
590 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B CYBERNETICS, VOL. 26, NO. 4, AUGUST 1996

Correspondence

Finite Time Analysis of the Pursuit
Algorithm for Learning Automata

K. Rajaraman and P. S. Sastry

Abstract-The problem of analyzing the finite time behavior of learning
automata is considered. This problem involves the finite time analysis of
the learning algorithm used by the learning automaton and is important
in determining the rate of convergence of the automaton. In this paper, a
general framework for analyzing the finite time behavior of the automaton
learning algorithms is proposed. Using this framework, the finite time
analysis of the Pursuit Algorithm is presented. We have considered both
continuous and discretized forms of the pursuit algorithm. Based on the
results of the analysis, we compare the rates of convergence of these
two versions of the pursuit algorithm. At the end of the paper, we also
compare our framework with that of Probably Approximately Correct
(PAC) learning.

I. INTRODUCTION

Learning Automata are adaptive decision making devices operating
in unknown random environments and have been used as models of
learning systems [I], [2]. Learning automata have found applications
in various fields such as game theory, pattern recognition, routing
in communication networks, computer vision and concept learning
[21-161.

The learning automaton has a finite set of actions and each
action has a certain probability(unknown to the automaton) of getting
rewarded by the environment. The aim is to leam to choose the
optimal action (i.e., the one with the highest probability of being
rewarded) through repeated interaction with the environment. If the
learning algorithm is chosen properly, then the iterative process
(of interacting with the environment) can be made to result in
the optimal action being selected with arbitrarily high probability.
Several Learning Algorithms have been proposed in the literature
and their asymptotic convergence properties established (see 121 for
a description of many such Learning Algorithms). In addition to
convergence to the optimal action, an equally important consideration
is the finite time behavior of the learning algorithms. While the
asymptotic analysis shows the accuracy of the automaton, the finite
time analysis enabies one to measure the speed of operation of the
automaton. Though there are many asymptotic results available for
the automata learning schemes, the results regarding their finite time
behavior are very few. The main reason for this situation is the lack o f
a general framework for tackling the problem of finite time analysis.
In this paper, we adopt one such framework and using this, present
analysis of the finite time behavior of a specific learning algorithm
called the pursuit algorithm 171. The motivation behind our work is
from the idea of Probably Approximately Correct (PAC) learning,
as used in the Computational Learnability Theory 181-[ll]. We will
discuss the similarity between the idea of PAC Learning and our
analysis of finite time behavior of Learning Automata in Section VI.

Manuscript received July 2, 1992; revised July 12, 1993, and March 18,
1995.

The authors are with the Department of Electrical Engineering, In-
dian Institute of Science, Bangalore 560 012, India (e-mails: rajram@
vidyut.ee.iisc.ernet.in; sastry@vidyut.ee.iisc.ernet.in).

Publisher Item Identifier S 1083-4419(96)03929-5.

The main results of the paper are as follows. We have considered
the case of learning automaton using pursuit algorithm [7], 1121 under
stationary environments. Both continuous and discretized versions
of the pursuit algorithm have been considered. Both the algorithms
are known to be €-optimal [12] (see Section I1 for definition of E-

optimality). For both versions, we have derived bounds on the number
of iterations and the parameter of the learning algorithm, for a given
accuracy of performance of the automaton. Based on these bounds,
which characterize the finite time behavior of the automaton, we
compare the two versions of pursuit algorithm. Our method is useful
for analyzing the finite time behavior of other estimator algorithms
[7], [13], [14] as well.

The rest of the paper is organized as follows. In Section 11,
we describe our notation and formulate the problem of finite time
behavior. In Section 111, the continuous pursuit algorithm is explained
and analysis of its finite time behavior is presented. Section IV
contains the description of discretized pursuit algorithm and its finite
time analysis. In Section V, we compare the performance of the two
versions of the pursuit algorithm based on the complexity bounds
obtained. Section VI concludes this paper with a discussion on the
similarity between our formulation of finite time behavior and that
of the PAC Learning.

11. PROBLEM FORMULATION

In this section, we explain the basics of learning automata and
formulate the problem of finite time behavior of their learning
algorithms.

A . Learning Automata

A learning automaton is a stochastic automaton in feedback con-
nection with a random environment [2]. The output of the automaton
(called the action) is input to the environment and the output of
the environment (called the reaction) is input to the automaton.
The automaton is defined by (A. 8, R. T) and the environment by
(-4. R. D) , where

-4 = { (i 1 . a2. e,} is the set of all actions o f the automaton.
We denote by ~ (k) , the action of the automaton at instant k
and a (k) t -4 for all k ? k = 0,1,2, a (k) denotes the
output of the automaton at time instant k and this is the input
to the environment(1t may be noted that the automaton operates
in discrete time and we use the variable k to denote the time).
Thus -4 is the set of outputs of the automaton and is also the
set of inputs to the environment.
R is the set of reactions from the environment. We denote
by J (k) the reaction received by the automaton at instant k
(,3(k) t R. V k) . Thus, p (k) denotes the actual reaction or
output of the environment at time k and this is input to the
automaton. Throughout this paper, we assume ,8(k) to take
values in a bounded interval, say, 10, MI. Thus, R is the set
of inputs to the automaton and is also the set of outputs of the
environment.
D = { d l , dz , . . . , d,} is the set of average reward values, where

d , (k) = E [d (k) I a (k) = a,]

1083-4419/96$05.00 0 1996 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 4, AUGUST 199,s 591

If the d,’s are independent of k , the environment is said to be
stationary; otherwise, it is called nonstationary. These values
are unknown to the automaton.
C) is the state of the automaton defined by

Q (k) = (P(k), m)
where

P(k) = [P I (k) ? . . . ,Pr (k)] , 0 I P i I 1
T

= y p z (k) = l ! V k
L = l

is the so-called action probability vector and

d (k) = [. i , (k , , . . . , h (k)]

is the vector of estimates of the average reward values at the
k-th instant (cf. Section 111).
T is the learning algorithm thiat is used by the automaton to
update its state. We have

T is also called the reinforcement scheme,
The automaton functions as follows. At any instant k , the automa-

ton chooses an action o l (k) , from the set of actions A, at random
depending on its current action probability vector p(k) (That is, a (k)
equals at with probability p , (k)) . This action chosen becomes input
to the environment and the environment responds with a random
reaction J (k) whose expected value is d; if @(IC) = a,. Then the
automaton computes Q (k + 1) using the learning algorithm T . At
instant k + 1, the same cycle repeats.

The aim of the automaton is to leam to choose the optimal
action, i.e., the action having the maximum average reward value.
Specifically, if we denote by ‘rrr’ the index of the optimal action,
then

d, = rriax { d J } . (2.1)
J

It is desired that the action probabi1ii:y corresponding to ani (i.e., pm)
tends to one as the time k: goes to infinity.

Remark 2.1:
i) Normally, in the literature [2], the state Q is defined to be equal

to p. Since in this paper our interest is in estimator algorithms
we have used Q = (p .d) as the state [13].

ii) Traditionally it is required that 3 (k) E [U. 11 so that the learning
algorithm will preserve p (k) a s a probability vector. As will be
evident by the description of the algorithm later on, in pursuit
algorithm, ,Y (k) may belong to any bounded set in the positive
real line, Rt .

Remark 2.2: The learning algorithm T has a fixed internal pa-
rameter denoted by p which decidles the evolution of the state of
the automaton Q (k) . The parameter 11 determines the step size of
the increase/decrease in the components of action probability vector
p (k) at each time step through the learning algorithm. Though p(k)
(and thus Q (k)) depends on the parameter p in this way, we do not
explicitly show this dependence for the sake of simplicity in notation.
This is a convention followed widely in the Learning Automata
literature [2].

Many criteria for evaluating the performance of learning automata
have been proposed in the literature (see [2] for a full account of
these criteria). A general performance index which is widely used to
characterize the asymptotic behavior of learning automata is defined
below.

Dejinition 2.1: Let m be the index of the optimal action. A
learning algorithm is said to be €-optimal if

liminf k-00 p,(k) > 1 - (E a.s

for any F > 0, by choosing sufficiently small values of the intemal
parameter p of the leaming algorithm (see Remark 2.2).

Both the algorithms we analyze in this paper for finite time
behavior, are known to be c-optimal [12].

B. Problem Formulation
The learning problem 7r is the pair (L , E) where L = (A , Q , R, T)

is the leaming automaton and E := (-4, R, D) is the environment as
defined in the previous section. We assume E to be stationary.

Let a , be the optimal action as defined by (2.1). We assume am
to be unique.

The error at k-th instant, error(k), is defined as the probability of
not choosing a,, at that instant. That is,

error(k) = 1 - p,(k).

We define the size (denoted by 0) of the learning problem to be
the difference between the two largest average reward values.

i.e., 8 = d, - max { d 3 } . (2.2)
3 f m

It can be noted that by this definition, problems of smaller size are
more difficult.

Let Cl be the set of all learning problems 7r such that the size of
7r is at least 00, for some fixed 00 > 0. Let p denote the intemal
parameter of the leaming algorithm. Now, the problem can be stated
as follows:

Given any F , S E (0,1), determine I r * = I<*(€, 6) and p* =
P * (E . 6) such that

Prob{error(k) < e } > 1 - 6. V k > A-* and VO < p < p*

for all problems TT E n.
i.e., Determine I<* and p* such that

Prob{p,(k) > 1 - e } > 1 -- 6. V k > I<*, VO < p < p*

and

VT E n. (2.3)

Remark 2.3: From Definition 2.1, i1 is easy to see that for any E -

optimal learning algorithm, the 11 * and p* as needed by (2.3) exist.
Our interest in this paper is to find explicit expressions for I<*(€, 6)
and p * (~ , 6) so that we can get bounds 011 the finite time behavior.

It may be noted that the functions E L - * (€ , 6) and p * (~ , 6) will
depend on the value of BO which is defined as the lower bound on
the size of problems in R.

111. PURSUIT ALGORITHM: @OI\ITINUOUS CASE

In this section, we consider learning automata using continuous
pursuit algorithm and analyze its finite tiine behavior.

A. The Pursuit Algorithm

simple and it converges rapidly in simulations [7], [12], [14].

of the pursuit algorithm.

Pursuit algorithm is a special type of estimator Algorithm [7]. It is

We first introduce the notation used in the definition and analysis

592 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 4, AUGUST 1996

Notation:
e ,

I { A }

r-dimensional vector with i-th component unity and all
others zero.
Indicator function of event A. That is,

1 if the event A occurs { 0 otherwise I { A } =

X z (k] Total reward obtained for the i-th action till k-tb instant.
That is,

G - 1

]=I

Yt(k) Number of times i-th action is chosen till k-th instant.
That is,

k - 1 where

B. Analysis of Algorithm CPursuit
In this subsection we analyze the algorithm presented above. As

discussed in Section 11, our objective is to determine bounds on
the number of iterations and the learning parameter to satisfy (2.3).
We shall denote them by l i f (e , 6) and p * (~ , 6) respectively for the
purpose of this subsection.

We first prove two lemmas that will be useful in proving our main
result.

Lemma 3.1: Given any 6 E (0 ,1) and a positive integer N such
that 6 5 3- < x, for each action a,, under algorithm CPursuit,

Prob [0% is chosen utmost
-Y times till the k-th instant

V k > I<1(Ar,6) andV0 < p < pl (N,6)

(Ties to be resolved arbitrarily)
Thus, based on the estimates of the average reward values d (k) at

time k , a n / i (k) is the optimal action.
(Recall from Section 11-A that a (k) is the action chosen at time k .

P (k) the reaction of the environment at time k and i L (k) the estimate
of the average reward value corresponding to action n, at time k.)

In the following, we define the pursuit algorithm by specifying the
updating of the state (as defined in Section 11-A) of the automaton
using the above notation.

Algorithm CPursuit:
1. Set ~ ~ (0) = 1/r for 1 5 i 5 r.

Initialize d(0) by picking each action a small number of times
and setting 2, (0) to the average of the reactions obtained during
instants when a, was chosen, 1 I i 5 r .

2. Set k = 0.
Repeat

(a.

(b.

At time instant k , choose a (k) according to the distri-
bution p (k) .
Let a (k) = a;. Then

X , (k + 1) = X , (k) + a (k)
y , (k + 1) = X (k) + 1

X , (k + 1) = X , (k) , j # 2

:j # i Y 3 (k + 1) = Y j (k) ,

l I i < r (3.4) X , (k + 1)
Y , (k + 1) ' i,(k + 1) =

3. Until convergence.
In the above, the Repeat. . . Until loop is executed till one of the

action probabilities is greater than, say, 0.99. Recall from Section
11-A that p(k) is the action probability vector of the automaton at
time k . As defined in Section 11-B, p is the internal parameter of the
learning algorithm.

Since M (k) is the index of the maximal reward estimate, it is easy
to see from (3.5) that the action probability vector is moved in the
direction of the current estimate of optimal action. In other words, the
automaton pursues the 'current' optimal action and hence the name
Pursuit Algorithm.

a=---
2r

and

r = number of actions of the automaton.

Prooj5 By our notation, the random variable Y, (k) denotes the
number of times action a; is chosen up to time k . Hence, we have
to show that

Prob[Y,(k) I NI < 6. (3.6)

Since the events { Y z (k) = j} and { Y i (k) = s} are mutually
exclusive for .i # s, (3.6) is equivalent to

n'
Prob[I.',(k) = j] < 6

3=1

which follows if, for all j , 1 5 j 5 N ,
6
N

ProblY,(k) = . j] < -.

0
At any instant k of the algorithm, Prob{a(k) = a,} I 1. Also,

under algorithm CPursuit, in any one iteration, the action probability
can decrease at most by (1 - p) times. Therefore, at any iteration k
of the algorithm, we have

Prob[cu(k) # a ,] I (1 - (1 - P) ~ P ~ (O)) . (3.7)

Using these two bounds, the probability that action a, is chosen j
times during k iterations has the following upper bound (by Binomial
distribution).

Prob{Y,(k) = j > < c;(I)~[~ - (1 - p) k p , (~) ~ " - 3

< k3[1 - (1 - p) k p t (0)] k - J .

Hence it is sufficient to prove

6
k 3 [1 - (1 - p) k p p , (0)] k - 3 < V,j, 15 .j 5 N. (3.8)

We have to show that (3.6) holds for all k > ICI(N> 6) and
p < p1 (N . 5) (where IC1 (Ar. 6) and pl (N , 5) are as in statement of
Lemma 3.1). First we shall show that (3.8) holds for all sufficiently
large k , if p can be made dependent on k as'

I
p = 1 - 2 - b . (3.9)

'We adopted this idea from [121.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 4, AUGUST 1996 591

We then show that this implies (3.8) for all sufficiently small p and
a sufficiently large k . After that, we prove that Lemma 3.1 follows
from this.

For the first part, under the additional condition (3.9), (3.8)
simplifies to finding Iil(:Y, 0) such that

kJeA.-J < -, ' V.1. 15 .j 5 :V: Vk > l i l (l \ rT .6) (3.10)
N

where m = 1 - pt(0) /2 = (2r - l) / b since p , (O) = l / r .

follows if
Since k / c 2 1 (the time index I; takes values 1 , 2), (3.10)

(3.11) I ; J \ ' ~ ~ - A \ '

< %' for k > I<l(lV,6).

Consider the function @(z) = dvez-"', defined for z > 0

d'(rj = er-"r"'-'(.r.Ina + A\T).

Now $ ' (. I ;) < 0 for
4

.r>- = -To, say.
111 l /c

Hence to find s o such that

o(.r) < 6. b'.r >
it is sufficient to find s o > lVo such that

o(.ro) <: h.

We write the needed SO as

T O = :\'(Ira5 (I > 0. (3.12)

Substituting k = A'o ea in (3.1 1) and taking logarithms on both
sides of (3.1 l), our problem reduces, to finding 'a ' such that

That is

That is,

That is

Now, consider f (. r) = e " / 2 - U('

e"
f ' (s) = - - 1 > 0

2
i.e., for r > 1112, since f (l n 2) > 0

if c > In 2

r r
2

.r > 0 _ -
e'
2 i.e., - I' > -.

By (3.14), (3.13) follows if

That i s

If we let a* as the value of n in (3.1:) then we will have (3.11)
satisfied for all k with Til (N, 6) = I\~OOC" . However, (3.12) demands
a' > 0. Also, since we used (3.14) in deriving a*, we need a* > In 2.
This is true if

l" > c
l n (l / a) -

i.e., if N 2 U

2cr
i.e., if N 2 __-

2r - 1
2 I'

since -- < 2. i.e., if Y 2 6 2r. -- 1 -

Thus, (3.1 1) is satisfied for all Jc > . T i l l:Y, 6), where

if N 2 6 (3.15)

which gives the value of IC1 (I\-. 6) to satirjfy (3.11) and hence (3.8)
under the additional condition given by (3.9). However, we have to
show that (3.8) is satisfied for k :, IC1 (N. 6) and 1-1 < /*I (A-. 6) . In
getting (3.1 1) we have made p a function of k given by

p (k) = 1 - 2 - t . (3.16)

To complete the proof it remains to be shown that (3 8) holds for all
k > A,(il'. 6) and p < / * I (Yr. 6) = 1 -- 2 F m (c f Statement of
Lemma3 1) Fork = I 1 1 (4 , 6) andp = p 1 (~ \ . 6) , (3 11)issatisfied
as shown above Hence, for k = (A\, 6) and p < p1(-T. h) , (3 8)
is satisfied because the LHS of (8) decieases monotonically as p
decreases Now if / I is fixed, for any k1 > k ~ , by definition of l : (k)

1

or

which implies that Prob[Y,(k.l) 5 N] 5 I'rob[Y,(kz) 5 N].
Hence, the LHS of (3.6) is monotonically decreasing as I ; increases.

Since (3.8) implies (3.6), we have (3.6) satisfied for all k > IC, (S. 6)
and hi < p l (A r , 6) .

Hence Lemma 3.1 follows.
Lemma 3.2: For all i . 1 5 i 5 r.. given t. 6 E (0.1)

(3.14)
where

__-
jL*(E, 6) =z 1 - 2- Ka!' .S)

I<l (.* .) is as defined in Lemma 3.1
-bf is the upper bound on possible value? of the

environmental reaction (recall E [O. AI]) .

594 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 4, AUGUST 1996

Proof: Consider the i-th action at .
By definition, the estimate of d, at k-th instant is given by (see

(3.411,

Let in; denote the time instant at which action a, is chosen for
the 1-th time, 1 5 .i 5 Y , (k) . Therefore

(3.18)

It can be observed that, for fixed i , the sequence of random
variables {/3(mj)> .j 2 l} are i.i.d. Since they are also bounded
by M , by applying Hoeffding's inequality [15], we have, for any -1-

We will now use (3.18), (3.19) and Lemma 3.1 to complete the

Define the events
rest of the proof.

A = { l i t (k) - d,I > e}

B = { y , (k) > X } .

By laws of probability,

P (A) = P (A 1 B)P(B) + P (A / B) P (B)
< P (A I B) + P(B). (3.20)

Since i IS arbitrary and 1iZ(E, S), p* andp,(O) (which equals l / r)
0

We now state and prove the main result for algorithm CPursuit.
Theorem 3.1: Consider a learning automaton using algorithm

are independent of i , the proof of Lemma 3.1 is complete.

CPursuit. Then, Ve.6 E (0 , l)

P r o b b n l (k) > 1 - E] > 1 - 6, for k > IC: and 0 < p < p*
(3.23)

where

liI(.. .) is as defined in Lemma 3.1
I

p * = 1 - 2 - 3

6' = d, - max,+,{d,} is the problem size defined in

Section 11-B.

(Recall from Section I1 that m is the index of the optimal action).
Proof: Define the events

Let I<' be some constant (whose value will be derived later on).
Then

Taking N = r$ln(;)], we get from (3.18) and (3.19)
First. we will calculate Ti0 such that

By Lemma 3.1

P (B) = Prob[Y,(k) 5 -VI
6 1

2
< - for k > l<n and / 1 < 1 - 2 - G (3.22)

where ICo = I<, (rnax{6, .V}, 5/2)
Therefore

P (A) = Prob[ld^,(k) - d,I > E]
6 5
2 2 < - + - = 5, for k > I < ~ (E , S) and 0 < p < ,U*

by (3.20), (3.21) and (3.22) where

I i2 (e . 6) = Iil[max{6, -V}. 6/21

P (E l (k + li') 1 &(I<')) = 1 if k > I i o . (3.25)

Later, combining this with Lemma 3.2 we will complete the proof

Suppose that for some I<', the event &(Ii') occurs. Then, by the

J n z (k) > 2, (k) , V.1 # m and for k > Ii' (3.26)

of the theorem.

definition of 6' and the event EZ(Ii')

where m is the index of the optimal action.
Now, to find I i o such that (3.25) holds, we need to find the number

of iterations required for p , (k + IC') to be greater than 1 - t almost
surely. That is, we want

p m (k + I<') > 1 - E

or

PJ1 (I C + I?) < E. (3.27)

By algorithm CPursuit, after the instant I<' satisfying (3.26), at each
instant, for every .jl; j1 # m, p,, (k) is decremented by a factor of
(1 - p) and p , (k) incremented by an amount to make the sum of
the probabilities unity. Hence, we can write (3.27) as c p J l (I I - ') (l - / I) k < E .

J l f n L

(3.28)
31gm

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 4, AUGUST 1996 s95

Since the sum of probabilities cannot exceed unity, (3.28) is satisfied
if

(1 - , l) k < €

111 +
i.e., if I ; >

In 4 (3.29)

= 6-0 by (3.29). (3.30)

Now, to complete the proof of the theorem, it remains to be shown
that we can find a constant IC’ such that the event Ez(I i ’) occurs with
probability greater than (1-S)(see (3.24)). But, by Lemma 3.2, this is
indeed possible by choosing IC’ = I;2(0/2.6) and p * = 1 -2-’/“‘.

Since E and b are arbitrary, the theorem follows.

IV. PURSUIT ALGORITHM: DISCRETE CASE
In Section 111, we discussed the algorithm CPursuit in which

the action probabilities evolved in a continuous probability space;
i.e., the action probabilities were amumed to take arbitrary values
in [O. 11. In contrast to this, automaton learning algorithms have
been proposed which discretize the probability space [16], [14]. The
primary motivation for such discretized learning algorithms is to
increase the speed of convergence #of the optimal action probability
to unity. This can be achieved, since, by the discretization process,
it is possibile for the action probability to converge to unity directly,
rather than approach the value unity asymptotically. For a discussion
on discretized learning algorithms see [16], [12], [14].

In this section, we shall analyze the finite time behavior of
discretized version of the pursuit algorithm. The so-called discretized
pursuit algorithm [12], [14] is identical to its continuous counterpart
except that the changes in action prosbability are made now in discrete
steps. Therefore, the action probability p , (k) . 1 5 i 5 ‘T , can now
assume only finitely many values. That is

where T is the so-called step size.
We define the re~olution parameter 711, as

3

(Recall that I ’ is the number of actions of the automaton).
Remark 4.1: We use the resolution parameter 7 i ~ as the intemal

parameter of the learning algorithm. The parameter I L L which will
play a role similar to the parameter i i in the continuous case,
determines the step size of the incre;ise/decrease in the components of
action probability vector p (k) at each time step through the leaming
algorithm. Though p(k) (and thus the state of the automaton Q (k))
depends on the parameter I L L in this way, we do not explicitly show
this dependence, as in the continuous case, for the sake of simplicity
in notation.

In the following, we give the discretized pursuit algorithm using
the notation introduced in Section 111.

Algorithm DPursuit:
1 . Set p , (O) = 1 / r for 1 5 i 5 I’

Initialize d(0) by picking each action a small number of times
and setting 8, (0) to the average of the reactions obtained during
instants when n7 is chosen, 1 < i < I’.

2. Set k = 0 .
Repeat

(a.

(b.

Al. time instant A:, choose n (k) according to the distri-
bution p (k) .
Let a (k) = a,. Then

X , (k + 1) =: X , (k) + d (k)
Y i (k + 1) =: X (k) -t 1

.Y,(k + 1) =: X , (k) ,
l ’] (k - t 1) =: Y i (k) ,

j # i

j # i
(4.32)

p (k + 1) == p (k)

3. Until one of the action probabilitiec assumes the value unity.

A. Analysis of Algorithm DPursuit

In this subsection we analyze the algxithm DPursuit presented
above. Our objective is to derive expressions for the number of
iterations and the resolution parameter so that we can get bounds
on the finite time behavior. We shall ‘denote them by I<<?(f.b) and
iY2 (e . 6) respectively.

Similar to the case of continuous pursuit algorithm, we start the
analysis by proving two lemmas.

Lemma 4.1 Lemma 3. I) : Given an,y 6 E (0: 1) and a positive
integer -V such that G 5 Y < x, for each action oz, under the
algorithm DPursuit

] < 5 . Prob [cv, IS chosen utmost

V k > I i ? (Y . 0) and V n i > -TL(~\-. 6)
Y times till the k th instant

where

21 - 1
(J = ~- andl

21’
r = number of actions of the automaton.

Prooj: By our notation, the random variable Y , (k) denotes the
number of times action aZ is chosen up to time k . Hence, we have
to show that

Prol)[Yi(k) 5 L V] < 6. (4.33)

0
Now, by similarity with Lemma 3.1, the proof of Lemma 4.1

is same as that of Lemma 3.1 up to the step where the effect
of underlying algorithm appears. This i5, the step where algorithm
CPursuit was used to bound Prob{cb(k) :f o,} (see inequality (3.6)
in the proof of Lemma 3.1). We modify this step now using algorithm
DPursuit as follows.

~ ~ ~

596 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B CYBERNETICS, VOL 26, NO 4, AUGUST 1996

At each iteration of algorithm DPursuit, the action probability can
decrease by at most T. Therefore

Prob[a(k) # cu,] 5 (1 - ~ ~ (0) + k ~)

Now, using the idea of Lemma 3.1, the probability that the I -

th action is selected j times during k iterations can be bounded as
follows

Prob[Y,(k) = . j] < k3 1 - ~ ~ (0) + .

So, we have to prove that

To prove that (4.33) holds for all k > I<?(-\-. 6) and n L >
.VJ, (-IT, 5) (where IC3 (W , 6) and -VL (IT. 5) are as in statement of
Lemma 4.1), we shall first show that (4.34) holds for all sufficiently
large k , if n~ can be made dependent on k as

1 % ~ = 2 k . (4.35)

After that, we show that this implies (4.34) for a sufficiently large
k and for all sufficiently large nL. Then we prove that Lemma 4.1
follows from this.

For the first part, under the additional condition (4.35), (4.34)
simplifies to finding Iin(N> 6) such that

6
N ’ k3a“-j < - V j , 1 5 j 5 N. Vk > l i J (S . 6) (4.36)

where

k
a = 1 - p,(0) + -.

T 7 L L

Comparing (4.36) with (3.10) in the proof of Lemma 3.1, we get,

Now we have to show that (4.34) is satisfied for k > T i ? (.I-. 6)
and ni, > :VL(N, 6). In getting (4.37) from (4.34) we have made
n~ a function of k given by (4.35).

To complete the proof it remains to be shown that (4.34) holds
for all k > li~(N, b) and TLL > XL(-\’, E) = ZIi3(1\-. 6) (cf.
Statement of Lemma 4.1). For 5 = Iis(N, 5) and 7 2 ~ = SL(Z . E) ,
(4.36) is satisfied as shown above. Hence, for k = Ii3 (:V. 6) and
‘ r i L > ~ T ’ T , (~ \ ~ . b) , (4.34) is satisfied because the LHS of (3.8)
decreases monotonically as nr, increases. Now if 7 % ~ is fixed, for
any k l > k z , by definition of Y t (k)

{I<(k2) > N} c (Y i (k1) > AT}

Lemma 4.2: For all i , 1 5 i 5 T , given E , 6 E (0,1)

Prob[ld^,(k) - d,I > t] < 6,
V k > I i 4 (t , E) and n~ > NL(c,S) (4.38)

where

.I-; (t. 6) = 2 I i 4 (e, 6)
Ii3(.. .) is as defined in Lemma 4.1

Prooj? The proof is identical to that of Lemma 3.2 except that
Lemma 4.1 is used instead of Lemma 3.1 to bound Prob{Y, (k) 5 N }
(see (3.22) in the proof of Lemma 3.1). Hence, we omit the proof.

We now state and prove the main result for algorithm DPursuit.
Theorem 4. I : Consider a leaming automaton using algorithm

DPursuit. Then, VJF. 6 E (0.1)

Prob[pm(k) > 1 - t] > 1 - 5,
for k > I<: and ILL > Ni. (4.39)

I<,[.) is as defined in Lemma 4 1
-12 = 2 I i ’

8 = d,, - max,+m{d3}, is the problem size defined in
Section 11-B

Proof By similarity with Theorem 3 1, we need to find only
the constant 110 such that

p m (k + lit) > 1 - F for k > IC0 (4 40)

is true, given the event (denoted by &(I<’) in Theorem 3 1)

occurs. The rest of the proof follows by using Lemma 4.2 instead of
Lemma 3.2 in Theorem 3.1.

Let the event Ea (I<’) occur. To find IC0 to satisfy (4.40), we need
to find k such that

p m (k + A-’) > 1 - t

or

P I 1 (k + IC’) < f. (4.41)
3 1 f ”

After the instant IC’, by algorithm DPursuit, all action probabilities
p,, (k) , . j l # m, are decremented by a factor of T or set to zero if the
decremented value becomes negative. Hence, we can write (4.41) as

or

(X(k.1) 5 N } c { Y , (k Z) 5 N }

which implies that Prob[Y,(kl) 5 N] 5 Prob[X(kz) 5 AT].
Hence, the LHS of (4.33) is monotonically decreasing as k

increases. Now, by observing that (4.34) implies (4.33), Lemma 3.2
follows.

Since only one probability may actually be decremented, (4.42) is
satisfied if

IEEE TIIANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 4, AUGUST 1996

Therefore,

p,(li) > I - F w.p. 1 for li > I<' + rrnL(1 - F)]

Now, to complete the proof of the theorem, it remains to be shown
that we can find a constant Ii' such that the event Ea(li') occurs
with probability greater than (1 - 6). But, by Lemma 4.2, this is
indeed possible by choosing li' = I i4(8/2,6) and Ar; = 21i'.

Hence, the proof of the theorem is complete.

V. DISCIJSSION
In Sections 111 and IV, we obtained explicit bounds on the finite

time behavior of a learning automaton operating in a stationary
environment using pursuit algorithm. In this section, the continuous
and diiscretized versions of the pursuit algorithm are compared based
on these bounds.

The finite time behavior is obtained in Sections I11 and IV in terms
of the bounds I<,*. p* (for algoritlhm CPursuit), IC; and NE (for
algorithm DPursuit) such that

Proh[l?m(k) > I - E] > 1 - #5,

V k > Iic* and V p < p * , under algorithm CPursuit.

(5.43)

Prob[p,,,(k) > 1 - t] > 1 - #6;
b'k > Ii: and b ' 7 i ~ > A:;. under algorithm DPursuit.

(5.44)

The bounds depend on F ; 6, and the parameter of the learning problem
given by M (the upper bound on the value of environmental reaction),
I' (the number of available actions) and 8 (the difference between the
two largest reward probabilities). 0 is a measure of the complexity
of the learning problem that is being solved by the automaton and is
termed the size of the problem.

For the purpose of comparing the two pursuit algorithms, the values
of above-mentioned bounds are computed numerically by considering
the following three cases

I) Fixing the problem size (e) , the allowed error in selecting the
optimal action (F) and varying the error probability (6).

2) Fixing the allowed error (E) , the error probability (6) and
varying the problem size (0) .

3) Fixing the problem size (O) , the error probability (6) and
varying the allowed error (E) .

The numerical results are tabulated in Tables 1-111.
It is noted from the tables that the number of iterations needed for

convergence are within an order of magnitude of the actual number
of iterations observed in practice through simulations [7] , [13], [12].
It may be mentioned that the reason why the theoretically computed
value for the number of iterations lis higher, is that the theoretically
allowed value of p* (N ;) is lowex (higher) than what is used in
practice. However, the bounds give a reasonable idea of the rate of
convergence of the learning algorithm.

Numerical Results: Let 0 E [O, 11 and the number of actions be 2.
Therefore, ,VI = 1 and (r = 0.X.
Let

(see statements of Lemmas 3.1 and 4.11)

Case (i) 0 == 0.5; E = 0.1.

TABLE I

x 10-4

597

Case (ii) E = 0.1; 6 = 0.1.

TABLE I][

x K + Ii', K + Kd

Case (iii) 8 = 0.5; s = 0.1

_N = 29

I< = ICl (N ,

p* = 6.58 >(

=: 1053

NZ = 2106.

TABLE 111

0.1
0.01

0.001
0.0001

0 .0000 I ___

I(: = li t Ii<

:345n 4551
6996 8049 t 10494 11547

13992 I5045
18544

__
l i d

3'791
4170
4207
421 I
4'212

I{; = Ii + l i d

4854
5223
5260
5264
5265

In Cases (i) and (ii), both the algorithms performed similarly when
the error probability/problem size is varied.

In Case (iii), the CPursuit showed a llogarithmic increase in the
number of iterations required for convergence (i.e., I<:) as the
allowed error is decreased. But, for the same decrease in the allowed
error, the number of iterations needed in the case of DPursuit
(IC:) showed a saturating behavior. This is not surprising since,
in DPursuit, it is possible for the actiion probability to converge to
unity in finite number of iterations as the probablity space has been
discretized. However, in CPursuit, the action probability can converge
to unity only asymptotically as the number of iterations tends to 00

and so Iif does not saturate.

VI. CONCLLISICIN

We considered the problem of estimating the finite time behavior of
learning automata. This problem is important in determining the rate

598 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 4, AUGUST 1996

of convergence of the automaton. A general framework for analyzing
the finite time behavior of the automaton learning algorithms was
proposed. Using this framework, the finite time analysis of a specific
algorithm, called the pursuit algorithm, was presented. For our
analysis, we considered both continuous and discretized forms of
the pursuit algorithm. Based on the results of the analysis, the rates
of convergence of these two versions of the pursuit algorithm were
compared.

The motivation behind the framework in which the analysis is
carried out in this paper, is the concept of Probably Approximately
Correct (PAC) Learning. Here we compare our framework with that
of PAC Learning.

The concept of PAC learning can be described informally as
follows. The learner wishes to learn an unknown concept. The
teacher provides the learner with random pre-classified examples
drawn independently from some (unknown) probability distribution.
After observing finite number of examples, the learner outputs a
hypothesis which is his current estimate of the concept. The error of
the hypothesis is taken as the probability that it incorrectly classifies
a random example. In this framework a concept class C is said to be
PAC-learnable if the following two conditions are satisfied uniformly
for all concepts in C:

With high probability, the learner outputs a hypothesis that has
arbitrarily small error after finite number of examples.
the number of examples required is bounded independent of the
distribution with which the examples are drawn.

The minimum number of examples required for the concept class
C to be PAC-learnable to a given accuracy, is called the sample
complexity of C. An important aspect of this formulation is the
notion of a measure of difficulty for the concept class C (the so-called
VC-dimension [9]) that determines the sample complexity of C.

For a precise formulation of this framework, the reader is referred
to [9].

We can establish the following analogy between the PAC-learning
framework and the automata learning framework. In the latter, the
learner is represented by the automaton and the teacher by the
environment. The learner here wishes to leam the identity of the
optimal action (the unknown concept) under a fixed set of reward
probabilities. At every iteration of the learning process, the teacher
provides the learner with a reward for the action chosen (the example) .
Using this, the learner outputs a hypothesis which is the action chosen
by the automaton.

We defined the error (see Section 11) of the hypothesis at the k-th
iteration as the probability of not choosing the optimal action at that
iteration. This is also seen to be analogous to that in PAC setup since
this gives the probability of committing a mistake at the next instant.

By denoting R to be a class of automaton learning problems, we
can now say R is learnable if

the probability of the automaton not choosing the optimal action
can be made arbitrarily small with arbitrarily high probability af-
ter finite number of iterations using a suitable intemal parameter
of the automaton for each problem T , T E R.
the number of iterations and the internal parameter required can
be bounded uniformly for all problems in R.

The learning complexity of R is measured by the bounds on the
number of iterations and the internal parameter that satisfy the above
criteria. We have used this learning complexity measure to describe
quantitatively the speed of convergence of the learning automaton.

Remark 6.1: Despite the above analogy, there is a notable dif-
ference between the two frameworks with respect to the leaming
methodology used. Learning in PAC-learning framework is supervi-
sory whereas in automata models it is by reinforcement. Further, as

the reinforcement signal is probabilistic, the automaton learns through
noisy examples.

In analogy with PAC-learning we have characterized the difficulty
of a class of Automaton Learning Problems R by the size parameter
8. Suppose R to be the collection of leaming problems involving
all possible environments (i.e., there is no restriction on the set of
reward probabilities). We can see that R is not leamable because
we can choose a set of sufficiently close reward probabilities such
that any finite bound on the learning complexity of R is exceeded.
Therefore, to get a meaningful theoretical bound on the learning
complexity, we must restrict the class R. We did this by associating
a size parameter with R. Analyzing complexity by such a restriction
of learning problems amounts to finding rate of convergence of the
automaton for problems of same difficulty.

As an extension of the work outlined in this paper, we are currently
working on the finite time analysis of the LR-I algorithm [2].

REFERENCES

M. L. Tsetlin, Automata Theory and Modeling of Biological Systems.
New York: Academic, 1973.
K. S . Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction. Englewood Cliffs, NJ: Prentice Hall, 1989.
K. S . Narendra, E. Wright, and L. G. Mason, “Applications of learning
automata to telephone traffic routing,” ZEEE Trans. Syst., Man, Cybern.,

M. A. L. Thathachar and P. S. Sastry, “Learning optimal discriminant
functions through a cooperative game of automata,” IEEE Trans. Syst.,
Man, Cybem., vol. 17, no. 1, pp. 73-85, 1987.
__ , “Relaxation labeling with learning automata,” IEEE Trans. Pat-
tern Anal. Machine Intell., vol. 8 , pp. 256-268, Mar. 1986.
P. S. Sastry and K. Rajaraman, and S. R. Ranjan, “Learning optimal
conjunctive concepts through a team of stochastic automata,” to appear
in IEEE Trans. Syst., Man, Cybern..
P. S . Sastry, Systems of Learning Automata-Estimator Algorithms and
Applicarions, Dept. of Electrical Engineering, Indian Institute of Science,
Bangalore, June 1985.
L. G. Valiant, “A theory of the learnable,” Comm. ACM, vol. 27, pp.
11341 142. 1954.
A. Blumer, A. Ehrenfeucht, D. Haussler, and H. Warmuth, “Learnability
and Vapnik-Chervonenkis dimension,” J. ACM, vol. 36, no. 3, pp.
939-965, 1989.
S . R. Kulkami, Problems of Computational and Information Complex-
it?: in Machine Vision and Leaming, Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology, Cambridge,
1992.
D. Haussler, “Quantifying inductive bias: AI Learning algorithms and
Valiant‘s learning framework,” Art$ Intell., vol. 36, pp. 177-221, 1988.
B. J. Oommen and J. K. Lanctot, “Discretized pursuit learning au-
tomata,” IEEE Trans. Sysr., Man, Cybern., vol. 20, pp. 931-938, 1990.
M. A. L. Thathachar and P. S. Sastry, “A class of rapidly converging
algorithms for learning automata,” ZEEE Trans. Syst., Man, Cybern.,
vol. 15, pp. 168-175, 1985.
J. K. Lanctot and B. J. Oommen, “Discretized estimator learning au-
tomata,’’ ZEEE Trans. Syst., Man, Cybern., vol. 22, no. 6, pp. 1473-1483,
1992.

vol. 7. pp. 785-792, 1977.

1151 W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Amer. Stat. Assoc., vol. 58, pp. 13-30, 1963.

[16] M. A. L. Thathachar and B. J. Oommen, “Discretized reward-inaction
learning automata,” J. Cybern. Inform. Sci., pp. 24-29, 1979.

