 | 2.305

are white and zero-mean with variangg = 0.925 x 107°. In 6 - ‘ _ _ - Inf
5 | -0.1157 | -0.116 | -0.2364 | -1.054 | -1.054 0

the case of the noise-free data it is argued that the residuals ar-
not white but simply modeling errors. If schemes such as the
procedure discussed in [32] is used to integrate Chua’s eqyg;gels withn,, from 9 to 24 exhibit the location of fixed points
tions, these errors are the contribution of terms of degrees pf-: the true value. that i60, —1.5,1.5) which signifies that
nonlinearity higher than three and cannot, therefore, be consiflase models could, in principle, reproduce the desired chaotic

ered as white noise. Fig. 4 shows the autocorrelation of the resé%havior. Furthermore the minimum number of terms appears
uals obtained from the estimation of a model with 16 Procegs pes — 9 since all models with,. < 9 have fixed points
P — P

terms and 20 linear noise terms (special case). Clearly the I?Hiced far from the correct location

tocorrelation function shows some peaks lying outside of t € Consider now a second search over the set of terms which
confidence bands. Note that the bleaching effect [46] tendsct8mprises the model with,, = 25 identified using the
_—

obscure these peaks. LS-ERR procedure. The criterion adopted in this search

. . . . .0
The dynamical invariants of the models estimated USINSs the minimization of the error between the first Lyapunov

e ) s 3gonent f e orgnal system and that o the estmated
P P ’ d models. If the minimization were performed over all subsets

Table Il. The values of the Lyapunov dimension and spectrum erated from the 25-term long model, the parameters of

. n
for the estimated models demonstrates that only models wgci 1 models would be estimated. Moreover. for each one of
np, = 14 and16 can reproduce fairly well those of the original;, ' '

system. This result is a perfect agreement with those of [45].the estimated models, the first Lyapunov exponent was to be

The fixed points calculated directly from the equation of thce‘alculated which would certainly demand lots of computational

aforementioned models are displayed in Table Ill. Note that g\'lrlne' In this example, .rather tha.n evaluating all these models,
only a small fraction will be considered. The search starts from

_ _ _ . the estimated 25 term long model. All 25 models obtained by
3Note that in Example 1, 1801 data points were considered. The choice pf

1750 was done in order to compare the results presented in this present exal algti_ng one term at a time are evaluated and the m(_)del which
with the ones in [45]. exhibits the lowest error is kept for further search. This process
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TABLE I TABLE IV
FIXeED POINTS FORMODELS ESTIMATED FROM THE NOISE-FREE DATA OF THE LYAPUNOV EXPONENTS FORMODELS IDENTIFIED FROM NOISE-FREE DATA. A
z-COORDINATE OF CHUA’S CIRCUIT. OLS-ERRWAS USED TO SELECT THE SINGLE TIME-SERIES OF THEz-COORDINATE OF CHUA’S CIRCUIT WAS
STRUCTURE AND ESTIMATE THE PARAMETERS CONSIDERED ALTHOUGH THERE IS NOCONTAMINATION, TEN LINEAR NOISE

TERMSWERE ALLOWED IN THE FINAL MODEL. SUBOPTIMAL PROCEDURE WAS
USED TOSELECT THE STRUCTURE AND ESTIMATE THE PARAMETERS

ny Fixed Points
FP | FpP | FPs = St
apunov Spectrum

TRUE I 0 | L l 13 np True Expor}l'erljts : Spurious Exponents Dy
5o s D nl b [ B w [
2 0 1.'508 -1'.508 TRUE l 0.23 I 0.0 I -1.78 l - | - | 2.13
21 0 | 1508 | -1.508 220 - - - - - Inf
20 0 1513 1513 19 0.2338 | -0.01543 | -1.374 | -2.155 -3.709 2.159
19 0 1.522 1522 18 0.2509 | -0.00212 | -1.746 | -2.949 -3.625 2.142
18 0 -1.531 1.531 17 0.2215 | -0.0104 -1.272 | -1.913 -3.538 2.166
17 0 1.516 _1.516 16 0.277 | -0.03315 | -2.039 | -3.013 -3.592 2.12
16 0 1.51 -1.51 15 0.2757 | -0.02215 | -1.711 | -2.549 -3.565 2.148
15 0 1519 -1519 14 0.2838 | -0.04172 | -1.832 | -2.271 -2.733 2.132
14 0 1.525 11575 13 0.2839 | -0.00055 | -2.15 -3.62 -3.741 2.132
13 0 1.534 -1.534 12 0.2478 | -0.00005 -2.13 -3.703 -3.813 2.116
12 0 1.578 21578 11 0.2653 | -0.00039 | -2.005 | -3.752 -3.858 2.132
11 0 -1.562 1.562 10 0.2376 | -0.00140 | -1.871 | -3.776 -3.875 2.126
10 0 1.558 71.558 9 0.2243 | -0.00088 | -1.537 | -3.736 -3.884 2.145
9 0 1574 1574 8 0.2363 | -0.00049 | -1.759 | -3.698 -3.853 2.134
8 0 | 0-1.099 | 0+1.099% 7 0.249 | -0.00054 | -1.517 | -4.458 -4.6 2.164
7 0 0.6853 | -0.6853 6 0.0732 | -0.00104 | -1.109 | -4.579 -4.707 2.065
6 0 1.088 _1.088 5 0.0014 | -0.36150 | -0.3705 | -4.925 -5.036 1.004
5 0 - N

is repeated until the minimum number of terms chosgmiori
is reached.

The results of applying the above procedure are shown
in Table IV. Clearly it can be seen that the number of valid
(good) models has increased substantially compared to those N
of Table Il. A wide range of models with,, form 7 to 19 can = ol
reproduce the original dynamical invariants. This provides 1
further support to the ideas discussed in the introduction of this
paper. ol

Fig. 5 shows the double scroll attractor reconstructed from
the identified model in (23). Despite the small number of terms,

this model can reproduce fairly well the desired dynamical in- -4 s 5 5 .
variants. z(k)
Z(k) =+0.23363 x 10+17(k ) Fig. 5. Double scroll attractor reconstructed from the data generated by
—0.146 53 % 10+17(k 2) iterating (23).7p = 3 was used.
+0.19533 x 10702(k — 5)
— 045299 x 10~ t2(k — )a(k — 1)2(k — 2) a second search is well worth the required computational de-
' ’ mands.
= +0 _ . . .

+0.12576 % 10 07(k Da(k = 1)z(k — 4) Finally, to illustrate the results presented above in terms of
—0.11307 x 107%2(k — 1)2(k — 1)2(k - 5) information criteria the AIC criterion was calculated for the
—0.13936 x 10722(k — 5)z(k — 5)z(k — 5) models estimated using both procedures, that is, OLS-ERR and
F0.68043 x 10~22(k — 1)2(k — 2)2(k — 5) the second search procedures. Fig. 6 shows the AIC curves for

- such models. Note the plateau which ranges f 6 to

+ ¥ (k — 1O +E(R)- (23) n, = 13. These models have been shown to be avt?lg]t:o reproduce

The location of the fixed points for the models estimatefairly well the original dynamical invariants, however the resid-

using the second search procedure is displayed in Table Vuétls obtained during the process of estimation of such models
is interesting to note that the minimum number of terms rexhibit higher variance than those obtained using the OLS-ERR
quired for a model to reproduce the original location of the fixegrocedure. This shows, not surprisingly, that lower residual vari-
points is now 6. That is, the second search procedures seemetoe does not signify better models. O
find better models with less terms. These results clearly demonThe second search procedure was also extended for identifi-
strate that the sub regid@ consists of a much larger number ofcation of multivariable systems. An example of such a system
valid models than previously expected [30] and moreover thatthe nonlinear equations proposed by Rossler in [35]. When
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TABLE V

FIXED POINTS FORMODELS ESTIMATED FROM THE NOISE-FREE DATA OF THE
z-COORDINATE OF CHUA'S CIRCUIT. SUBOPTIMAL PROCEDURE WASUSED TO
SELECT THE STRUCTURE AND ESTIMATE THE PARAMETERS

a procedure can successfully identify not only a single valid
model but a family of models. Such family of models were
shown to preserve the desired dynamic characteristics of the
original system. It is believed that the results obtained in this
paper will help the user of identification techniques, specially
when complex nonlinear phenomena such as chaos is of
interest. An example has been provided to demonstrate the
usefulness of this approach.

As a by-product, a new but simple procedure to determine to
maximum lag (embedding dimension) has been devised. This
procedure has been used to find the maximum lag for the Chua’s

It has also been demonstrated that the so-called Information
criteria which are extensively used to determine the trade-off be-
tween complexity and fitness accuracy can be strongly affected

by the inclusion of noise terms. Alternative criteria using dy-
namical quantities such as the Lyapunov dimension and spec-
trum have been proposed for selecting valid models. The simu-
lated example shows the efficacy of such a choice.
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