
686 IEEE TRANSACTIONS ON SYSTEMS, M A N , AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

[4] K. Jensen, Colored Petri Nets, Basic Concepts, Analysis Methods and
Practical Use. Berlin, Germany: Springer-Verlag, 1992.

[5] R. David and H. Alia, Petri Nets and Grafcet: Tools for Modeling
Discrete Events Systems. London, U.K.: Prentice-Hall, 1992.

[6] M . Silva, J. Martinez, P. Ladet, and H. Alia, "Generalized inverses and
the calculation of symbolic invariants for colored Petri nets," Technique
et Science Informatiques, vol. 4, no. 1, pp. 113-126, 1985.

[7] K. R Baker, Introduction to Sequencing and Scheduling. New York:
Wiley, 1974.

[8] A. Ichikawa and K. Hiraishi, "Analysis and control of discrete event
systems represented by Petri nets," in Discrete Event Systems: Models
and Applications. New York: Springer-Verlag, 1988.

[9] J. Martinez, P. Muro, and M . Silva, "Modeling, validation, and soft­
ware implementation of production systems using high level Petri
nets," in IEEE Int. Conf. Robotics Automation, Raleigh, NC, 1987, pp.
1180-1185.

[10] M . C. Zhou, K. McDermott, and P. A. Patel, "Petri net synthesis and
analysis of a flexible manufacturing system cell," IEEE Trans. Syst.,
Man, Cybern., vol. 23, pp. 523-531, Mar./Apr. 1993.

[11] A. Finkel and G. Memmi, "An introduction to FIFO nets-monogeneous
nets: A subclass of FIFO nets," Theor. Comput. Sci., vol. 35, pp.
191-214, 1985.

[12] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages
and Computation. Reading, MA: Addison-Wesley, 1979.

[13] S. Wolfram, Cellular Automata and Complexity. Reading, MA:
Addison-Wesley, 1994.

[14] M . Le Borgne, A. Benveniste, P. Le Guernic, "Polynomial dynamical
systems over finite fields," 1st Eur. Conf. Algebraic Computing Control,
Paris, France, Mar. 1991.

[15] S.Lang, Algebra. Reading, MA: Addison-Wesley, 1993.
[16] A. Bourbaki, Algebre, Corps Commutatifs, Masson Ed., 1981.
[17] H. Alia, "Reseaux de Petri colores et reseaux de Petri continus," Ph.D.

dissertation, Univ. Grenoble, France, 1987.
[18] B. H. Krogh and L. E. Holloway, "Synthesis of feedback control logic

for discrete manufacturing systems," Automatica, vol. 27, no. 4, pp.
641-651, 1991.

[19] J.-M. Proth and X. Xie, Les Reseaux de Petri pour la Conception et la
Gestion des Systemes de Production, Masson Ed., Paris, 1994.

A New Approach to Adaptive Fuzzy Control:
The Controller Output Error Method

H . C. Andersen, A . Lotfi, and A . C. Tsoi

Abstract—The Controller Output Error Method (COEM) is introduced
and applied to the design of adaptive fuzzy control systems. The method
employs a gradient descent algorithm to minimize a cost function which
is based on the error at the controller output. This contrasts with more
conventional methods which use the error at the plant output. The cost
function is minimized by adapting some or all of the parameters of the
fuzzy controller. The proposed adaptive fuzzy controller is applied to
the adaptive control of a nonlinear plant and is shown to be capable of
providing good overall system performance.

I. I N T R O D U C T I O N

The Controller Output Error Method (COEM) which we will
describe in this paper can be used for the on-line tuning or adaptation
of the parameters of a fuzzy controller. This method can be used

Manuscript received February 4, 1995; revised December 22, 1995 and
May 19, 1996.

The authors are with the Department of Electrical and Computer Engineer­
ing, University of Queensland, Brisbane, Queensland 4072, Australia.

Publisher Item Identifier S 1083-4419(97)03883-1.

with any fuzzy controller design, the only requirement being that the
controller is capable of stabilizing the plant before the commencement
of tuning. Thus, any fuzzy rule-based model and any inference
mechanism can be employed [1] to parameterize and initialize the
controller of the system. C O E M is applied subsequently for the
purpose of achieving better performance.

Neither the initialization nor the subsequent C O E M requires a plant
model to be available. The initialization conforms to standard fuzzy
control design techniques which usually do not rely on a plant model.
C O E M does not perform a system identification and does not require
the plant output error to be propagated backward to the plant input
through a reference model, as in indirect adaptive control [2], or
directly through the plant as in [3].

The structure of this paper is as follows. In Section II some basic
concepts of fuzzy control systems are presented, and in Section III we
will describe methods for parameterizing and subsequently initializing
a fuzzy controller. Section I V will then explain the concept of
C O E M and how it can be used in the design of an adaptive fuzzy
control system. Section V presents the results of the application of
the developed paradigm to a nonlinear plant, and Section VI offers
relevant conclusions.

II. F U Z Z Y C O N T R O L S Y S T E M S

The knowledge of an expert human controller can be expressed as
a set of N fuzzy linguistic rules. They are used to implement a fuzzy
control system, as shown in Fig. 1. The fuzzy rule base B contains
a set of N fuzzy rules as

B = {Rule1, Rule2, • • •, Rule', • • •, RuleY}

where the ith fuzzy rule is

Rule': Ifz(k) is A1 then u(k) is ;3l

where

z(k) = {z1(k)r--,ze(k)f

is an I vector containing all inputs to the fuzzy controller. The
elements of z(k) are linguistic variables in the universe of Z =
[Zi, • • •, Z(], and the control signal u(k) is a single crisp variable.
The vector

^ = [A i , - - - , A ' - , - - - , A J]

is a linguistic vector referring to a vector of fuzzy variables z(h). ,3'
is a consequent parameter corresponding to the control signal u(k).
The superscript ~ represents the fuzzy values in contra-distinction to
crisp values. The number of individual membership functions for a
specific input value z3(k) is K3. Note that K3 < N.

We further assume that the universe of antecedent, i.e., Zj,j =
1, 2, ••• .i, is limited to a specific domain interval

Zj = [Z-,Zj-] j = l,2,---(. (1)

In the experiment presented in this paper, the linguistic values are
defined by Gaussian membership functions and are given as

A) = e-<^-«-<4/<T})2
 (2)

1083-4419/97S10.00 © 1997 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997 687

Fig. 1. Fuzzy control system.

where <r* and /.(*• are unknown constant parameters. As will be
shown subsequently, these parameters can be adjusted on-line using
a gradient descent algorithm.

In the fuzzy controller proposed in this paper, we define the
controller input z(k) as

z(k) [r(k),y(k).-

• • • , u (k - - r

,y(k-n + l),u{k-l),

(3)

where r(k) is a reference signal, y(k) is the output of the plant, and
u(k) is the output of the controller, k denotes the time instant, and
m and n are constants. Note that I = n + in + 1.

The controller output is obtained as [4]

D ^
v\k] (4)

E u : !

where [3l are the consequent parameters and w* is the rule firing
strength given by

s = U^(k) i = 1,2, • • - , , ¥ . (5)
j = i

The fuzzy controller is parameterized by

Q(k) = U,)(k),a)(k)^r(k): i = l,2,---,N;

J = 1.2, • • • , / } . (6)

Note that we have chosen to use the Gaussian membership function,
and the centroid method of fuzzy inference in this paper as a
concrete fuzzy controller structure to convey the idea. The methods
to be described in Section III are not dependent on the choice of
the membership function, nor the choice of inference mechanism.
Whether one chooses to use, for example, a triangular membership
function or the Takagi-Sugeno inference mechanism, the method
developed in Section III can be applied readily.

III. F U Z Z Y C O N T R O L L E R INITIALIZATION

When designing a fuzzy controller, one attempts either to derive
the linguistic rules directly from expert knowledge of the plant to be
controlled, or one can use numerical techniques to generate the rules
automatically. In this paper, we use a numerical technique which
will be described below.

To design a fuzzy rule-based system, we need to set the number of
rules, the membership functions, and the consequent parameters. The
other information which must be available is the limit of universe for
each input and the inference mechanism.

We develop the algorithm for initializing the controller using the
following steps.

1)

2)

Generate T numerical data samples, (zVu*), by applying
signals (random or otherwise) to the input of the plant and
sampling the corresponding output, z* = z{k*) and «* = u{kt)
where kt-,t = 1, 2, • • •, T are the instances of sampling.
Specify respectively the minimum and maximum values of all
inputs [Z~, Z~}~] to the fuzzy controller. These can be obtained
by sorting the minimum and the maximum of all the inputs zl.

3) Define a number of individual membership functions K0 for
each input. The chosen number is just an initial estimate, and
will be adjusted later i f it is judged inadequate.
Determine the initial center, /.(*, of each antecedent membership
function, distributed uniformly over the universe of Zj using
an interval |Z+ — ZJ\/Kj — 1. The centers are chosen such
that they are distributed evenly over the universe of Zj.
Determine the dispersions, a), of the antecedent membership
functions as

4)

5)

Z~
1 .2 , - - - ,A r

where a} is the interaction coefficient of membership functions.
6) Form the rule-based system with all possible combinations of

the membership functions. The maximum possible number of
rules is n*-=1 K3.

7) A heuristic method [5] is used to set the parameters of the
consequent part as

t = i j = i

t=i,=i

1.2.- N. (V)

8) If the system behavior is not satisfactory, the above steps must
be repeated with more individual membership functions and a
larger interaction coefficient.

Once it has been established that the fuzzy controller is able to
stabilize the system, tuning utilizing C O E M can commence.

Note that step 6 in the above algorithm could result in a large
number of rules, especially i f I is large. Hence, while the framework
of the proposed method is suitable only for a small number of rules,
N, and inputs, i, this is not usually a problem in control applications
where these conditions are almost always satisfied.

IEEE TRANSACTIONS ON SYSTEMS, M A N , AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

Fuzzy
Controller

,.

Control
Stage

i '

Adaptive
Stage

ADAPTIVE STAGE

_yiklj

y(k+ij
Fu;

CONTROL STAGE

vmt

r(k),

Fuzzy
Controller

u(k) i

At
XT^

Plant
_tfk+1)

roller

(k) (from control stage)

u(k)

Fig. 2. A block diagram of a simplified version of the proposed adaptive fuzzy controller employing the controller output error method.

(a)

Fig. 3. Membership functions for the fuzzy controller with (a) nine rules and (b) 16 rules.

(b)

Note also that the method described in this section is not meant
to be optimal. It is only meant to obtain a starting point from
which the C O E M algorithm to be described in Section I V can
commence. Hence, the estimates involved in most of the steps could
be quite conservative in nature. For example, the system will perform
reasonably even i f the bounds on the input domain (step 2) are
conservative.

IV. T H E C O N T R O L L E R O U T P U T E R R O R M E T H O D

C O E M is a strategy for adapting the parameters of a controller
without the use of an implicit or explicit plant model. The underlying
idea of C O E M is as follows. Each time the response of a plant to a
set-point signal is observed, we learn how to repeat that response,
should it be required in future.

Traditionally, adaptive control strategies have been categorized
into two groups: direct and indirect [2], [6]. These approaches

rely implicitly or explicitly on a plant model in order to derive
the appropriate change in each controller parameter from the plant
output error, ey(k) = r(k) — y(k). In C O E M , the plant output
error is not utilized and therefore no plant model is required. The
lack of dependence on the plant output error, however, introduces a
restriction on the application of C O E M . Since the cost function is not
based on the plant output error, this error is not directly minimized.
This implies that i f the controller does not already stabilize the
plant, C O E M is not likely to cause it to do so. In other words, the
controller must be able to stabilize the plant before C O E M is utilized.
Hence, the method should be viewed as a tuning device as opposed
to an automated controller design methodology. In the context of
fuzzy control, this implies that the control engineer is required to
take the usual steps of fuzzy controller design and verification (see
Section III) before employing C O E M to tune the parameters of the
fuzzy controller.

IEEE TRANSACTIONS ON SYSTEMS, M A N , AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997 689

II

•

is
*

h h . .-•••-•••.

' A/V
if

0 50 100 150 200 250 300 350 400

(a)

Fig. 4. Performance of controllers without COEM for (a) nine rules and (b) 16 rules.

50 100 150 200 250 300 350 400

(b)

3600 3650 3700 3750 3800 3850 3900 3950 4000 '3600 3650 3700 3750 3800 3850 3900 3950 4000

(a) (b)

Fig. 5. Performance of controller with COEM for nine rules (rj = 0.01). Partial updates are used in (a) and full updates are used in (b).

A concept similar to C O E M has been described previously by
Psaltis, Sideris, and Yamamura [3] and Andersen, Teng, and Tsoi
[7] who applied it to neural network controllers. In this context the
name, "indirect learning" was used. In [8] Johnson also described
a similar idea for linear systems. He used the phrase "one-step-
ahead input matching" to describe the method1. We have chosen the
name, Controller Output Error Method, because i) in the control field
the term "indirect" is more commonly used in connection with the
concept of indirect adaptive control [2], [6] and use of this term is
thus thought to be misleading in this context, and ii) we consider it to
be important to emphasize the controller output rather than the plant
input since this is where the control signal originates.

"Specialized learning architecture" is another noteworthy adaptive
control strategy which was also proposed in [3]. This method also
does not require a plant model. Instead, it relies on finding an
approximation of the derivative of each controller parameter with
respect to the plant output error. This approximation is obtained
by experimentally measuring the response of the system to small
perturbations in the controller parameters.

'The term "input matching" was used since the plant input error was
considered.

A. Definition

In this section, we will define C O E M mathematically and in
Section IV-C a step-by-step algorithm procedure will be given.

We consider the nonlinear plant

y(k + 1) = T(V(k), ...,y[h-q + 1). U(k), •••,u(k-p+l))

where y(k) is the plant output at instance k.J-(-) is a nonlinear
function, and u(k) is the control signal. The constants p and q define
the order of the plant. The order may be unknown, so we cannot
assume that p = m and q = n [see (3)].

The aim of many practical control problems is to produce a
controller which will drive the plant output toward a given reference
signal, r(k). A fuzzy controller can be defined as a functional relation
between a set of inputs and an output. This relationship is described
by

u{k) = 6(z{k),e(k))

where Q{-) is the function defining the controller characteristics and
0(/c) is the set of controller parameters. The controller input vector,
z(k), is as defined in (3).

In most existing adaptive control strategies the plant output error,
ey(k) = r(k) — y(k), is calculated and is either directly or indirectly

690 IEEE TRANSACTIONS ON SYSTEMS, M A N , AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997

1

0.5

0

0.5

-1

A A

/ 1 1 1

.

I / \ / "

|

V

-
' A/V

"

3600 3650 3700 3750 3800 3850 3900 3950 4000 3600 3650 3700 3750 3800 3850 3900 3950 4000

(a) (b)

Fig. 6. Performance of controller with COEM for 16 rules (7; = 0.01). Partial updates are used in (a) and full updates are used in (b).

used for the adaptation of the controller parameters, O(ft), (see [2]
and [6]). However, C O E M does not use the plant output error to
adapt the controller parameters. Instead the controller output error,
eu(k), is used. The derivation of the controller output error can be
explained as follows.

At instance ft, the state of the plant may be defined by S =
[y(k), • • •, y(k — p + l)] r (assuming that the plant is observable).
The fuzzy controller produces a control signal, «(/»), which drives
the output of the plant to y(k + l). Regardless of whether or not this
was the intended response, we now know that, i f the transition from
a state S to an output y(k +1) is ever required again, the appropriate
control signal is u(k).

The fuzzy controller is now tested to see i f it does indeed output
a signal equal to u(k) when required to drive the plant through this
same transition. Instead of producing a control signal u(k), however,
the controller outputs the signal u(k). Thus, the controller output is
in error by eu(ft) = u(k) — u(k).

It is important to note that, although u(k) is produced by the
controller, it is not applied to the plant. Its only purpose is to calculate
eu(k). u(k) is calculated by producing a new controller input vector,
z(k), which is passed through the fuzzy controller as

u(k)=G{z(k),Q(k))

z(k)=[y(k + l),y(k),

•••,y(k-n + l),u(k-l),- ,u{k — m)] .

The input vector z(k) only differs from z(k) in the first element,
where y(k + 1) replaces r(k). Note also that, for each time instance,
two control commands, u(k) and u(k), are produced2, although only
one of these, u(k), is passed to the plant.

B. Parameter Adaptation

The controller output error, eu(ft), is now used in a cost function
such as

J(k) = ±ejkf. (8)

2It is noted that, since u(k) depends on y(k + 1), it cannot be calculated
until instance k + 1.

The aim of the adaptation of the controller parameters, Q(ft), is to
minimize this cost function. One method is to use gradient descent
to adjust the parameters of the fuzzy controller such that J(k) is
minimized. For this technique to be effective, it is desirable that the
membership functions employed have a continuous first derivative.

The parameters are updated by

e(k + 1) = &(k) - V
dJ(k)
d&(k)'

As defined in (6), O(ft) is the set of parameters of the fuzzy
controller. The partial derivative of the cost function, J(k), with
respect to each parameter is

d.j(k)
80'

eu(k)wl

N

E-
! = 1

dJ(k)
di-i)

dJ(k)
da'

2ejk){z3{k) - j i j)£[c '> w* 03' ~ u(k))]
fci

N

! = 1
N

2eu(k)(23(k) - rif^c'ij wi (6l - u(k))_

(af)^w'

where // is the rate of descent which may be chosen arbitrarily and
t\j is 1 i f the fth rule is dependent on the ith membership function
of the j th input or 0 i f it is not dependent.

The updating of the parameters in the fuzzy controller can be
implemented in two ways: partial updating and full updating. In
partial updating only the parameters of the consequent part of the
rules, :V, are adapted. The parameters in the antecedent, [i"j and cr],
are left unchanged. This means that the meaning which may have
been assigned to the linguistic variables is preserved. Full updating
gives the adaptive algorithm freedom to change any parameters of
the fuzzy controller, i.e., [i"j,aj, and :V.

Having defined the parameter update mechanism for the fuzzy
controller, the system can be put on line.

IEEE TRANSACTIONS ON SYSTEMS, M A N , AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 4, AUGUST 1997 691

At the present moment there are no general proofs of stability for
fuzzy control systems. We do not have a proof of convergence for the
controller design described in this paper, however, we have applied
this method quite extensively, and found that the method appears to
work quite satisfactorily. In Section V , we will describe a simulation
example which is intended to demonstrate that the method appears
to yield reasonable performance.

C. Method

In summary, the procedure for designing and implementing a
C O E M adaptive fuzzy controller can be described in three steps.

1) Initialization: Design a fuzzy controller which stabilizes the
given plant. A method such as that described in Section III
may be used.

2) Control: Sample the plant output, y(k), and, given a reference
signal, r(k), produce a control command, u(k). This control
command is applied to the plant. No controller parameters are
changed in this step.

3) Adaptation: Using the next plant output, y(k + 1), in place
of the reference signal, r(k), produce a control command, uk.
This control command is not applied to the plant, but is instead
used to calculate a controller output error, eu(k) = u(k) — iik,
which is utilized in the cost function, J(k) = |e„(fe)2 . The
parameters of the fuzzy controller are adapted by gradient-
descent according to ,T(k).

Step 1 is only performed once. When the system is put on line, the
algorithm cycles between steps 2 and 3. Fig. 2 illustrates the method
for a simple system where m = 1 and n = 0, i.e., the fuzzy controller
input vector is z(k) = [r(k).y(k)\ .

V . S I M U L A T I O N RESULTS

The following nonlinear plant, reported in [7], is used for the
simulation study.

y(k + 1) = 0.8 sin(22/(fc)) + l.2u(k). (9)

Two adaptive fuzzy controllers utilizing C O E M are implemented.
Both are of the form described in Section IV where m = 0 and
n = 1. That is, the input to the controller is z(k) = [r(k). y(k)\ . As
shown in Fig. 3, the first implementation uses nine rules, with three
individual membership functions for y(k) and r(k), respectively, i.e.,
K\ = 3 and K-2 = 3. The interaction coefficients are Q I = a-2 =
0.8. The second implementation uses 16 rules, with four individual
membership functions for each of y(k) and r(k), i.e., A"i = 4 and
K'z = 4. The interaction coefficients are a\ = a-2 = 0.7. For both
cases, 7/ = 0.01 was used.

Fig. 4(a) and (b) shows the performance of the 9 and 16 rule
systems, respectively, when no on-line training is used. Figs. 5 and 6
contain plots of the plant output (solid lines) and the reference (dotted
lines). In each figure, (a) shows the results when partial updating is
used and (b) shows the results with full updating.

The contrast between the plot in Fig. 4(a) and those in Fig. 5,
as well as the contrast between the plot in Fig. 4(b) and those in
Fig. 6, shows that C O E M improves the performance of the system
significantly.

Comparison of Fig. 5(a) and (b) shows the performance of the
method with full updating is far superior to the performance with
partial updating only. The reason for this is that full updating allows
the system more freedom in adapting to the circumstances. It should
however be noted that allowing the membership functions to change
can violate the spirit of fuzzy logic in that the meaning initially
assigned to the linguistic values can be lost. There is a much smaller
difference between Fig. 6(a) and 6(b). This is because the use of four

membership functions, instead of three, gives the fuzzy controller
more degrees of freedom in matching the control function. Because
it can match the function more accurately, there is a lesser need for
adjusting the parameters of the controller, and hence the changes
made by the on-line training are smaller in magnitude.

VI. CONCLUSIONS

A novel algorithm for adaptively updating the parameters of a
fuzzy controller is proposed. This algorithm does not rely on any
plant model. The controller output error is used in the update of
the parameters associated with the fuzzy parameterization of the
controller. It is observed that once the controller is initialized, using
any fuzzy control design methodology, the tuning method takes over,
and drives the system such that the tracking error approaches zero.
The proposed method is shown to work well in the control of a
nonlinear plant.

R E F E R E N C E S

[1] A. Lotfi and A. C. Tsoi, "Importance of membership functions: A
comparative study on different learning methods for fuzzy inference
systems," in Proc. 3rd IEEE Int. Conf. Fuzzy Systems, Orlando, FL,
June 1994, pp. 1791-1796.

[2] R. R. Bitmead, M . Gevers, and V. Wertz, Adaptive Optimal Control.
Englewood Cliffs, NJ: Prentice-Hall, 1990.

[3] D. Psaltis, A. Sideris, and A. A. Yamamura. " A multilayered neural
network controller," IEEE Contr. Syst. Mag., vol. 8, no. 2, pp. 17-21,
1988.

[4] L. X. Wang and J. M . Mendel, "Fuzzy basis functions, universal
approximation, and orthogonal least-squares learning." IEEE Trans.
Neural Networks, vol. 3, pp. 807-814, Sept. 1992.

[5] H. Ishibuchi, K. Nozaki, and H. Tanaka. "Empirical study on learning
in fuzzy systems by rice taste analysis," Fuzzy Sets Syst., vol. 64, pp.
129-144, 1994.

[6] K. J. Astrom and B. Wittenmark, Computer-Controlled Systems: Theory
and Design. Englewood Cliffs, NJ: Prentice-Hall, 1990.

[7] H. C. Andersen, F. C. Teng, and A. C. Tsoi. "Single net indirect learning
architecture," IEEE Trans. Neural Networks, vol. 5, pp. 1003-1005, Nov.
1994.

[8] C. R. Johnson and E. Tse, "Adaptive implementation of one-step-ahead
optimal control via input matching," IEEE Trans. Automat. Contr., vol.
AC-23, pp. 865-872, Oct. 1978.

[9] A. Lotfi and A. C. Tsoi, "Learning fuzzy inference systems using
an adaptive membership function scheme," IEEE Trans. Syst., Man,
Cybern., vol. 26, pp. 326-331, Apr. 1996.

