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that their differences weighs more than their similarities. O f course, 
it depends on the reference class of properties to be compared . . . . 
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Learning Fuzzy Inference Systems Using 
an Adaptive Membership Function Scheme 

A. Lotfi and A. C. Tsoi 

Abstract—An adaptive membership function scheme for general ad­
ditive fuzzy systems is proposed in this paper. The proposed scheme 
can adapt a proper membership function for any nonlinear input-
output mapping, based upon a minimum number of rules and an initial 
approximate membership function. This parameter adjustment procedure 
is performed by computing the error between the actual and the desired 
decision surface. Using the proposed adaptive scheme for fuzzy system, 
the number of rules can be minimized. Nonlinear function approximation 
and truck backer-upper control system are employed to demonstrate the 
viability of the proposed method. 

I. INTRODUCTION 

Fuzzy inference systems have found many applications in recent 
years. The simplicity of the design procedure of such systems is 
a dominant attraction in various industrial as well as household 
products. In most cases, the design of a fuzzy inference system is 
related to the ways in which an expert or a skilled human operator 
would operate in that special domain. Among the various successful 
applications of fuzzy inference systems we can mention are the 
application of fuzzy theory in the subway system in the city of Sendai, 
Japan [13]; the detection of load and control of the washing cycle of 
a washing machine, the automatic focusing of the video camera and 
nuclear reactor control [1]. 

Despite the brisk and stimulating promotion of fuzzy theory [14] 
from academic research to production line, there is still a lack of 
a fuzzy system theory for the study of fuzzy inference systems. 
However, some attempts have recently been made [4]. Techniques 
which have been successfully applied in particular domain may not be 
applied to problems arising from another domain. Therefore a general 
design method is required. To move one step in this direction, an 
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Adaptive Membership Function Scheme (AMFS) for Fuzzy Inference 
Systems (FIS) is proposed in this paper. 

The first attempt to provide a general theory for the "realization"1 of 
a fuzzy inference system was proposed by Jang [2] who introduced 
Generalized Neural Networks based fuzzy inference systems. The 
network was able to adjust its parameters such that the error between 
the desired and the actual decision surface was gradually reduced. The 
fuzzy inference method used was based on a specific type of fuzzy 
inference system introduced earlier by Takagi and Sugeno [11]. The 
consequent premise of each rule is assumed to be a crisp value rather 
than a fuzzy value. Our proposed scheme is to employ the same type 
of network except that we wi l l use a general additive fuzzy system 
which has already proposed by Pacini and Kosko [10]. 

Using the proposed adaptive scheme for fuzzy systems, fewer rules 
are required to correspond the expert exemplar or expert knowledge 
to the fuzzy system. 

The structure of this paper is as follows: first the fuzzy inference 
systems will be introduced, followed by the description of an adaptive 
membership function scheme and rule minimization. Application to 
nonlinear function approximation and the control system for backing-
up trucks are employed to illustrate the proposed scheme. Pertinent 
conclusions will be drawn from the implications of the proposed 
method. 

II. F U Z Z Y I N F E R E N C E S Y S T E M S 

A crucial step in the design of FIS2 is determination of appropriate 
knowledge-base parameters. A knowledge base consists of three 
major sub-systems which can be varied in the design of a FIS [5]. 
These three major sub-systems are: 

• A data-base containing membership function of linguistic values 
for both the antecedent and the consequent 

• The fuzzy reasoning mechanism 
• The number of rules used in the fuzzy rule-base 

A general inference mechanism, which is often used in the repre­
sentation of human reasoning, can be represented as follows: 

P 1 : If X i s . 4 ' then Y i s £ \ else 

P' : If X i s . 4 ' then Y i s £ ' . else 

P" : 

Q: 

If X i s . 4 " 
X is A' 

then Y is B", else 

A YisB' 

The antecedent vector A ' = [m, x2. • • • , .vm\ is an m vector 
with elements which are linguistic variables in the universe of U — 
[Ui, U2, • • •. Cm]. The consequent vector Y = [yt. 1/2. • • • . 2/*] 
is a A- vector with elements which are linguistic variables 
in the universe of V = [V\. V2. • • •, 14]. Vectors A' = 
[A\,A2,---,A

,
3,---.A

l„l] andB' = [B\. B2. • • •. B), • • •, B<k] 
are vectors of linguistic values (linguistic labels) referring to the fuzzy 
variables X and Y, respectively. Vector A' is the crisp observation 
vector and B' is the crisp conclusion vector. Fuzzy sets correspond 
to each fuzzy variable can be shown as follows: 

j = 1, 2, • • •. m i = 1, 2, 1» w (1) 
1 The verb "realization" is used here to denote the explicit construction of 

an implementation of a fuzzy inference system. 
2In control engineering literature, this may be referred to as a Fuzzy Logic 

Controller (FLC). 

B)={»Bi(v)/v) 

j = 1. 2. • 

veVj 

- . A - « = 1.2, (2) 

To use the A M F S , it is desirable that the membership functions 
employed have a continues first derivative. We have investigated 
[7] different piecewise continuous membership functions (triangular, 
trapezoidal, Cauchy and Gaussian) with the Gaussian M F showing 
the best performance. Therefore, the membership function /( for 
antecedent and consequent premises in the fuzzy values A) and B) 
are defined as follows: 

. 2l fa' 
U — IJij 

(3) 

j = 1. • • •, k i = 1. • • •, 11 (4) 

where a,j. pij. f3ij, o,j, pij, ffij are unknown constant parameters. 
As will be shown subsequently, these parameters can be adjusted on­
line using a gradient decent algorithm. We further assume that the 
universe of antecedent and consequent i.e., U and V are limited to 
a specific domain interval, i.e., 

Uj=\Uj V+], j = l, •••.m: 
Vj=[v3r v;\. j = i.---,k. (5) 

Vector X contains in linguistic variables which are connected 
together by a "liaison" operator A N D . The consequent vector Y 
comprises of A- linguistic variables. It is reasonable to assume that 
there is no relationship between this linguistic variable yj and the 
other linguistic variables yt, I ^ j . Therefore, such an inference 
might be decomposed into A- inferences with antecedent vector X 
and consequent linguistic variable jy , j = 1. 2. • •• . A- separately. 
Without loss o f generality we can assume that the consequent premise 
is just one variable, i.e., A- = 1, (&i} = <Ti, pij = pi. /3i} = $i). 

For making an inference " Y is £?'" from a set of rules P and 
observation Q, different methods of reasoning under different fuzzy 
implication concepts have been studied e.g., [8], Since the output of 
the decision engine should be a crisp value, numerous methods for 
defuzzification also have been proposed [5]. Among these methods, 
the centroid method has been shown to be more effective. Pacini 
and Kosko [10] have proven that if correlation product inference 
determines the output fuzzy values, the global centroid F can be 
computed from local consequent premise centroids. i.e., 

^widli 

F = 1=1 

£«*/• 
(6) 

where wi, d , and J ; are rule firing weights, local centroid, and 
area of consequent premise, respectively. Based on our definition for 
membership functions we have: 

d(v) = 1 
/.(«) r v cxp < — 

V — <Ti 
1 & ' 

dv 

-- jv exp t -
Pi 

•}Pi 

1 dv. 

(7) 

(8) 

(9) 
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III. A D A P T I V E M E M B E R S H I P F U N C T I O N S C H E M E 

There are different approaches for extracting fuzzy if-then rules 
automatically, based on a fuzzy model of the system [6] or a 
numerical-fuzzy approach [12]. Still, there is an unknown question 
regarding the assignment of a membership function to each fuzzy 
value. It is obvious that altering: a) the membership function of 
linguistic values, b) fuzzy reasoning mechanisms, or c) the number 
of rules, will affect the overall input-output mapping. Altering the 
membership function has a dominant effect on the two other factors 
[7]. It can be said that for a fixed number of rules and different fuzzy 
reasoning methods, changing the membership function can achieve 
the same input-output mapping. Alternatively, for a fixed fuzzy 
reasoning method we can achieve the same input-output mapping 
with different number of rules and different membership functions. 

Consider the generalized neural network based fuzzy inference 
system introduced by Jang [2]. This contains a multilayer feedforward 
network in which each node performs a particular function (node 
function). There are two types of nodes: 

1) the nodes which have fixed parameters (they are called circle 
node functions by Jang) 

2) the nodes which depend on a set of parameters specific to the 
node (Jang called this type o f nodes a square node function) 

The performance of the node and consequently the performance of 
the system changes with altering these parameters. 

Our proposed algorithm uses a neural network which contains four 
layers, with 2 circle and 2 square layers. The first and third layers 
(containing only square nodes) represent the membership functions 
given in fuzzy values A) and B' (in this case j = 1), respectively. 
The other two layers contain only circle nodes. The node function 
of the second layer is a simple multiplication and the node function 
of the fourth layer is the actual output of the system governed by 
(6). Fig . 1 shows the structure of the adaptive network based fuzzy 
inference system. 

The cost function for minimizing the error arising from all the 
square nodes in the first and the third layers, is defined as follows: 

P = I 

p 
= YJJ" ~Fvf (10) 

p=\ 

where E" is the square of the difference between the actual F" and 
the desired Tp output of the system for the pth training data. We 
assume the number o f exemplars in the training data set is P. The 
parameters in the first and the third layer/membership functions in 
the antecedent and the consequent premises are defined as 0 ^ = 
[<r,j. pij, /3ij], 6 j = [<T,, p,, ,#,]. To update the parameters, we 
can use a steepest descent gradient method to minimize the cost 
function E. The values AQij and A 0 , at (r + l) th instant, where 
AQij(t) = e,j(t) - G, j ( r - 1), and A 0 , ( « ) is defined in a similar 
fashion. It is given as a function of the values at the «th instant as 
follows: 

AQij(t + 1) = - nVEtJ + cxAQiiit) (11) 

A 0 , ( f + 1) = - </V£, + a A 0 , ( t ) (12) 

where V Eij, V £ ; , and n, are gradients of the parameters and the 
learning rate, which can be expressed as follows: 

/' 

p=i 

Fig. 1. Adaptive network based fuzzy inference system. 

VEi = J3 v-£f (13) 

where 

V£fJ = 

V£? = 

P = I 

dE" dE" dEp 

dcr.j ' dp,j' dPij 

dE" OE" dEp 

[ da, ' dpi ' d0i 

and 

'/ = 
Yt^ElJf + Y.^E,f 

(14) 

(15) 

The constant parameter a is the momentum of the gradient descent 
and the constant k is the step size of the gradient descent. The 
gradients defined in (14) are analytically available (see Appendix) 
making the presented network realizable. 

IV . R U L E M I N I M I Z A T I O N 

Since acquiring the expert knowledge of a skilled domain specialist 
in the form of fuzzy value for each fuzzy rule is an arduous 
step in the design procedures, there should be some methods to 
determine the proper meaning of related fuzzy values. A M F S gives 
this opportunity to the controller designer. As long as the parameters 
of the membership function of fuzzy values are changing, we can 
obtain the same decision surface with different rules. 

Based on our empirical results (these results are shown in Sections 
V and VI in sequel), for a system without very "spiky" convex 
nonlinearity (not necessary smooth)3 the minimum and maximum 
number of rules can be expressed as follows: 

2 m < n < 3" (16) 

Therefore, for a system with two inputs, four to nine rules are 
sufficient. We can start with a minimum number of rules, and in the 
case of deficiency, increase it toward the maximum number of rules. 

3 In general, it is difficult to describe exactly what this means in practice. 
One way in which we can understand this is explained later in Sections V 
and VI. 
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(a) 

(C 

(b) ] 

>o 

Fig. 2. Initial membership functions with 4 rules for (a) the first input, (b) Fig. 4. The membership functions after 250 epochs of training with 4 rules 
the second input, and (c) consequent. for (a) the first input, (b) the second input, and (c) consequent. 

2S0 

Fig. 3. Error between the target and the trained surface for 250 epochs of 
training with momentum a = 0.95 and step size n = 0.01. 

There are two types of expert information for justifying member­
ship function of fuzzy values in FIS. 

1) Expert Knowledge: This is the simplest situation, when some 
linguistic rules or desired decision surface is accessible. Adjust­
ing membership function of fuzzy values using A M F S would 
commence with initial membership functions with a minimum 
number of rules. Rules will be added as required in the design 
process. The final membership function of fuzzy values, is 
obtained when the actual decision surface converges to the 
desired one. 

2) Expert Exemplar: This is a specific case of (1) and it is more 
applicable to real systems. A set o f input-output pairs of desired 
system response (expert training) is available. The procedure 
of training the FIS has been explained earlier. Naturally, the 
more training exemplars we have the better performance of the 
overall system will be. 

V . A P P L I C A T I O N T O N O N L I N E A R F U N C T I O N 

APPROXIMATION 

To demonstrate the viability o f the proposed method, we use A M F S 
in this section to approximate a nonlinear function with a set of fuzzy 
rules. The target nonlinear function which we are going to train our 

Fig. 5. Diagram of simulated truck and loading zone. 

fuzzy system is taken as follows: 

r*=[3e« / 10-l],»h(^-) 

+ ^ t 4 + e 
•T2/101 (xi +4)7r 

(17) 
30 ' ' 10 

The fuzzy inference system contains 4 rules (i = 4) and 2 inputs 
for antecedent (j — 2). The universe Ui and Da are both [-10 10]. 
Based on some understanding from the desired surface, we can 
assign initial values for the membership function parameters. With 
an appropriate combination of the step size and the momentum, the 
network converges. 

The initial membership functions for antecedent and consequent 
are depicted in Fig. 2. The A M F S has been employed to reduce 
the error between the desired nonlinear function and fuzzy inference 
system. The percentage of error is shown in F ig . 3 for 250 epochs 
of training when the momentum a = 0 and step size of gradient 
descent K = 0.01. The membership functions after 250 epochs of 
training are shown in Fig. 4. 

V I . A P P L I C A T I O N T O T R U C K B A C K E R - U P P E R C O N T R O L 

In the real world, backing a truck to a loading zone is a difficult 
problem except for a skilled truck driver. If we elicit the skilled 
driver experience in a fuzzy if-then rule format, and can be assured 
that the fuzzy controller is working with the same set of rules, 
we would obtain the same trajectory. For truck backing-up control. 
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0 -SO ~ 0 -00 0 - 8 0 

(a) (b) (c) 

Fig. 6. Control surface of fuzzy controller after 300 epochs training with: (a) 35 rules, (b) 9 rules, and (c) 4 rules. 

Nguyen and Widrow [9] use expert exemplars to train an artificial 
neural network based controller. Kong and Kosko [3] proposed a 
fuzzy logic controller with 35 expert rules, and they compared their 
results obtained from F L C with results achieved by using a neural 
network controller. F L C has been shown to give more appropriate 
tracking results. A neural network controller only uses numerical 
data, whereas F L C employs linguistic rules concluded from expert 
drivers explicitly. To combine the above two methods, Wang and 
Mendel [12] utilized numerical-fuzzy approach with almost the same 
rules as [3], but with different membership functions for fuzzy values. 

The simulated truck (which is allowed to move backward only), 
and the loading zone are depicted in Fig. 5. The truck in our 
simulation is the cab part o f [9] and the same truck for [3] and 
[12] except for the size of the yard, the definition of steering and 
the azimuth angle. Since our study is performed in simulation, the 
dynamics of the truck backing-up system is required. We used the 
following approximate kinematics [12]. 

x(t + 1) = x(t) + (;{cos [cj>(t) + 0(t)] + sin [0(t)] sin [<£(<)]} 

</(r + 1) = «,(r) + v{sm [<£(*) + <?(<)] - sin [0(f)] cos [J>(t)]} 

| 2 sin [0(f)]" 
4>(t + l)=<fr(t) "4 (18) 

where x, </, and <j> are rear center of truck coordinate and azimuth 
angle of truck in yard, respectively. They can be considered as state 
variables of the system which indicate position and direction of the 
truck in yard at any instant o f time. 8 is the steering angle to direct 
the truck to the loading zone Xj and (//. Constant parameters v and 
/ are truck speed and length of the truck, respectively. The control 
goal is to steer the truck from any initial position to prespecified 
loading dock with a right azimuth angle (e>/ = 90) and coincided rear 
position. The steering angle 0 is the control action which is provided 
by the designed fuzzy controller. Since we presuppose adequate 
clearance between the truck and the loading dock, state variable y can 
be abandoned for the reason that it becomes a dependent variable. 
Therefore, the inputs to the controller are x and 4>. The range of 
variables for simulated truck and controller are as follows: 

x <E \x~ 

#e [r 

x + ] = [ 0 100] 

^ + ] = [ - 9 0 270] 

<?+]=[-30 30]. 

The truck speed v = 5 and the length of the truck t = 4. The 
maximum width of the yard is y = 100. Desired loading dock 
position is .17 = 50 and yj = 100. Positive attitude of azimuth 
angle 4> is clockwise with respect to the horizontal line. Steering 
angle 0 is positive when the steering wheels rotate counterclockwise. 

We start with fuzzy value and rules specified in [3]. There are 35 
rules with seven, five, and seven fuzzy values for azimuth angle <j>, 
coordinate x, and steering angle 0, respectively. The control surface 
is depicted in Fig. 6(a). 

(a) (b) 

Fig. 7. Truck trajectory of fuzzy controller for both expert knowledge and 
expert exemplars with: (a) 9 rules, and (b) 4 rules. 

In the next step, A M F S is used for controllers with 9 and 4 rules. 
Final decision surface after 300 epochs o f training is illustrated in 
Fig. 6(b) and (c) for 9 and 4 rules, respectively. Truck trajectory of 
the fuzzy controller with 9 and 4 rules after training from 4 different 
initial position (XQ, (po) is shown in Fig. 7. 

The afore-mentioned procedure has been repeated for 20 sets of 
expert exemplars from randomly selected initial points in the (x, y) 
plane. The results obtained from 9 and 4 rules case studies are almost 
the same as before. We initiate with the same membership function 
for fuzzy values as before. Truck trajectory o f the fuzzy controller 
from four initial state with 9 and 4 rules trained through 20 expert 
exemplars are depicted in Fig. 7. In both cases for 4 and 9 rules the 
trajectory is followed perfectly after training. 

VII. C O N C L U S I O N S 

Through illustrated examples, in this paper it has been shown that 
changing the membership functions of fuzzy values can affect the 
overall input-output mapping of FIS. This change might be directed to 
applying the minimum number of rules and consequently simplifying 
the controller design. The proposed scheme can be used to achieve 
any continuous nonlinear surfaces, but the gradient descent method is 
not capable of convergence for very sharp nonlinearities. It has been 
shown the control surface with fewer rules is more smooth, and this 
smoothness can be thought of as being more robust and fault-tolerant. 

APPENDIX 

In this appendix, the gradient of learning parameters for Gaussian 
membership functions is derived. 

BE" _ [Tp - FP)(F" - Vi)IiWii3,j 

(Uj - <Tij)A'j(Uj) ^Wili 
Pit 

i>ij 
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4 cxp < — 
Pii 

1<v 

dE" = (Tp - FP)(F" - CQIiw.&j 

dp.j " 
PU 

4 exp < — 

4{«i)£»<Ji 

o i• — a, i 

PU 

1 St 

Pii 

Pa 

, 1 1 . / VVn 
+*{»«*? {—or 

*i(<?i - V~) 

Pi 
exp 

&i - V 

1 VVp ( VVp 
—7— exp — s -

, K l ' n / VVn 
+ —:— exp ^j— 

4<(«*)£>*I< Pa 
! = 3 

• 2 In ' U j ~ "" 
P'j 

dW_ = 2(T" - Fp)w, 

9*i ~ ^ 

i= l 

ag" _ 2(r"-Fp)W, 

i=l 
dE" _ 2(TP - F")w, 
dft ' 

exp < -
Pii 

1<V 

5>* 

( F p - C , ) | ^ - / , ^ 
c v , 9(7, 

dp, cty, J 

djii dpi 

For the sake of simplicity we will consider the case when $i = 1 and 
this variable is not be changed during the training process. Therefore, 
we have a relatively simple gradient for the other variables. 

= — exp da. <^1 
(a, - V* 

exp 

2 V Pi 

(at - V~) 
: exp 

+ exp 

ft 

a, - V 

a, - V 

pf 

P2 

dC, _ 1 
da, ~ It ~l-p-

-(a, + V )exp (-^p-

u ^£± . , & !¥L 
+ I , + If dai 

dCi i \p} ( vvp 

ft ( VVn\ 

, 1 / . / VVp 
+ T, - " ' C X I H ~ ~PT 

dl, <u 
dpi pi 

ai(ai-V+) 

P< 
exp 

&i - VA 

VVp = - 2&iV+ + af + V"1 

VVn = - 2&iV~ + a\ + V 
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