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An Alternative Solution to the Model Structure
Selection Problem

Eduardo M. A. M. Mendes and Steve A. Billings

Abstract—An alternative solution to the model structure
selection problem is introduced by conducting a forward search
through the many possible candidate model terms initially and
then performing an exhaustive all subset model selection on the
resulting model. An example is included to demonstrate that this
approach leads to dynamically valid nonlinear models.

I. INTRODUCTION

I N THE FIELD of control engineering the task of system
identification usually consists of determining a discrete

linear or nonlinear mathematical model of a stochastic control
system from the measurements of input and output signals.
Although today’s literature on parameter estimation schemes
is vast, the final product of such schemes is often one single
model which hopefully reproduces the system characteristics.

In traditional regression analysis, the problem of detecting
an appropriate model based upon a subset of the original set of
candidates consists of [1]

1) the computational algorithm used to provide information
for the analysis;

2) the criterion used to analyze the candidates and select a
subset;

3) the estimation of the coefficients in the final model.

In [2] it is argued that it is unlikely that there is a single best
model but rather several equally good ones. This suggests that an
evaluation of a fairly large number of models might be desirable.

When only dynamically validated models are of interest, cri-
teria which incorporate such information during the process of
identification should be used. In the context of neural network
models, it has been shown that the minimization of the mean
squared errors is likely to be a necessary condition for the model
to reproduce the dynamical invariants of the original system, but
it is definitely not sufficient [3]. These authors used such a state-
ment to justify the utilization ofa posterioritests and to conse-
quently verify the model’s validity. In this paper similar tests
will be introduced as a tool for selecting not only one single
model but a family of models which can adequately reproduce
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the desired dynamical invariants of the original system. The pri-
mary objective is to show that the use of identification schemes
which return many good models is worth exploring.

Many procedures which perform exhaustive search or related
approaches have been investigated since the 1960s [e.g.,
[4]–[7]]. An excellent description of such methods and many
others is given in [8]. Typically, these procedures consider all
subsets of all sizes, and require that the number of data points
is at least as great as the number of regressors (or terms).
With these procedures it is possible to obtain the best model
of each size. Different criteria have been devised in order to
choose the optimal model and related good models. In [9] an
algorithm was proposed for searching for all subsets ofor
less variables out of using the usual -norm of deviations.
Whereas Narula and Wellington [10] used the-norm (i.e.,
minimization of the sum of absolute deviations to find the
best models of variables out of a -variable trial model),
several authors [1], [8], [11] warned users of such procedures
about the computational demands imposed by generating all
possible subsets. In [8] it is argued that an exhaustive search
for all best fitting subsets is not feasible for trail models with
more than 25 terms. Such a pitfall has been used to advocate
the use of nonoptimal procedures such asstepwise regression,
which often refers to an algorithm proposed by Efroymson
[12], and otherforward [13] and backwardalgorithms [See
[8], for details]. These procedures are not without problems. In
[14] it has been shown thatstepwise regressiondoes not always
succeed in selecting the best subset of a determined size from a
trial model when the chosen criterion is the minimization of the
explained variance. The reason for this is thatstepwise regres-
sion minimizes the increment to explained variance and not
explained variance itself. Boyceet al. [14] argued thatoptimal
regression(an exhaustive-like approach) and interdependence
algorithms should be applied in place ofstepwise regression
and principal components analysis insofar as subset selection
is concerned.

This paper uses both ideas, that is,forward and exhaus-
tive-like searches to select models which can reproduce
adequately the dynamical invariants of the system under inves-
tigation. Briefly, the procedure adopted here will be to conduct
a forward search throughout the many possible candidate terms
using the orthogonal estimator (OLS-ERR) [13] and then to use
the resultant model to perform a similar procedure toall subset
selectionprocedures. Section II includes some background
material. In Section III a justification for performing a second
search over the final OLS-ERR model is provided. Section IV
describes thesecond search procedure and reviews the role
of information criteria in selecting the trade-off between

1083–4427/01$10.00 © 2001 IEEE
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complexity and fitting accuracy. An example is provided to
demonstrate the benefits of the new approach. The main points
of the paper are summarized in Section V.

II. BACKGROUND MATERIAL

This section reviews the concepts used later in the paper.

A. NARMAX Approach

The nonlinear difference equation model, known as the Non-
Linear Auto Regressive Moving Average with eXogenous in-
puts (NARMAX) model [15] provides a unified representation
for a wide class of nonlinear systems. Leontaritis and Billings
[15] showed that several well-known models such as the Ham-
merstein, Wiener and bilinear models are special cases of the
NARMAX model [16]. This model can represented as follows:

(1)

where
, and output, input and noise, respec-

tively;
, and corresponding maximum lags;

accounts for possible noise, uncer-
tainties, unmodeled dynamics;
delay;
some nonlinear function, the form
of which is usually unknown.

Equation (1) is typically used in identification procedures since
is unknown in practice. Insofar as such procedures are con-

cerned, the inclusion of monomials in is mainly to avoid the
bias in the parameters.

Because can assume a variety of forms, the identification of
nonlinear systems becomes a much more difficult task than the
linear counter-part, where the major difficulty is to determine
the system order. The uniqueness of the representation was ad-
dressed in [17] where the NARMAX model was referred to as
the recursive representation of a system.

For many real sampled nonlinear systems, the exact
NARMAX models, described by the function in (1), are
very difficult to determine. Therefore, it is often necessary
to approximate by some function. Polynomial NARMAX
models have been shown to be a very good choice [18].
The theoretical justification for using polynomial NARMAX
models to represent nonlinear systems have been given in [19].
Being linear-in-the-parameters, the polynomial models can
readily be estimated using linear least squares methods as can
be seen in Section II-B.

B. Orthogonal Least-Squares Estimator With Structure
Detection (OLS-ERR)

In this section the orthogonal least-squares estimator with
structure detection proposed by [20] is reviewed. In order to pro-
vide a practical application of such an estimator, all explanations
will be based upon the estimation of polynomial NARMAX

models. To this end, consider the polynomial NARMAX model
based upon (1) in the following form:

(2)

where includes a constant and all the output and
input terms as well as all combinations up to degreeand time

. These terms will henceforth be referred to asprocess
terms. The vector are the parameters of such terms. The
matrix and the vector are defined likewise.

will be referred to asnoise terms.
Unfortunately (2) is not suitable for estimating the parameters

of a polynomial NARMAX model because the noise terms are
not known. However the noise sequence can be estimated
interactively as

(3)

where is the residual at time and , the prediction
of , can be written as

(4)

Finally, substituting (4) into (3) and rearranging the order
yields

(5)

where and

. Equation (5) clearly belongs to the linear regres-
sion model

(6)

where
data length;
column-vectors which representprocessand noise
terms;
number of distinct such column-vectors;
unknown parameters to be estimated.

is the summation of process terms and noise terms.
The extended least squares algorithm [21] consists of estimating
theprocess termsfirst and then using (3) to obtain the residual
sequence. Once the residuals are calculated, thenoise termsare
incorporated into the matrix and a new set of param-
eters is estimated. This process is repeated until the residual
sequence converges or a predetermined number of iterations is
achieved.

Briefly, the basic principle of the orthogonal estimator pro-
posed by Billingset al. [20] is to replace the original set of re-
gression vectors by orthogonal vectors. The parameters asso-
ciated with new vectors are such that the contribution of each
vector can be measured independently of the rest of the vec-
tors and these can then be related back to original model terms
and variables. This simple result makes possible the selection of
relevant terms in a polynomial model and unlike principal com-
ponents and other similar methods the final model is expressed
in terms of the original system variables.
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In the orthogonal estimator the parameter estimation is per-
formed for a linear-in-the-parameters model which is closely
related to (6) and which can be represented as

(7)

where the orthogonal vectors and the parameters are con-
structed from (6). The original parametersof the model in (6)
can be calculated from the .

As stated before, a great advantage of the orthogonal esti-
mator is the possibility of selecting the relevant vectors (terms)
as a by-product. To demonstrate this, consider again the orthog-
onal regression (7). In doing so, it is assumed that the orthog-
onal property for holds. Therefore, if (7) is
multiplied by itself and the time average is taken, the following
equation can be derived:

(8)

The output variance consists of two terms. The first
term is the part of the output variance ex-
plained by the regressors whereas the second term ac-
counts for the unexplained variance. Owing to the orthogonal
estimator, the increment toward the overall output variance of
each regressor (term or vector) can be computed independently
as . Expressing this quantity as a fraction of the overall
output variance yields theerror reduction error(ERR)

(9)

ERR can be used as a simple and effective means of selecting
the most relevant regressors in a forward-regression manner.
Therefore, ERR imposes a hierarchy of terms according to their
contribution toward the overall output variance.

C. Term Clustering

The deterministic part of a NARMAX model, that is, a NARX
model, can be expanded as the summation of terms with de-
grees of nonlinearity in the range . Each th-order
term can contain ath-order factor in and a

th-order factor in and is multiplied by a coefficient
as follows [22]:

(10)

where and the upper limit is
if the summation refers to factors in or for fac-
tors in . In discrete models estimated from data gen-
erated from nonlinear continuous systems, the term coefficients
depend on the sampling time and should therefore be strictly

represented as . However, for the sake
of brevity, the argument is dropped.

If the window of length , defined by the model,
is sufficiently short such that

(11)

then (10) can be rewritten as

(12)

Definition II.1 [23]: The constants
in (12) are the coefficients of theterm clusters

, which contain terms of the form
for and . Such coefficients are
calledcluster coefficientsand are represented as .

Clearly, the set of candidate terms for a NARX model is the
union of all possible clusters up to degree.

D. Fixed Points

The fixed points of a map are defined as those points for
which and usually constitute the starting
point in the analysis of nonlinear systems [24].

Usually the fixed points are computed for the autonomous
version of the system under investigation. If the original poly-
nomial is nonautonomous, then set ,
so that the only remaining terms are those involving the
output. The resultant equation (or model) can be considered
as an autonomous polynomial and can therefore be used for
calculating the fixed points. All the possible clusters of an
autonomous polynomial with degree of nonlinearityare

.
Based upon this definition and using the cluster coefficients,

the fixed points of an autonomous polynomial with degree of
nonlinearity can be calculated by finding the roots of the fol-
lowing “clustered polynomial”

(13)

where is a constant. From (13) it can be seen that an
autonomous polynomial with degree of nonlinearitywill have

fixed points if . It should be pointed out that the fixed
points are important in the model structure problem [25].

E. Correlation Tests

In the theory of linear systems, the usual statistical approach
to validating identified linear models consists of computing the
autocorrelation function of the residuals and the cross-correla-
tion function between the residuals and the input [26].

It has been shown that acceptable predictions over different
data sets are produced only if the model is unbiased. If the model
structure and the estimated parameters are correct then the pre-
diction error sequence should be unpredictable from all
linear and nonlinear combinations of past inputs and outputs and
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this will hold if and only if the following conditions are satisfied
[27]:

(14)

where is theKronecker delta. The overbar indicates mean
value and denotes the mathematical expectation. When no
input is available, that is, the data are a time series, the following
correlations test functions should be used [28]:

(15)

Recently two new correlation functions were introduced in
[29] as a solution to increase the discriminatory power of the
existent correlation tests (14). These two correlation functions
defined in terms of delayed outputs are

(16)

where the constant is defined in [29].
The underlying rationale of the correlation tests (14)–(16) is

that for a model to be statistically valid, there should be no pre-
dictable terms in the residuals. However, in practice only a finite
data length will be available. This implies that confidence bands
should be used to reveal if the correlation between variables is
significant or not. For large the 95% confidence bands are
approximately and any significant correlation will
be indicated by one or more points of the function lying outside
these bands.

III. JUSTIFICATION FORPERFORMING ASECONDTERM SEARCH

There is a considerable literature on the subject of selection
of the “best” subset out of a trial model. As pointed out in the
introduction, the majority of procedures used in practice do not
take into consideration dynamical characteristics of the system.
Instead they rely on statistical measures. In this section an at-
tempt to justify a second term search over a predetermined trial
model is made. To this end, it is necessary to introduce some
important concepts.

The structure of identified models can be characterized in
space by a point of coordinates

where is the sampling time, is the number of terms al-
lowed in the final model and is the max-
imum value between the maximum values of output and input

lag, respectively. is the usual embedding dimension exten-
sively used in the literature. The space defined as above is de-
notedmodel structure space(MSS) [30]. In this reference a sub-
region of the MSS is defined where the best estimated models
are located in accordance with the free parameters. It has been
demonstrated that both , the number of data points, and the
noise terms are extremely important and can determine whether
an estimated model reproduces the desired dynamical character-
istics or not. For instance, it can be shown that a model with 18
process terms and 20 linear noise terms reproduces the double
scroll attractor of Chua’s circuit [31]. But if no noise terms were
included in the final model, this very same model (structure) ex-
hibits a completely different motion. In the light of these simple
but striking results, the subregion should always be defined
in terms not only of but also of , the
noise variance and noise terms.

As for the influence of the sampling time on the identification
of valid models, the discussion in [32] provides clear evidence
that the cautious use of higher degree of nonlinearity can in-
crease drastically the number of good models.1 Moreover, such
models can have greater than the values specified in [30].
Therefore, it is conjectured that the number of valid models
in noise termsis much greater than previ-
ously considered. This constitutes the basis of the argument that
a second search over a predetermined identified model is worth
considering. These results appear to contradict a recent numer-
ical experiment conducted in [33]. In this paper models were
estimated from data generated by the Lorenz [34] and Rössler
[35] equations. They reported that 99% of the estimated models
were unstable and that only about 0.04% of the model exhibit
some chaotic motions but not which were necessarily valid. The
reason for these low figures appears to be the estimation of
models with 60 coefficients and no noise terms.

The next example will be used to introduce the concept of
model families. Also it will be shown that if the correct number
of noise terms is chosen rather large models can be identified.

Example 1: Consider the set of normalized equations (x, y,
z) of Chua’s circuit [31]. The equations of motion of such a
circuit were used to generate data for identification purposes.
The resultant data of the-coordinate sampled at
were then corrupted by white noise so that the signal-noise ratio
was approximately 42 dB. The number of data points considered
in this analysis was .

To demonstrate that even for a large number of terms a rea-
sonably good model can be estimated, certain conditions must
be satisfied: 1) where is the upper bound
for the number of degrees of freedom (DOF) required to de-
scribe the system dynamics and 2) nospuriousclusters should
be in the final model. To avoid the presence of such clusters, it
has been shown that the fixed points and consequently the re-
lated clusters can be estimated directly from the data using the
procedure of Glover and Mees [36] as described in [37]. Once
the true clusters are determined, the next step is to then roughly
estimate the value of . This can be done visually for

1This seems to be true even for rather coarse values ofT . However, it is
worth mentioning that ifT is increased beyond a certain value defined by the
sampling theorem (two times the Nyquist frequency), the information about the
system dynamics will be lost and cannot be retrieved by estimation procedures.
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(a) (b)

(c) (d)

(e)

Fig. 1. Estimation ofn using data from thez-coordinate of Chua’s circuit corrupted by white noise, showing plots of the time series generated by different
terms of the cluster
 . The vertical axis is the magnitude of the series whereas the horizontal axis is the number of data points. Note that with only 200 points
the maximum lagn can be estimated.

data originated from sampling a continuous-time system. Be-
fore showing this procedure, it is worth mentioning that in [30]
it is suggested that the lower bound provided by Takens’ the-
orem [38] is often larger than necessary [39] and could there-
fore be used as an estimate of . The minimum number of
degrees of freedom can be obtained, for instance, from
estimates of the fractal dimension . is always larger
than [40]. Abarbanelet al. have recently devised methods
for detecting the minimum embedding dimension [41]. Such a
dimension can also be estimated as a by-product of Savit and
Green’s procedure [42].

The procedure used to obtain a rough estimate of is
based upon the fact that for
appropriate values of the sampling time. Since the identi-
fied models are usually nonlinear, it is conjectured that a sim-
ilar relation involving nonlinear terms is also valid. For values

of greater than of this relation is no longer observed.
These ideas are better illustrated in Fig. 1(a)–(e). Clearly, it can
be seen that terms such as no longer de-
scribe a similar trajectory as that of terms like or

. This pattern has been observed not only for
Chua’s circuit but also for other systems such as Duffing–Ueda
[43], Duffing–Holmes [44], etc. From these figures

is a rough estimate of the maximum number of degree of
freedom valid for identification purposes because for lags higher
than six the cubic terms no longer have similar trajectories to
those of terms of lags lower than six. Values beyond this upper
bound appear not to be recommendable for identification of dy-
namically valid models. In [45], it is stated that models with

do not reproduce the chaotic effects as accurately as
models with . It is believed that, although it might
be possible to identify models with , they are bound
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(a) (b)

Fig. 2. (a) Double scroll attractor obtained from data generated by the fulltrial model with one noise term. (b) Spiral-like attractor obtained from data generated
by the full trial model with five noise terms.Tp = 3 was used.

to produce spurious dynamics because of the presence of extra
Lyapunov exponents, as discussed in [37], which causes over-
fitting due to the introduction of higher lag terms. These terms
also tend to explain the noise in the data.

Taking into consideration all the previous discussion, atrial
model with and was chosen. Only linear and cubic
terms were allowed due to the attractor’s symmetry detected
by Glover and Mees’ procedure. The total number of (process)
terms of the resultanttrial model is 40 (plus noise terms), that
is, all terms were then forced in the regression.

It is important to note that the noise terms play an important
role in the determination of the validity of an identified model.
For instance, if only a single noise term was included in thetrial
model reproduces the dynamical invariants fairly well despite
the excessive number of terms. Fig. 2(a) shows the double scroll
attractor reproduced from the identifiedtrial model. Note how-
ever that the noise term is not enough to “bleach” the
data and therefore the residuals are correlated [see especially
Fig. 3(a)]. As more noise terms are included in the model, it can
be observed that 1) all correlation functions lie inside the re-
spective confidence bands and 2) several different chaotic mo-
tions are registered indicating extreme sensitivity to parameter
estimation.2 Fig. 2(b) shows a chaotic motion which resembles
the spiral attractor. Table I displays the Lyapunov spectrum for
the two models. Note that these models aredimension over-
parametrizedwhich can cause a large variety of dynamical be-
haviors not exhibited by the original system.

The fixed points of thetrial model are
which compares quite well with the fixed points calculated from
the equations of Chua’s circuit . When compared
to the previous model for the-coordinate of Chua’s circuit, it
can be noticed that the location of the fixed points remain al-
most constant regardless of the number of terms in the model.
Throughout it is assumed that only the effective clusters are

2Theiler and Eubank [46] have shown that the bleaching is more effective
when the order of the moving average part(n ) is large.

present in the trial model. It seems that the orthogonal estimator
is trying to accommodate the model coefficients in order to pre-
serve the location of the fixed points. This becomes more diffi-
cult when a large number of terms is involved in the calculation
due to ill-conditioning of the numerical solution. The primary
problem is not only to obtain a similar location of the fixed
points but also stable models. This could be rather difficult to
achieve since it has been shown that small variations in parame-
ters lead to completely different dynamical behaviors. The same
conclusion has been stated in [47] for high dimensional systems.
Therefore, variations of the combination of linear and cubic
terms could lead to the identification of valid models which were
not selected by the OLS-ERR procedure. This statement justi-
fies a second search over a model previously identified using
such a procedure. Apart from the computational demands im-
posed by an exhaustive search, it will be shown that a sub-op-
timal procedure can result in better models in cases where the
OLS-ERR procedure fails to detect a few good models.

The set of models which exhibits similar characteristics will
be denoted as themodel family. In the case of models identified
from the -coordinate of Chua’s equations themodel familyis
all models with and linear and cubic terms.
This constitutes amodel familysince the fixed points calculated
from the model equation for each member are similar and more-
over placed near the original fixed points . Several
members may exhibit very similar dynamical characteristics and
could, therefore, be considered as “optimal” models. This will
be illustrated shortly.

IV. SECOND SEARCH PROCEDURE

One method of selecting subsets (or terms) in regression
problems isstepwise regression[12] or closely related proce-
dures, called forward selection and backward elimination. The
deficiencies of these one-variable-at-time methods have been
discussed in [1] and [11]. Hocking [11] points out that “the
primary problems are that 1) the procedure implies an order of
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Correlation tests of the residuals�(k) originated from the identification of the fulltrial model. (a)� (�). (b)� (�). (c)� (�).
(d) � (�). (e)� (�). (f) � (�).

TABLE I
COMPARISONBETWEEN THEORIGINAL LYAPUNOV SPECTRUM OFCHUA’S

CIRCUIT AND THAT OF THE FULL TRIAL MODEL

importance to the variables, an order that may be misleading
or confusing, and 2) in the case of early termination, the
procedure fails to detect important variables.” Although these
problems occurred in such procedures an alternative method
using the orthogonal estimator with structure selection [13],

[48]–[50] has been shown to be very efficient in most cases. A
similar procedure can be found in [51]. In this case the authors
incorporate statistical tests in order to avoid the inclusion of
unwanted terms.

An obvious alternative to circumvent the aforementioned
problems is to evaluate all possible subsets, that is, to consider
all choices of equations involving variables
from the original set of variables. The so-called all subset
selection procedures are methods of selecting variables that
minimize a determined criterion such as the minimum residual
sum of squares using some ingenious numerical techniques.
These methods have been discussed by several authors and
amount to selecting the “best” model from a particular set of
variables. For an old but useful review of such methods see [1]
and [11].

All subset selection procedures usually demand lots of com-
putation time. Hocking and Leslie [52] developed a procedure
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for determining the subset of each size with minimum residual
sum of squares without evaluating all possible regressions. Sev-
eral other procedures have been published using the same kernel
idea (see for example [6] and [14]). When the number of vari-
ables to be selected is very large, the all subset procedures be-
come nonviable. This is often the case when trying to fit a non-
linear model to data.

In this section a method denoted henceforth as thesecond
search procedurewhich incorporates the advantage of forward
and all subset methods is proposed. Three examples are pro-
vided to illustrate the benefits of applying such a procedure.
Numerous interesting issues concerning identification are also
discussed and solutions are reported. But first, a brief review of
some available information criteria is made.

A. Information Criteria

One of the issues when different models structures have
been identified is how to compare them and decide which one
(or ones) is the best. In statistical terms, the most natural and
straightforward method is to evaluate prediction error variances
of the different models over new data, that is, data not used for
structure selection and parameter estimation. This procedure is
called cross-validation [53]. In this method, if a model predicts
better over the new data set then it should be considered as the
best model.

Ljung and Glad [54] argued that cross-validation always
requires a fresh amount of data for model comparison, and
therefore not all available information is used for identification.
When the model comparison has to be made over the same data
used for estimation, a simple prediction error criterion cannot
be used. The reason for this is that a larger model always gives
a lower variance of prediction errors. Therefore, a trade-off
between the number of terms in a model and its capacity to
reduce the variance of the prediction errors should be sought.
In the field of statistics, this trade-off is achieved by different
methods which are, in general, based upon information theoret-
ical principles [54]. These methods have similar characteristics,
that is, they consist of a determined function which increases
with the number of terms and decreases with the number
of data points . Minimizing this function with respect to

penalizes models which contain an excessive number of
parameters or models with large variance of the prediction
errors.

The most well-known methods available in the literature are

1) Akaike’s information criterion(AIC) [55]

AIC (17)

2) Final prediction error(FPE) [55]

FPE (18)

3) Khundrin’slaw of iterated logarithm criterion(LILC)
[56]

LILC (19)

4) Bayesian information criterion(BIC) or Schwarz cri-
terion [57]

BIC (20)

5) Rissanen’sminimal description length(MDL) [58]

MDL (21)

In the criteria described above is the variance of
the residuals associated to the-term model. Some of the
criteria listed above and others available in the literature are
just modifications of the AIC criterion [e.g., [57], [59], [60]].
In [61] asymptotic comparisons of some of these criteria
has been made. Stone has shown that there is an asymptotic
equivalence between cross-validation and AIC. Other criteria
such as Mallow’s [62], PRESS [63] andmodel entropy
[64] can also be used as a tool for selecting a model which is
a compromise between goodness of fit and complexity. The
trade-off model structure is indicated by the value of for
which the chosen criterion reached a minimum value. For a
review of some of these criteria refer to [65].

Note that the choice of stopping rule depends upon 1) the ob-
jectives and 2) the estimation method. In the case of estimation
of nonlinear polynomial models, the estimation method used is
the orthogonal estimator with structure detection. This estimator
imposes an order by which the terms are selected. When calcu-
lating an information criterion, the user should be aware that
the minimum value depends upon the chosen structure. Varia-
tions in this structure will lead to a different choice of number
of terms.

The model selection problem using information criteria is still
an active field of research. For instance, a new model selection
criterion based on the Fisher information matrix was recently
proposed in [66]

FIC (22)

where and are the variance of the residuals obtained
from the process of identification of a -term model and the
full model, respectively.

The quantity can be interpreted as the amount
of information in the conditional Fisher matrix defined as

. The main property of the Fisher Informa-
tion Criteria (FIC) is that the conventional penalty term is re-
placed by a term that is proportional to the logarithm of the sta-
tistical information contained in a -term model.

Despite the good characteristics, the FIC criterion demands
heavy computations, when nonlinear models are concerned. For
such models, the number of terms can well exceed thousands
and therefore the estimation of might lead to spurious results
mainly due to ill-conditioned problems. Such problems also oc-
curred when criteria such as Mallow’s [62] are used. It is
conjectured that the usefulness of criteria which explicitly use
the variance of the residuals of the full model is rather limited
in nonlinear identification problems.

In the context of nonlinear polynomial models information
criteria have been suggested by Kortmann and Unbehauen [67]
as a means of determining a clear stopping rule for the number
of terms. Whereas in [68] the Schwarz criterion is used as a
stopping rule for radial basis function models, the information
criteria can also be seen as the quantity to be minimized in the
all subset selection methods.
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In Example 1, the second search procedure is performed in
order to minimize the difference between the first Lyapunov
exponent estimated from the original system and the one cal-
culated from the model’s equation estimated directly from the
data. The above criterion was adopted to access the validity of
the models in terms of dynamical characteristics which cannot
be done using the usual information criteria. It will be shown
that several models can be identified using such a procedure.

Example 1: Consider again Chua’s circuit equations used in
Example 1 presented in Section III to demonstrate that when
the model structure is correct even models with a rather large
number of terms can reproduce the desired characteristics. A
set of 1750 data points without noise contamination were con-
sidered to demonstrate the benefits of a second search over a
pre-defined set of terms. In this work, this set of terms is always
a model estimated using the orthogonal estimator with structure
detection.3 Typically, this model contains more terms than are
necessary.

The experiment in this example was conducted as fol-
lows. Only models with , 10 linear noise terms

and a total number
of terms less than 26 were used to define the subregion

noise terms linear . This represents only a fraction
of the valid models identified from the data generated by
integrating Chua’s equations. A small change in the number of
noise terms can lead to valid models which were not considered
as such when another noise configuration is adopted.

The first step is then to estimate models with increasing com-
plexity using the OLS-ERR procedure. A set of 25 models with
the number of terms varying from 1 to 25 were identified from
the noise-free data of the-coordinate of Chua’s circuit. In [45,
p. 858] it is suggested to use 20 linear terms in order to pro-
duce unbiased models. These authors stated that the residuals
are white and zero-mean with variance . In
the case of the noise-free data it is argued that the residuals are
not white but simply modeling errors. If schemes such as the
procedure discussed in [32] is used to integrate Chua’s equa-
tions, these errors are the contribution of terms of degrees of
nonlinearity higher than three and cannot, therefore, be consid-
ered as white noise. Fig. 4 shows the autocorrelation of the resid-
uals obtained from the estimation of a model with 16 process
terms and 20 linear noise terms (special case). Clearly the au-
tocorrelation function shows some peaks lying outside of the
confidence bands. Note that the bleaching effect [46] tends to
obscure these peaks.

The dynamical invariants of the models estimated using
OLS-ERR procedure were assessed by calculating the Lya-
punov dimension and spectrum. These quantities are shown in
Table II. The values of the Lyapunov dimension and spectrum
for the estimated models demonstrates that only models with

and can reproduce fairly well those of the original
system. This result is a perfect agreement with those of [45].

The fixed points calculated directly from the equation of the
aforementioned models are displayed in Table III. Note that all

3Note that in Example 1, 1801 data points were considered. The choice of
1750 was done in order to compare the results presented in this present example
with the ones in [45].

Fig. 4. Autocorrelation of the residuals obtained during the process of
identification of models from data of thez-coordinate of Chua’s circuit. In this
particular case, the model contains 16 process terms and 20 linear noise terms.
Variance of residuals is� = 8:319� 10 .

TABLE II
LYAPUNOV EXPONENTS FORMODELS IDENTIFIED FROM NOISE-FREEDATA . A

SINGLE TIME-SERIES OF THEz-COORDINATE OF CHUA’S CIRCUIT WAS

CONSIDERED. ALTHOUGH THERE IS NOCONTAMINATION , TEN LINEAR NOISE

TERMS WERE ALLOWED IN THE FINAL MODEL. OLS-ERRWAS USED TO

SELECT THE STRUCTURE AND ESTIMATE THE PARAMETERS

models with from 9 to 24 exhibit the location of fixed points
near the true value, that is, which signifies that
these models could, in principle, reproduce the desired chaotic
behavior. Furthermore the minimum number of terms appears
to be , since all models with have fixed points
placed far from the correct location.

Consider now a second search over the set of terms which
comprises the model with identified using the
OLS-ERR procedure. The criterion adopted in this search
was the minimization of the error between the first Lyapunov
exponent of the original system and that of the estimated
models. If the minimization were performed over all subsets
generated from the 25-term long model, the parameters of

models would be estimated. Moreover, for each one of
the estimated models, the first Lyapunov exponent was to be
calculated which would certainly demand lots of computational
time. In this example, rather than evaluating all these models,
only a small fraction will be considered. The search starts from
the estimated 25 term long model. All 25 models obtained by
deleting one term at a time are evaluated and the model which
exhibits the lowest error is kept for further search. This process
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TABLE III
FIXED POINTS FORMODELSESTIMATED FROM THE NOISE-FREEDATA OF THE

z-COORDINATE OFCHUA’S CIRCUIT. OLS-ERRWAS USED TOSELECT THE

STRUCTURE AND ESTIMATE THE PARAMETERS

is repeated until the minimum number of terms chosena priori
is reached.

The results of applying the above procedure are shown
in Table IV. Clearly it can be seen that the number of valid
(good) models has increased substantially compared to those
of Table II. A wide range of models with form 7 to 19 can
reproduce the original dynamical invariants. This provides
further support to the ideas discussed in the introduction of this
paper.

Fig. 5 shows the double scroll attractor reconstructed from
the identified model in (23). Despite the small number of terms,
this model can reproduce fairly well the desired dynamical in-
variants.

(23)

The location of the fixed points for the models estimated
using the second search procedure is displayed in Table V. It
is interesting to note that the minimum number of terms re-
quired for a model to reproduce the original location of the fixed
points is now 6. That is, the second search procedures seems to
find better models with less terms. These results clearly demon-
strate that the sub region consists of a much larger number of
valid models than previously expected [30] and moreover that

TABLE IV
LYAPUNOV EXPONENTS FORMODELS IDENTIFIED FROM NOISE-FREE DATA . A

SINGLE TIME-SERIES OF THEz-COORDINATE OF CHUA’S CIRCUIT WAS

CONSIDERED. ALTHOUGH THERE IS NOCONTAMINATION , TEN LINEAR NOISE

TERMSWEREALLOWED IN THE FINAL MODEL. SUBOPTIMAL PROCEDURE WAS

USED TOSELECT THESTRUCTURE AND ESTIMATE THE PARAMETERS

Fig. 5. Double scroll attractor reconstructed from the data generated by
iterating (23).Tp = 3 was used.

a second search is well worth the required computational de-
mands.

Finally, to illustrate the results presented above in terms of
information criteria the AIC criterion was calculated for the
models estimated using both procedures, that is, OLS-ERR and
the second search procedures. Fig. 6 shows the AIC curves for
such models. Note the plateau which ranges from to

. These models have been shown to be able to reproduce
fairly well the original dynamical invariants, however the resid-
uals obtained during the process of estimation of such models
exhibit higher variance than those obtained using the OLS-ERR
procedure. This shows, not surprisingly, that lower residual vari-
ance does not signify better models.

The second search procedure was also extended for identifi-
cation of multivariable systems. An example of such a system
is the nonlinear equations proposed by Rossler in [35]. When
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TABLE V
FIXED POINTS FORMODELSESTIMATED FROM THE NOISE-FREEDATA OF THE

z-COORDINATE OFCHUA’S CIRCUIT. SUBOPTIMAL PROCEDURE WASUSED TO

SELECT THE STRUCTURE ANDESTIMATE THE PARAMETERS

Fig. 6. AIC criterion for estimated models with increasing number of terms.
The upper curve shows the values of AIC for estimated models using the
second search procedure. Whereas the lower curve shows the values of AIC for
estimated models using OLS-ERR procedure.

using the OLS-ERR procedure, a few models are found to be
able reproduce the original dynamic invariants of the systema.
Despite the initial success of the OLS-ERR procedure, the valid
models proved to be unstable when they were iterated for a long
time. The use of a second term search lead to better results, that
is, stable and dynamically valid models for Rossler equations.
Details of the results are available from the authors.

V. CONCLUSION

In this work, an alternative method for solving the model
structure selection problem has been proposed and analyzed.

A procedure which combines the advantages of the OLS-ERR
and exhaustive-like algorithms has been investigated. Such

a procedure can successfully identify not only a single valid
model but a family of models. Such family of models were
shown to preserve the desired dynamic characteristics of the
original system. It is believed that the results obtained in this
paper will help the user of identification techniques, specially
when complex nonlinear phenomena such as chaos is of
interest. An example has been provided to demonstrate the
usefulness of this approach.

As a by-product, a new but simple procedure to determine to
maximum lag (embedding dimension) has been devised. This
procedure has been used to find the maximum lag for the Chua’s
circuit.

It has also been demonstrated that the so-called Information
criteria which are extensively used to determine the trade-off be-
tween complexity and fitness accuracy can be strongly affected
by the inclusion of noise terms. Alternative criteria using dy-
namical quantities such as the Lyapunov dimension and spec-
trum have been proposed for selecting valid models. The simu-
lated example shows the efficacy of such a choice.
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