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A New Approach to Adaptive Fuzzy Control: 
The Controller Output Error Method 

H . C. Andersen, A . Lotfi, and A . C. Tsoi 

Abstract—The Controller Output Error Method (COEM) is introduced 
and applied to the design of adaptive fuzzy control systems. The method 
employs a gradient descent algorithm to minimize a cost function which 
is based on the error at the controller output. This contrasts with more 
conventional methods which use the error at the plant output. The cost 
function is minimized by adapting some or all of the parameters of the 
fuzzy controller. The proposed adaptive fuzzy controller is applied to 
the adaptive control of a nonlinear plant and is shown to be capable of 
providing good overall system performance. 

I. I N T R O D U C T I O N 

The Controller Output Error Method (COEM) which we will 
describe in this paper can be used for the on-line tuning or adaptation 
of the parameters of a fuzzy controller. This method can be used 

Manuscript received February 4, 1995; revised December 22, 1995 and 
May 19, 1996. 

The authors are with the Department of Electrical and Computer Engineer­
ing, University of Queensland, Brisbane, Queensland 4072, Australia. 

Publisher Item Identifier S 1083-4419(97)03883-1. 

with any fuzzy controller design, the only requirement being that the 
controller is capable of stabilizing the plant before the commencement 
of tuning. Thus, any fuzzy rule-based model and any inference 
mechanism can be employed [1] to parameterize and initialize the 
controller of the system. C O E M is applied subsequently for the 
purpose of achieving better performance. 

Neither the initialization nor the subsequent C O E M requires a plant 
model to be available. The initialization conforms to standard fuzzy 
control design techniques which usually do not rely on a plant model. 
C O E M does not perform a system identification and does not require 
the plant output error to be propagated backward to the plant input 
through a reference model, as in indirect adaptive control [2], or 
directly through the plant as in [3]. 

The structure of this paper is as follows. In Section II some basic 
concepts of fuzzy control systems are presented, and in Section III we 
will describe methods for parameterizing and subsequently initializing 
a fuzzy controller. Section I V will then explain the concept of 
C O E M and how it can be used in the design of an adaptive fuzzy 
control system. Section V presents the results of the application of 
the developed paradigm to a nonlinear plant, and Section VI offers 
relevant conclusions. 

II. F U Z Z Y C O N T R O L S Y S T E M S 

The knowledge of an expert human controller can be expressed as 
a set of N fuzzy linguistic rules. They are used to implement a fuzzy 
control system, as shown in Fig. 1. The fuzzy rule base B contains 
a set of N fuzzy rules as 

B = {Rule1, Rule2, • • •, Rule', • • •, RuleY} 

where the ith fuzzy rule is 

Rule': Ifz(k) is A1 then u(k) is ;3l 

where 

z(k) = {z1(k)r--,ze(k)f 

is an I vector containing all inputs to the fuzzy controller. The 
elements of z(k) are linguistic variables in the universe of Z = 
[Zi, • • •, Z(], and the control signal u(k) is a single crisp variable. 
The vector 

^ = [ A i , - - - , A ' - , - - - , A J ] 

is a linguistic vector referring to a vector of fuzzy variables z(h). ,3' 
is a consequent parameter corresponding to the control signal u(k). 
The superscript ~ represents the fuzzy values in contra-distinction to 
crisp values. The number of individual membership functions for a 
specific input value z3(k) is K3. Note that K3 < N. 

We further assume that the universe of antecedent, i.e., Zj,j = 
1, 2, ••• .i, is limited to a specific domain interval 

Zj = [Z-,Zj-] j = l,2,---(. (1) 

In the experiment presented in this paper, the linguistic values are 
defined by Gaussian membership functions and are given as 

A) = e-<^-«-<4/<T})2
 ( 2) 

1083-4419/97S10.00 © 1997 IEEE 
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Fig. 1. Fuzzy control system. 

where <r* and /.(*• are unknown constant parameters. As will be 
shown subsequently, these parameters can be adjusted on-line using 
a gradient descent algorithm. 

In the fuzzy controller proposed in this paper, we define the 
controller input z(k) as 

z(k) [r(k),y(k).-

• • • , u ( k - - r 

,y(k-n + l),u{k-l), 

(3) 

where r(k) is a reference signal, y(k) is the output of the plant, and 
u(k) is the output of the controller, k denotes the time instant, and 
m and n are constants. Note that I = n + in + 1. 

The controller output is obtained as [4] 

D ^ 
v\k] (4) 

E u : ! 

where [3l are the consequent parameters and w* is the rule firing 
strength given by 

s = U^(k) i = 1,2, • • - , , ¥ . (5) 
j = i 

The fuzzy controller is parameterized by 

Q(k) = U,)(k),a)(k)^r(k): i = l,2,---,N; 

J = 1.2, • • • , / } . (6) 

Note that we have chosen to use the Gaussian membership function, 
and the centroid method of fuzzy inference in this paper as a 
concrete fuzzy controller structure to convey the idea. The methods 
to be described in Section III are not dependent on the choice of 
the membership function, nor the choice of inference mechanism. 
Whether one chooses to use, for example, a triangular membership 
function or the Takagi-Sugeno inference mechanism, the method 
developed in Section III can be applied readily. 

III. F U Z Z Y C O N T R O L L E R INITIALIZATION 

When designing a fuzzy controller, one attempts either to derive 
the linguistic rules directly from expert knowledge of the plant to be 
controlled, or one can use numerical techniques to generate the rules 
automatically. In this paper, we use a numerical technique which 
will be described below. 

To design a fuzzy rule-based system, we need to set the number of 
rules, the membership functions, and the consequent parameters. The 
other information which must be available is the limit of universe for 
each input and the inference mechanism. 

We develop the algorithm for initializing the controller using the 
following steps. 

1) 

2) 

Generate T numerical data samples, (zVu*), by applying 
signals (random or otherwise) to the input of the plant and 
sampling the corresponding output, z* = z{k*) and «* = u{kt) 
where kt-,t = 1, 2, • • •, T are the instances of sampling. 
Specify respectively the minimum and maximum values of all 
inputs [Z~, Z~}~] to the fuzzy controller. These can be obtained 
by sorting the minimum and the maximum of all the inputs zl. 

3) Define a number of individual membership functions K0 for 
each input. The chosen number is just an initial estimate, and 
will be adjusted later i f it is judged inadequate. 
Determine the initial center, /.(*, of each antecedent membership 
function, distributed uniformly over the universe of Zj using 
an interval |Z+ — ZJ\/Kj — 1. The centers are chosen such 
that they are distributed evenly over the universe of Zj. 
Determine the dispersions, a), of the antecedent membership 
functions as 

4) 

5) 

Z~ 
1 .2 , - - - ,A r 

where a} is the interaction coefficient of membership functions. 
6) Form the rule-based system with all possible combinations of 

the membership functions. The maximum possible number of 
rules is n*-=1 K3. 

7) A heuristic method [5] is used to set the parameters of the 
consequent part as 

t = i j = i 

t=i,=i 

1.2.- N. (V) 

8) If the system behavior is not satisfactory, the above steps must 
be repeated with more individual membership functions and a 
larger interaction coefficient. 

Once it has been established that the fuzzy controller is able to 
stabilize the system, tuning utilizing C O E M can commence. 

Note that step 6 in the above algorithm could result in a large 
number of rules, especially i f I is large. Hence, while the framework 
of the proposed method is suitable only for a small number of rules, 
N, and inputs, i, this is not usually a problem in control applications 
where these conditions are almost always satisfied. 
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Fig. 2. A block diagram of a simplified version of the proposed adaptive fuzzy controller employing the controller output error method. 

(a) 

Fig. 3. Membership functions for the fuzzy controller with (a) nine rules and (b) 16 rules. 

(b) 

Note also that the method described in this section is not meant 
to be optimal. It is only meant to obtain a starting point from 
which the C O E M algorithm to be described in Section I V can 
commence. Hence, the estimates involved in most of the steps could 
be quite conservative in nature. For example, the system will perform 
reasonably even i f the bounds on the input domain (step 2) are 
conservative. 

IV. T H E C O N T R O L L E R O U T P U T E R R O R M E T H O D 

C O E M is a strategy for adapting the parameters of a controller 
without the use of an implicit or explicit plant model. The underlying 
idea of C O E M is as follows. Each time the response of a plant to a 
set-point signal is observed, we learn how to repeat that response, 
should it be required in future. 

Traditionally, adaptive control strategies have been categorized 
into two groups: direct and indirect [2], [6]. These approaches 

rely implicitly or explicitly on a plant model in order to derive 
the appropriate change in each controller parameter from the plant 
output error, ey(k) = r(k) — y(k). In C O E M , the plant output 
error is not utilized and therefore no plant model is required. The 
lack of dependence on the plant output error, however, introduces a 
restriction on the application of C O E M . Since the cost function is not 
based on the plant output error, this error is not directly minimized. 
This implies that i f the controller does not already stabilize the 
plant, C O E M is not likely to cause it to do so. In other words, the 
controller must be able to stabilize the plant before C O E M is utilized. 
Hence, the method should be viewed as a tuning device as opposed 
to an automated controller design methodology. In the context of 
fuzzy control, this implies that the control engineer is required to 
take the usual steps of fuzzy controller design and verification (see 
Section III) before employing C O E M to tune the parameters of the 
fuzzy controller. 
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Fig. 4. Performance of controllers without COEM for (a) nine rules and (b) 16 rules. 
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Fig. 5. Performance of controller with COEM for nine rules (rj = 0.01). Partial updates are used in (a) and full updates are used in (b). 

A concept similar to C O E M has been described previously by 
Psaltis, Sideris, and Yamamura [3] and Andersen, Teng, and Tsoi 
[7] who applied it to neural network controllers. In this context the 
name, "indirect learning" was used. In [8] Johnson also described 
a similar idea for linear systems. He used the phrase "one-step-
ahead input matching" to describe the method1. We have chosen the 
name, Controller Output Error Method, because i) in the control field 
the term "indirect" is more commonly used in connection with the 
concept of indirect adaptive control [2], [6] and use of this term is 
thus thought to be misleading in this context, and ii) we consider it to 
be important to emphasize the controller output rather than the plant 
input since this is where the control signal originates. 

"Specialized learning architecture" is another noteworthy adaptive 
control strategy which was also proposed in [3]. This method also 
does not require a plant model. Instead, it relies on finding an 
approximation of the derivative of each controller parameter with 
respect to the plant output error. This approximation is obtained 
by experimentally measuring the response of the system to small 
perturbations in the controller parameters. 

'The term "input matching" was used since the plant input error was 
considered. 

A. Definition 

In this section, we will define C O E M mathematically and in 
Section IV-C a step-by-step algorithm procedure will be given. 

We consider the nonlinear plant 

y(k + 1) = T(V(k), ...,y[h-q + 1). U(k), •••,u(k-p+l)) 

where y(k) is the plant output at instance k.J-(-) is a nonlinear 
function, and u(k) is the control signal. The constants p and q define 
the order of the plant. The order may be unknown, so we cannot 
assume that p = m and q = n [see (3)]. 

The aim of many practical control problems is to produce a 
controller which will drive the plant output toward a given reference 
signal, r(k). A fuzzy controller can be defined as a functional relation 
between a set of inputs and an output. This relationship is described 
by 

u{k) = 6(z{k),e(k)) 

where Q{-) is the function defining the controller characteristics and 
0(/c) is the set of controller parameters. The controller input vector, 
z(k), is as defined in (3). 

In most existing adaptive control strategies the plant output error, 
ey(k) = r(k) — y(k), is calculated and is either directly or indirectly 
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Fig. 6. Performance of controller with COEM for 16 rules (7; = 0.01). Partial updates are used in (a) and full updates are used in (b). 

used for the adaptation of the controller parameters, O(ft), (see [2] 
and [6]). However, C O E M does not use the plant output error to 
adapt the controller parameters. Instead the controller output error, 
eu(k), is used. The derivation of the controller output error can be 
explained as follows. 

At instance ft, the state of the plant may be defined by S = 
[y(k), • • •, y(k — p + l ) ] r (assuming that the plant is observable). 
The fuzzy controller produces a control signal, «(/»), which drives 
the output of the plant to y(k + l). Regardless of whether or not this 
was the intended response, we now know that, i f the transition from 
a state S to an output y(k +1) is ever required again, the appropriate 
control signal is u(k). 

The fuzzy controller is now tested to see i f it does indeed output 
a signal equal to u(k) when required to drive the plant through this 
same transition. Instead of producing a control signal u(k), however, 
the controller outputs the signal u(k). Thus, the controller output is 
in error by eu(ft) = u(k) — u(k). 

It is important to note that, although u(k) is produced by the 
controller, it is not applied to the plant. Its only purpose is to calculate 
eu(k). u(k) is calculated by producing a new controller input vector, 
z(k), which is passed through the fuzzy controller as 

u(k)=G{z(k),Q(k)) 

z(k)=[y(k + l),y(k), 

•••,y(k-n + l),u(k-l),- ,u{k — m)] . 

The input vector z(k) only differs from z(k) in the first element, 
where y(k + 1) replaces r(k). Note also that, for each time instance, 
two control commands, u(k) and u(k), are produced2, although only 
one of these, u(k), is passed to the plant. 

B. Parameter Adaptation 

The controller output error, eu(ft), is now used in a cost function 
such as 

J(k) = ±ejkf. (8) 

2It is noted that, since u(k) depends on y(k + 1), it cannot be calculated 
until instance k + 1. 

The aim of the adaptation of the controller parameters, Q(ft), is to 
minimize this cost function. One method is to use gradient descent 
to adjust the parameters of the fuzzy controller such that J(k) is 
minimized. For this technique to be effective, it is desirable that the 
membership functions employed have a continuous first derivative. 

The parameters are updated by 

e(k + 1) = &(k) - V 
dJ(k) 
d&(k)' 

As defined in (6), O(ft) is the set of parameters of the fuzzy 
controller. The partial derivative of the cost function, J(k), with 
respect to each parameter is 

d.j(k) 
80' 

eu(k)wl 

N 

E-
! = 1 

dJ(k) 
di-i) 

dJ(k) 
da' 

2ejk){z3{k) - j i j)£[c '> w* 03' ~ u(k))] 
fci 

N 

! = 1 
N 

2eu(k)(23(k) - rif^c'ij wi (6l - u(k))_ 

(af)^w' 

where // is the rate of descent which may be chosen arbitrarily and 
t\j is 1 i f the fth rule is dependent on the ith membership function 
of the j th input or 0 i f it is not dependent. 

The updating of the parameters in the fuzzy controller can be 
implemented in two ways: partial updating and full updating. In 
partial updating only the parameters of the consequent part of the 
rules, :V, are adapted. The parameters in the antecedent, [i"j and cr], 
are left unchanged. This means that the meaning which may have 
been assigned to the linguistic variables is preserved. Full updating 
gives the adaptive algorithm freedom to change any parameters of 
the fuzzy controller, i.e., [i"j,aj, and :V. 

Having defined the parameter update mechanism for the fuzzy 
controller, the system can be put on line. 
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At the present moment there are no general proofs of stability for 
fuzzy control systems. We do not have a proof of convergence for the 
controller design described in this paper, however, we have applied 
this method quite extensively, and found that the method appears to 
work quite satisfactorily. In Section V , we will describe a simulation 
example which is intended to demonstrate that the method appears 
to yield reasonable performance. 

C. Method 

In summary, the procedure for designing and implementing a 
C O E M adaptive fuzzy controller can be described in three steps. 

1) Initialization: Design a fuzzy controller which stabilizes the 
given plant. A method such as that described in Section III 
may be used. 

2) Control: Sample the plant output, y(k), and, given a reference 
signal, r(k), produce a control command, u(k). This control 
command is applied to the plant. No controller parameters are 
changed in this step. 

3) Adaptation: Using the next plant output, y(k + 1), in place 
of the reference signal, r(k), produce a control command, uk. 
This control command is not applied to the plant, but is instead 
used to calculate a controller output error, eu(k) = u(k) — iik, 
which is utilized in the cost function, J(k) = |e„(fe)2 . The 
parameters of the fuzzy controller are adapted by gradient-
descent according to ,T(k). 

Step 1 is only performed once. When the system is put on line, the 
algorithm cycles between steps 2 and 3. Fig. 2 illustrates the method 
for a simple system where m = 1 and n = 0, i.e., the fuzzy controller 
input vector is z(k) = [r(k).y(k)\ . 

V . S I M U L A T I O N RESULTS 

The following nonlinear plant, reported in [7], is used for the 
simulation study. 

y(k + 1) = 0.8 sin(22/(fc)) + l.2u(k). (9) 

Two adaptive fuzzy controllers utilizing C O E M are implemented. 
Both are of the form described in Section IV where m = 0 and 
n = 1. That is, the input to the controller is z(k) = [r(k). y(k)\ . As 
shown in Fig. 3, the first implementation uses nine rules, with three 
individual membership functions for y(k) and r(k), respectively, i.e., 
K\ = 3 and K-2 = 3. The interaction coefficients are Q I = a-2 = 
0.8. The second implementation uses 16 rules, with four individual 
membership functions for each of y(k) and r(k), i.e., A"i = 4 and 
K'z = 4. The interaction coefficients are a\ = a-2 = 0.7. For both 
cases, 7/ = 0.01 was used. 

Fig. 4(a) and (b) shows the performance of the 9 and 16 rule 
systems, respectively, when no on-line training is used. Figs. 5 and 6 
contain plots of the plant output (solid lines) and the reference (dotted 
lines). In each figure, (a) shows the results when partial updating is 
used and (b) shows the results with full updating. 

The contrast between the plot in Fig. 4(a) and those in Fig. 5, 
as well as the contrast between the plot in Fig. 4(b) and those in 
Fig. 6, shows that C O E M improves the performance of the system 
significantly. 

Comparison of Fig. 5(a) and (b) shows the performance of the 
method with full updating is far superior to the performance with 
partial updating only. The reason for this is that full updating allows 
the system more freedom in adapting to the circumstances. It should 
however be noted that allowing the membership functions to change 
can violate the spirit of fuzzy logic in that the meaning initially 
assigned to the linguistic values can be lost. There is a much smaller 
difference between Fig. 6(a) and 6(b). This is because the use of four 

membership functions, instead of three, gives the fuzzy controller 
more degrees of freedom in matching the control function. Because 
it can match the function more accurately, there is a lesser need for 
adjusting the parameters of the controller, and hence the changes 
made by the on-line training are smaller in magnitude. 

VI. CONCLUSIONS 

A novel algorithm for adaptively updating the parameters of a 
fuzzy controller is proposed. This algorithm does not rely on any 
plant model. The controller output error is used in the update of 
the parameters associated with the fuzzy parameterization of the 
controller. It is observed that once the controller is initialized, using 
any fuzzy control design methodology, the tuning method takes over, 
and drives the system such that the tracking error approaches zero. 
The proposed method is shown to work well in the control of a 
nonlinear plant. 
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