24 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 28, NO. 1, FEBRUARY 1998

Parallel Algorithms for
Modules of Learning Automata

M. A. L. Thathachar,Fellow, IEEE and M. T. Arvind

Abstract—Parallel algorithms are presented for modules of imply smaller weight to the stochastic payoff and thus a
learning automata with the objective of improving their speed of greater accuracy, but at the cost of speed of convergence. For
convergence without compromising accuracy. A general proce- 5106 problems, even with reasonable demands on accuracy,

dure suitable for parallelizing a large class of sequential learning . . .
algorithms on a shared memory system is proposed. Results permissible learning parameter values are quite small, thus

are derived to show the quantitative improvements in speed rendering the algorithms slow and limiting their applications.
obtainable using parallelization. The efficacy of the procedure There is hence a need to improve the speed characteristics of
is demonstrated by simulation studies on algorithms for common the |A without sacrificing the accuracy.
payoff games, parametrized learning automata and pattern clas- o pagic | A model is essentially sequential; only one
sification problems with noisy classification of training samples. L . . . ’ .
action is applied to the environment at a time and a single
response is elicited. This model is possibly motivated by
. INTRODUCTION applications such as telephone traffic routing [1] where only
stochastic learning automaton (LA) [1]-[3] is a modebne route is selected at a time for routing a call. However,
based on the stimulus-response learning characteristitgre are several applications where the LA is used as more
studied in psychology and is used to solve decision and conteéla computational device, and several actions can be tried
problems under uncertainty. LA have the capability to leadt a time. An example is a pattern recognition problem in
optimal action combinations based on stochastic feedbagsisich actions correspond to parameter values and the binary
from the environment in which they operate. The conventionainforcement signal indicates matching or otherwise of the
LA model can handle finite action sets. Generalizations ofassification resulting from the parameter selection [9]. In
the LA model have enabled handling associative informati@uch a situation, several actions could be tried at the same
[4], [6], [7] and continuous action sets [5]. It is also possiblenstant for a given sample pattern and all the reinforcement
to construct feedforward networks using teams of LA armsignals could be used to refine the action probability distri-
applications of such structures to pattern classification halation. Since the response of the environment to an action is
been well studied [6], [7]. Other applications include contrdtochastic, a decision based on several responses would have
of Markov chains [8], telephone traffic routing, and queuinfess expected error than a decision based on a single response.
networks [1]. The refinements to the action probability vector would thus be
In its simplest form, an LA has a finite set of actionsmore accurate and facilitate faster convergence. A first step in
that form the stimuli to a random environment. The respongsis direction is made in [10], where improvements in speed
(payoff) of the environment to an action selected by thef convergence are demonstrated for a group of LA operating
LA is based on a fixed (but unknown) distribution for eacin parallel.
action. The goal of the LA is to asymptotically choose that This paper presents a parallel version of the well-known
action which results in the maximum expected payoff. Thep_; [1], [2] algorithm applicable to a module of LA op-
LA maintains a probability distribution over the action set. Agrating in parallel in a stationary environment. This parallel
every instant it chooses an action based on this distributigiigorithm for a module of LA forms the subject of Section II.
and employs the reinforcement signal of the environmemhe basic idea here is the simultaneous operatiom &fA
to refine the action probability distribution using a learningh a module to result in a nearly-fold increase in speed
algorithm. of convergence. Results are derived to showtuptimality
Most of the LA algorithms use a learning parameter to refinghd improved rate of convergence of the proposed procedure.
the action probability distribution in order to obtain improve@ounds are derived for the value of the learning parameter
performance. The learning parameter can be considered bgéhwell as the module size for the required accuracy of
as a step size as well as a confidence measure of the reinfotesvergence. Simulation studies supplement the results and
ment signal. It often represents the tradeoff between SDGEd @@ﬂ']onstrate the efﬁcacy of the proposed procedure_
accuracy of the algorithm. Small values of learning parameterthe development of the parallel LA scheme is shown to
Manuscript received April 26, 1995; revised February 14, 1996 arweld a general procedure for parallelizing a large class of LA
October 26, 1996. schemes. The schemes are derived in Section llI; justifications
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parallel LA algorithms derived using the general framework.
The problems considered include common payoff games and
feedforward networks comprising of LA. Pattern classification
examples with noisy classification of training samples are
also considered. The studies clearly indicate the efficacy of | o2}l oo omrmrrrmmmmrmses oo gl 320 e
parallelization in improving the speed of convergence. : :

Environment

LAl [

Il. PARALLEL ALGORITHM FOR A MODULE OF LA

S 7N R
An algorithm is proposed in this section to improve the - Fuser
speed of convergence of LA by using a number of LA ;
operating in parallel, which could be regarded as forming a :
module. Each LA of the module selects an action at every u
instant, and the environment gives a payoff to each action. 4 ;
The motivation for the algorithm is that agents acting LT Module!
simultaneously should speedup a process roughly by a factor _
n: the idea is similar to that of using a population in handlingd - Module of leaming automata.
a complex task as in genetic algorithms [11].

Motivation is also derived from thé& r_; algorithm, where quantities to all the LA for updating the action probability
the action probability of the selected action is incrementetistribution. The fuser at every instant computes
propor_tional _to the product of reward receiyed by it ar_u_zl . total payoff toa; atk : g (k) A S B (R)I{od (k) =
term linear in the current value of the action probability. al; J
Since a number of LA in the module could choose the same A " y .
action, the idea in this paper is to change an action probability° total pr?\yoff atk : Q(_k) - Ei=1 pIR) = 2im Qi_(k)'
by a quantity proportional to the difference between the ndt € (0,1] is the learning parameter for the algorithm and
payoff obtained by that action and the estimated fraction #fe quantity 2 % is the normalized value of the learning
the total payoff associated with that action. The algorithparameter{-} is the indicator function taking values 1 or 0.
presented in this paper has the characteristic that a modile actual algorithm is
of size one corresponds to the well knowi_; [1] learning .
algorithm; the scheme can thus be viewed as a generalization pi(k +1) = pi(k) + Mai(k) — a(k)pi(k))
of Lr_s. The algorithm exhibits better speed of convergence Vie{1,2,...,r}. (1)
characteristics, but retains all other propertieslgf ;. The
features of the proposed scheme for a module of LA are Ab any instantk, the expected fraction of choices of is

follows: pi(k). The quantityg; (k) /q(k) could be considered as a figure
« the action probability distribution is common to all mem®f merit of the performance af;, and the update term could
bers of the module: be regarded as moving (k) towardg;(k)/q(k). It should be

« each member of the module selects an action based "#ed that the update preserves the probabilistic nature of the

the common action probability distribution, independerfommon state vector. In practice, the action probabjiity)
of other members: is updated once and not necessarily by each LA; the updated

« the updating depends on actions selected by all memb¥@ue p(k + 1) is shared by all the LA in the module.
of the module, as well as the payoffs obtained by these

actions. A. Analysis
The setup is shown in Fig. 1. It uses a modulexafientical  In this section, it is shown that optimal action being unique,
LA, with the common action setr 2 {a1,a9,...,a,.}. the proposed algorithm (1) isoptimal. Cases not satisfying

Each of them selects an action (independent of othetb)s assumption are commented upon subsequently (see Re-
based on the common action probability distributjg) = mark 4). The explicit dependence dnis omitted whenever
[p1(k), p2(k), ..., pe(k)]. (k) is the action selected by thethere is no scope for ambiguity. A learning algorithm is said
ith module member at instari, (k) denotes the corre- {0 be e-optimal [1] if it is possible to make the limiting
sponding payoff:a(k) A [l (k), a2(k), ..., a"(k)] denotes expected payoff arb_ltrar_ny _clc_)se to_ |_ts best possible value.
the action vector ak; and A(k) A Bk, B (E), ... 3 (B)] To demonstrate-optimality it is sufficient to show that for

. ’ any givené 0,1), that there exists a learning parameter
denotes the corresponding payoff vector. It is assumed t aly g € ©,1) gp

: h th
B*(k) € [0,1] Vi, k. The outputs of the environment are fed to 0 € (0,1) such thatv € (0, %o)
a fuset that merges them suitably and supplies the required Pr{prob. of choosing the best actien 1} > 1 — 6.

1Although the fuser is depicted as a single block in the diagram, it CThe foIIOWing definitions are used during the analysis:
be implemented in a distributed fashion in several ways depending on the

application and the number of processors. This fact is elaborated upon in

Section II-C. d; 2 EB k)| o/ (k) = ai]; V4.
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The environment is assumed to be stationary;thare hence  Remark 2: Let

constant s
Al —e TP
A (/)i(p):ﬁ? x; > 0.
Api(k) = Elpi(k +1) — pi(k) | p(k)]. - » »
Then¢;(p) satisfies the boundary conditions of Proposition 2.
From the algorithm, (omitting:) Now, using (1) it can be shown that
A )\E[ P @ Elgi(p(k + 1)) | p(k)] = ¢u(p(F))
Pi = — LG — Piq | Pl 1
_ —mpi(k) _ pp.—wipi(k+1)
n = o (T — Bl | p(r)))
Substituting forg; and q e~ TP
== (L= (A B)") ()
P p h
Ap; = - ZEW(I{M =i} —pi) | pl (3) where, for anys € {1,2,...,n}
Jj=1 -
Al é plE[e_xl)\ﬂS(l_pl) | p, a® = al]v (8)
Remark 1: 37(k) does not depend on®(k); s # j. A pr e AP, s
Now, B2} piB[em T | pa® = al. ©)
152l
B3 (I = a;}y—pi) | pl = pi(1—pi)di —pi Zpsds. (4) Hence, A; + B; < 1 is sufficient to ensure subregularity of
si ¢1(p). The following inequalities are used while obtaining

sufficiency conditions:
i)y for y > 0, e¥ < 1+y+%ey;
. . 2
) i) for y>0,e v <1-y+%.

Substituting this in (3),

(5) Letd, = max;gud;; 1 <1 < 7, o is the second best
action. Letd 2 di — dp,.
Lemma 1:Let § > 0. Then¢;(p) is subregular whenever
Let d; = maxd;; 1 <@ < r. ThenAp; > 0. Itis easy 10 ;X < ((1+ 6)2 +46)% — (1 + 6).

see thaip(k) is a Markov process and 0 and 1 are absorbing  proof: From (8) and (9) and the inequalities given above,
states forp;(k). To eliminate other possible zeros Afy;, the

Ap; = A (pi(l —pi)di —pi Zps ds

EE)

condition thatd; is unique, is enforced. Then, Y o
" di 1s unique, | A+B <pkE <1 — s A3 (1 —pr)
Ap; > 0; VYpe(0,1)7, suchthaty p;=1.  (6) (@ AB° (1 — )2 .
i + 9 P, =0
Proposition 1: Let d; be unique. Therny, (k) converges to .
0orlw.p. 1 +ijE 1+ 06%p
Proof: SinceAp; > 0, pi(k) is a sub-Martingale. Since i#l
d; is unique, by (5) and (6)Ap; = 0 only whenp; = 0 or (a:IS\/JSpl)Q 50
o . + eTIAP P pOéS:Oé/
1. The proposition follows from the Martingale convergence 2 ) J
theorem [12]. | . ( ~( )2
1) e-Optimality: In this section, sufficiency conditions are <1— gk (d— d. T A(1 = p)*m
derived on A such that the algorithm ig-optimal in all =T pl;p]( L)+ 2
stationary random environments. The concept of subregular 2 s i
functions [1], [2] is used for this purpose. A continuous +Mewu\
function ¢ : S, — R is said to be subregular if 2

5 (@) s
Blo(y(k+ 1)) | y()] 2 $ly(k) s 1-wdndl ‘p”(e‘ 2 A)' o

For the quantity on the right hand side to be smaller than unity,

where, S,. is the simplexS, 2 {p ¢ 0,17 : > _,ps =1} TV e - ) ,
P pe0a": 2w } it is necessary that; A € (0,1). Using the inequality,

Also, let

2+=x
/ . < .
Li(p) 2 Pr{pi(s0) = 1] p(0) = p. o< (32) weow
Proposition 2: Let ¢;(p) be subregular withg;(c;) = 1 (10) simplifies to
and ¢;(e;) = 0; Vj # i (¢; is the unit vector with 1 in the i (e0) 2 + 20k
jth component). The;(p) > ¢:(p). A 4B <1-adp(l—p) <9 _ ; 15\) 1)
Proof: See [1]. O 2—x
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The result follows by enforcingé — (“’l—;)%) > 0. TABLE | .
The main result of this section is now proved. O Five-AcTion ProsLem. pi(0) = 0.2; Vi
Theorem 1: The proposed algorithm ig-optimal in all 0] A | hag(0.9) Kaug(0.95)  kaug(0.99)
stationary random environments wigh> 0. I ]0.0t | 2732 3727 5811
Proof: Itis enough to prove that for any givéne (0, 1), 21002 1388 1831 2871
it is possible to havé;(p) > (1-6), by a suitable choice of. 4004|679 942 1412
Now, by definitiong;(p) > (1 — ¢=*#) wherep; = p;(0). 8 |0.08| 341 473 745
Choosingz; = In(3)/pi(0), ¢u(p) > (1 — &) is ensured. 16 }0.16 | 189 261 365
By Lemma 1 subregularity ofp;(p) is assured whenever 321 0.32 87 119 176
A € (0,X), where 64064 | 43 56 82

1 pi(0) 2 L
Ao = 1+6)°+40)2 — (14 6)). 12
0 <ln (%)) («« ) )7 = ) (12) 2) Speed of Convergence and Module Size: popular

oL . . N method of analyzing algorithms of type (1) for any given
Choosing A € (0, o), and using Proposition 2, the result, js to study an associated ordinary differential equation

follows. . u (ODE). The ODE of the algorithm is given by
Remark 3: 1t is seen that the accuracy of the process is

controlled by the parametey, while » and A can be varied to

control the speed of convergence for any given accuracy. Since &, fill=f)di = fi Y fods |5
both speed and accuracy can be controlled independently, this dt oy
algorithm is more flexible when compared with the sequential £:(0) = pi(0), Vi (13)

Lg_; algorithm.

Corollary 1: If the optimal action is unique, given any
6 €(0,1), n > 1 andfy € (0,1), there exists\g € (0,1)
such thatvh € (0, \g), Pr{limg—.0o pi(k) = 1} > (1 = 6) in
all stationary random environments wi¢h> 6.

Corollary 2: If the optimal action is unique, given any
6 €(0,1), A € (0,1), 60 € (0,1), there exists,y > 1 such that
Yn > no, Pr{lims_. pi(k) = 1} > (1 — 6) in all stationary
random environments withh > 6.

wheref(t) is the variable in the associated ODE corresponding
to p(k) andt = kX Using the weak convergence theory
of [13] it can be shown that the large time behavior of the
algorithm can be approximated by that of the associated ODE
(13) for small enough values of. It can also be verified that
the only stable equilibrium point of the associated ODE of the
algorithm is the unit vector, with 1 at the position of the

These corollaries indicate the freedom in selection of pngmaI action. Under these conditions, it can be shown [2], [8]

rameters. While Corollary 1 gives sufficiency conditions off@t E[p(k) — f(Ak)] = O(V'X) and E[(p(k) — F(\k))?] =
the step size of the algorithm for a given module size arfdV)- )
given accuracy, Corollary 2 gives sufficiency conditions on These expressions help analyze the speed of convergence
the module size for a given step size. Since a larger step seth® algorithm to its ODE and/or to the desired point
indicates larger speed, as shown in the following subsecti¢h; SPecifically, A = X/n can be viewed as an accuracy
it means that speed of convergence of the algorithm can Ra@meter, relating the averaged process to the associated
improved, without sacrificing the accuracy, by using a moduféDE- However, the speed of convergence of the ODE is
of LA. Sufficiency conditions on\, andn are given by complete!y characterized by for a givenp(0). If Xis f|xeq,

the algorithm for a module of size tracks an ODE which

0 ) . ) . _
Ao = rmin <1’ <an( )) ((L+6)° +40)% —(1+ 9))> is n times faster, but retains the same level of accuracy. This

1n(%) amounts to an fold compression of the time axis. On the
1 other hand, ifA is fixed, A\; < A; whenevern; > ny and the
0 1 i i i
no = A((SEB)) (((1 L0240 — (1+ 9))> ' ifsoerlthm and the ODE trajectory match better in the former
g .

Remark 4: In situations where there are multiple optimal
actions and there is at least one suboptimal action, simifr
analysis holds ify; is interpreted as the sum of action probabil- A five-action problem (i.e.y = 5) with expected payoffs
ities corresponding to all the optimal actions. It can be shovwn9, 0.81, 0.7, 0.6, and 0.5 is considered for simulation studies.
that the combined probability of choosing one of the optiméi...(a) is the average value @fin 100 runs for whichpep (k)
actions at a time, can be made as close to unity as desirethained beyond. To demonstrate sufficiency conditions, the
with a high probability, by choosing a small enough learningame value of\ was used for all module sizes in Table I.
parameter. Such a result intuitively makes sense, since, if th@iee table indicates speedups of roughly the order of module
is more than one optimal action, best performance is obtaingde, thus demonstrating the efficacy of the approach. For this
when any of them is attempted; it is sufficient that the suproblem,f = 0.09. With § = 0.01, the sufficiency condition
of the probabilities of attempting them goes to unity. With (12) yields A = 0.0067, which is in good agreement with the
interpreted this way, exactly the same analysis holds as earliatue A = 0.01 employed in simulations. This shows that the
for demonstrating:-optimality. sufficiency bounds are quite reasonable.

Simulation Studies
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C. Some Implementation Issues LA are parameter values, based on which a noisy version of

This section addresses some implementation issues {3 function to be optimized is given as a payoff. As is true
the parallel model described earlier. Questions relating Y§th most of parallel processing applications, good speedups
performance of the algorithm on various parallel randofff" P€ achieved in applications where read-write overheads
access machine (PRAM) models and those relating to fug4f @ small percentage of the overall computational burden.
implementation on multiprocessor machines, are briefly dis-2) Fuser ImplementationThe fuser indicated in Fig. 1 is
cussed. actually a summing element. It is meant to collect the updates

1) Speedup and Efficiency on PRAM ModeRhe speed- of the n processors, sum them, scale and add the net update
ups of the order of the number of LA, indicated by simulatioff the common internal state. Wheris small, the processors
studies in Table I are idealistic, in the sense that they do r§emselves could add their updates to the common internal
account for communication overheads and other implemengiate directly, making the fuser implicit (this would correspond
tion aspects involved while programming on shared memoV?/the uniform memory access shgred memory model [14 Sec.
systems. The goal of this subsection is to obtain more realishi])- However, whem is large, this strategy is not efficient
estimates of the speedups on PRAM [14] models. PRARF it creates huge memory write overheads. To alleviate this
models model the ideal parallel machine with a shared memdt§PPlem. a distributed memory implementation of the fuser
and synchronized read-memory, compute, and write-memd&Quld be considered.

cycles. Speedup figures obtained from such models constitugdVhen the processors are divided into clusters, with each
an upper bound on those achievable in practice. cluster having its own common shared memory, it makes

It is assumed that each LA is, in reality, a processor orS¢nse to have lcal fyse_r that collects the updates computed
processing element (PE). Since each processor has to up@¥tach processor in its cluster. These partial updates are
the common state vector, exclusive write (EW) model @Ummed to form the final update bygéobal fuser and added
assumed. Since the state vector can be read simultaneofRi'€ common internal state vector. This leads to a distributed
by several PE, both common read (CR) and exclusive reSigm shared implementation of the fuser (a hlerarchlgal clpster
(ER) policies are acceptable. Hence the PRAM model comﬂ?nqn'form memory access shared memory model is suitable
be either EREW or CREW. Assume each memory read amjth's case). The concept can be generallze_d to have a tree of
write takest, and ¢, units of time respectively, and theUSers, whenever the number of processors is large. However,
computation by each processor which includes choosing %#siPility of such implementations is directed by specific
action randomly, computing or obtaining a stochastic payd?Plecatllons and the cor_nputatlon versus communllcatlon over-
for the action and computing its contribution of state updatB€ads involved. Such implementations do not in any way
take t. units of time. Further, it is assumed that the idedffect thee-optimality of the algorithm. In fact, as long as the
speedup isn, the number of processors. This is consisterfeduential version of the algorithm ésoptimal, the parallel
with the simulation results observed till now, which indicat¥€rsion also is; a small enough learning parameter can always
average speedups of the order of the number of processor@€ chosen, depending on the number of processors, to obtain

Assuming that all processors read the state informatidf® reauired accuracy.
simultaneously, the speedufidrew) and efficiency 4crew)

on the CREW model are Ill. GENERAL PROCEDURE
ty +ty +tc n(n — 1)ty In this section, a general parallelization paradigm applicable
ScrEw = L(t, + nty +to) T T L at, + 1. to a large class of LA algorithms is proposed. The design
(n — Dtw of the proposed parallelization procedure closely follows the
ncreEw =1 — developments of the previous section. The setup includes

b+t + 1 several learning agents operating in a stochastic environment
where the factomt,, appears in the denominator aswrite  which presents them with a common situation at each instant.
operations are required in the CREW model. Since the st&iach learning agent responds to the situation by selecting an
is assumed to be read simultaneously, only one read overhaation, and obtains a payoff. The learning agents belonging to
is incurred, as given by thg. term in the denominator. The a modulecooperatein some sense, as they have a common

corresponding quantities for the EREW model are internal state representation. A shared memory system housing
the common internal state is particularly suitable for such a
SEREW = T bettwtte n— nin = Dt +tw) setup. Actions selected by each learning agent depend on the
w(nte + 0ty 1) ity 4 Nty +te common internal state, but the selected actions, conditioned
ey = 1 — (n = Dt +tw) on the internal state, are independent of one another.
EREW nt, + nty, + t. Let each learning agent, in the sequential case, use the

following algorithm for updating its internal staté&(k),

where the facton(¢,. + t,,) appears in the denominator as gfpresented usually by the action probability vector

read and write operations are required in the EREW mod
It is clear from the expressions that good speedups and(j 4 1) = X(k) 4+ AH(X(k),Y(k)); X(0) =zo. (14)
efficiencies can be achieved for problems that involve large

overheads in payoff computation. Such applications arise litere Y(k) denotes the observation vector comprising the
complex stochastic optimization problems, where actions ofiosen action and payoff.
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Although the proposed parallelization procedure is applFhus for a small enough value of the learning parameter, the
cable in general, special attention is paid here to algorithrakyorithm tracks its associated ODE asymptotically with the
satisfying the following assumptions [13], [15]. required accuracy.

« The vectorY (k) has a Semi-Markov representation con- In deriving the parallel version of algorithm (14) in the

trolled by X (k). Y (k) is a function of the extended stateframework just described, it is useful to rewrite (1) as
A

Z(k) = (X(k),Y(k—1)), which is a Markov chain with L ,
transition probabilityr v (Z, dZ) a function of X pilk+1) = pi(k) + XY B (R)(I{e’ (k) = i} — pi(k)).
Pe{Z(k) € dZ | Z(k 1), Z(k —2), . . s = (16)

Xk = 1), Xk =2),. } = mx(e-p(Z(k — 1), dZ). The parallel version of thé. z_; algorithm is thus seen to
It is assumed that for fixed in the effective domain of have an update vector which is just the sum of the update
the algorithm, the Markov chaifZ (k) }1>o has a unique vectors ofn LA employing theL r_; algorithms individually.
stationary asymptotic behavior. A special case of this idsing the same methodology, the parallel version of (14) is
when the transition probability does not depend6n  obtained as
» The functionH (X,Y) may admit discontinuities, but it om ' '
is assumed that there existsrean vector fielavhich is X (k+1) = X(k) + XY H(X(k), (#(k), o’ (k)));
regular and is defined by j=1
R X(0) =0 (17)
hiz) = lim E.[H(z,Y(k))]
k—oo where X (k) replacesp(k).

where P, denotes the distribution ofY (k)}rso for Following the same arguments as in the sequential case, the
a fixed valueX = z and E, is the corresponding @ssociated ODE of (17) is
expectation. dr

These assumptions are fairly general, and most of the LA at nh(z);  2(0) = zo. (18)

algorithms fit into this framework. To avoid possible confusio
Y will be explicitly denoted by the tuplés, «) in the sequel.

The a_dvantage of such assumptions is that the algorithrﬂ%thing but ODE (15) with the time axis compressetbld. If
behavior becomes tractf';lble. . ) were fixed at the same value for both the ODE’s andlere
. Under th_ese_assumpﬂons, the associated ODE of the algﬁ'ch thath is within permissible limits, if any, then for a given
rithm (14) is given by T, ODE (18) which is faster by a factor af in comparison
dz with ODE (15), is tracked for a timel’ within desired
ar h(z);  2(0) = wo. (15) Jevels of accuracy by algorithm (17). As regards asymptotic
accuracies in case of a unique stable equilibrium point, the

n ad_dition(,j tge I:;\lrge “T“e beha\f/ior: of the a_Igor(ijthcr)n can b ame arguments hold for both the algorithms. In particular, the
aﬁproTlma}te” Y ft € trﬁjec;tc;lry of t ﬁ assoma;[e DE [1 roposed procedure does not alter the asymptotic properties of
This also follows from the following theorem of [15]. the sequential algorithm while parallelizing it.

Theorem 2: _leens >0, Suff|C|en_tIy §mal| andl’ < oo. Remark 5: The comments above would lead one to believe
Then there exists a constafit\, 7)), with limx—o (A, T) = 51 the speed of convergence could be improved arbitrarily
0 and by increasing the value of as desired. This is in general
not possible, as in most cases, the increase for a fixed
A is limited by a ceiling onA. A reason for this could be

] ) the constraints on the state space; for example, most of the
Thus, the algorithmracks the ODE for as large a time as| o gjgorithms maintain a state vector whose elements are

required, provided the learning parameter is small. Furth?{pobabilities and it is necessary thate (0, 1]. It is easy to
whenever the ODE is globally stable with a unique stable equWise that the behavior of the scheme wheis fixed andn,

librium point fo, the following result from [15] characterizesgqg hence, are variable, is characterized by the strong law
the asymptotic behavior of the algorithm, with this additionglf |arge numbers.

assumption:

» h(x) grows at most at a polynomial rate, and the growth

of the random termH(X,-) — A(X) is similarly con- N
trolled. Common payoff games have traditionally served as models

for decentralized decision making and multivariable optimiza-
tion. A common payoff game among LA has each player
represented by an LA and the actions of the LA corresponding
to the player’s strategies [16]. Schemes wherein each LA uses
limsup Pr{||X (k) — fo| > €} < C(N). the L p_r algorithm have been studied in [8], [16], [17]. It has
k—o0 been demonstrated in [8] that whenever the expected payoff

Bor a givenn, ODE’s (15) and (18) have the same set of
stationary points with identical properties. Further, (18) is

Pr{g\lg};”X(/ﬂ) —z(kN)]] > 5} < CAT).

IV. CoMMON PAYOFF GAMES

Theorem 3:Given e > 0, A sufficiently small; ODE (15)
globally stable with unique stable equilibrium poifif. Then
there exists a constagt(}), with limy_.o C(A\) = 0 and



30 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 28, NO. 1, FEBRUARY 1998

matrix is unimodal, this strategy isoptimal. The multimodal TABLE Il

case is studied in [17]; it is shown that all the modes of the MuLTiMODAL GAME, L—1, A = 0.00625
matrix are stable equilibrium points of the associated ODE, 0| hayg(0.95) | 0 | kauy(0.95)
and the process weakly converges to the ODE trajectory as 1 3995 16 263

the learning parameter value is reduced. Estimator algorithms 20 2402 32 132

have also been considered for solving such games [9]. It has 4 1001 64 65

been demonstrated that whenever the globally optimal strate- 8 520 128 33

gic combination is unique, the algorithm converges to that
combination with a high probability. However, the memory
requirement becomes a bottleneck as an estimate of the erffir¢limy .. p(k) = fo} > 1 — e. 4) The algorithm tracks

payoff matrix has to be maintained. an ODE which converges tf faster by a factor of, with a
high degree of accuracy, for sufficiently small values\of
A. Parallel Lr_; Algorithm 3) Multimodal Case: Whenever the common payoff ma-

. . . . .trix is multimodal, it is observed that all the modes of the
The common payoff game considered in this section in-

. matrix are stable equilibrium points of the associated ODE
volves N players, each of whom comprises of a modul : . )
. ; 7], and the large time behavior of the algorithm can be ap-
of n identical LA. There aren plays of the game at each . : .
) ] . g . proximated by the ODE trajectory for small learning parameter
instant; plays involves selection of action by the&h mem- O .
X e alues [13], [15]. The situation is similar to the single player
ber of each module and their receiving a common Payollase in which the optimal action is not unique; the algorithm
Thus there aren teams, thesth team consisting of theth P que, 9

members of each module (playe),= 1.2.....n. All the converges to one of the modes with a high probability,

features of algorithm (1) carry over to the game situatiovr\{henever the learning parameter is small. Comments made
9 y 9 Section Il about the speed of convergence readily hold in

also. The same notations apply here with the correspor'@-

. o ; . th the unimodal and multimodal cases. It only remains to
ing change in interpretation. Specifically, each member 0Of . . . : .
. verify these using simulation studies.

module ; hasr; actions and its action probability vector is 4) Example: Simulation results are presented for a two

A
pi(k) = [pi(k), pia(k), ..., pir,(K)]. p(k) now denotes the paver two actions per player multimodal game. The game
action probability vectors of all the players put together and,irix is given by

f(t) denotes the corresponding quantity in the associated

ODE. The update fop;;(k), the probability of selectingy;;, [0-9 0-6}
the jth action of theith player, is given by 0.7 0.8
pii(k + 1) = pi; (k) + Aai; (k) — q(k)pi; (k) Entries 0.9 and 0.8 are the two modes of the matrix and

convergence to either mode is observed to occur. Convergence
is assumed when action probabilities corresponding to either
of the modes exceeds 0.95. Algorithm (19) is used for updating
S qi;(k) for anyé; and (k) is the total payoff received the action probabilities of both modules of players. For each
g=1 o ' n, 50 runs of simulation were conducted, akdvas chosen

by any player atk. i
A brief outline of the analysis of this algorithm for the uni-Such that no wrong convergence resulted in any of these runs.

modal and multimodal case is given here. Since this algoritl~(}n"vas _s_e_t to 0.00625 andl = An in each case. All action
directly comes under the framework of the previous sectiofroPabilities start from 0.5. Speedups of the order of the
all the analysis of that section holds here about the speed@pdule size are observed from Table II.
convergence.

1) Unimodal Case:Let «( be the unique optimum pure
strategy combination anf} be the corresponding pure strategy Parametrized learning automata (PLA) have been employed
action probability vector. Under this assumption, it is nown [6] to achieve convergence to a global optimum in common

Vi=12...,r; Yi=12,...,N (19)

where ¢;;(k) is the total payoff tow;; at k; q(k) 2

B. Parametrized Learning Automata

shown that algorithm (19) is-optimal. payoff games as well as feedforward networks. The updating
Theorem 4: For a common payoff game with a unique pur@rocedure in PLA involves a random walk term along with the
strategy equilibrium, algorithm (19) is-optimal. gradient following term, thus facilitating wide exploration of

2) Outline of Proof: 1) It can be shown thaf, is the only the search space. Unlike simulated annealing, the random term
stable equilibrium point of the associated ODE (see previodses not tend to zero; adaptation to time varying environments
section). Hence whenever(0) has all nonzero entries, theis hence possible. With the addition of the random term, it is
ODE trajectory converges tfy. 2) The algorithm is strictly difficult to preserve the internal state of the conventional LA
distance diminishing [8] and the state space of the overal a probability vector. This is circumvented by allowing the
Markov process is compact. Henpék) converges to the setinternal state to be a vector ", and using a probability
of absorbing states w.p. 1. 3) Giver{0) with all nonzero generating function to obtain the action probabilities.
entries, using arguments similar to those of [2], [8] it can Although PLA are useful in achieving global convergence,
be shown thatE[|p(k) — f(kV)|] = O()), where f is the they tend to be quite slow. It is necessary to improve their
corresponding variable o in the associated ODE. Hencespeed characteristics to make them utilizable in practical
for any e € (0,1),3X0 € (0,1) such thatvAx € (0,Xg), problems. A parallel version of the PLA algorithm is presented
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here. The algorithm does not fit into the framework of the ¢ Globally optimizing the functior/( f), can be shown to

analysis given in the previous section directly, as it involves be equivalent to globally optimizing the given common

an additional random term. The analysis of [6] shows that the payoff game [6].

large time behavior of the algorithm, with a small step size, canThe SDE could be regarded as a perturbation over an ODE

be approximated by a stochastic differential equation (SDEghich is essentially the same equation without the random

A similar result holds here also and simulation studies cleafyrm. Since the ODE in this case has a multiplicative fagtor

indicate the improved speed performance. associated with it, the SDE could be regarded as a perturbation
1) Algorithm for Modules of PLA:AA° common  payoff over an ODE that converges faster by a factor rofin

game amongN players is considered. Player has 7; comparison with the sequential case.

actions and his internal state is represented k) 2 2) Example: This section considers simulation results for

[ (k), wia(k), ..., wr, (k)]. u(k) is the vector comprising algorithm (20) on a bimodal two player, two actions per player

wi(k) € ¥, Vi = 1,2,...,N and f(¢) is the quantity game with the following payoff matrix

corresponding tou(k) in the associated SDEp;;(k), the

probability of selecting actiory of player i, is obtained by [82 8;}
means of the probability generating functign ) )
A eWi It is easy to see that options corresponding to 0.9 and 0.8
pij = gi(ui, cy5) = Wv entries of the matrix are locally optimal; options corresponding

P s to the former being globally optimal. Each player has a scalar
Vi=1,2,...,7; Ve=12,...,N. . . .
internal state, since each of them has only one independent
As in the previous sections, each player now correspondsattion probability. Designating the internal statesuaasnd v,
a module of sizen. Thus there are: plays of the game at and:th player’sjth action asw;;, the probability generating
any instant and theth play involves thesth members of each functions are chosen as
module selecting their actions and receiving a common payoff 1

(s=1,2,...,n). ¢;; andg denote the payoffs as in (19). The Pr{a{(/ﬂ) =anp=1- Pr{a{(/f) =awp} = 11—
update foru;; is given by p h 1
PI‘{O&JQ(/{J) = 0421} =1- PI‘{O&JQ(/{J) = 0422} = m

ik 4 1) = 5(R) + (a5 (F) = pig(E)a() ,, |
<dh(ug(R)) <o where o] denotes the action selected by tfth member of
+ A—— 4+ (N)25;5(k) (20) player (module)i.
dui; (k) To demonstrate the efficacy of PLA, starting points biased
where h is given by toward convergence to the local but not global optimum are
2m considered. The algorithm makes use of a large value of
~K(z - 1) z2 L dard deviation in the beginning, progressively reduces it to
hz) = |0 < L (21) standard deviatio ginning, prog! y
K L) z<-L a small nonzero _value, and maintains thIS value constant Ia_ter
- on. No change in the analysis is required for handling this
where K > 0,L > 0 are real andn is a positive integer. case. For each value af 20 simulation runs were conducted
{Si(k) : 1 <45 <r,1<i<N,k>0}isasequence of and A was chosen such that no wrong convergence resulted
i.i.d. random variables with zero mean and varianée in any of these runs. The value of was initially set to ten
The third term on the right side is employed to bound thend reduced as
solutions, while the last term facilitates exploration of the
search space. The algorithm could be regarded as the parallel o(k+1) = ao(k)
version of the algorithm of [6] as this can be obtained b\X/here a e (0,1).

settingn = 1 in (20). A brief outline of the analysis is nowa(k) falls below 0.01. The results are given in Table Il

presented. for the minimum value ofz for which correct convergence
* The large time behavior of the algorithm can be appro¥esulted in every run. The other parameters of the algorithm
imated by the SDE [13] are K = 1,L = 3,m = 2. From the table it can be seen
df = nVV(f)dt + 0120 duw; £(0) = u(0) (22) that tht_a improvement in speed is not Iineam’nThi; could
be attributed to the effect of the random term which has an
where effective standard deviation af'/25 for a givenn, and the

V() = E[° | f]+ Z h(ui,) for anys € {1,2,....n} different reduction parametersemployed in each case.

o IS maintained constant at 0.01 once

V. PATTERN CLASSIFICATION EXAMPLE

andw is the standard Brownian motion of the appropriate In this section, classification results on the iris data problem

dimension. are presented using feedforward networks of modules of LA.

¢ The invariant probability distribution of this equation carThe objective of the study is to demonstrate the improvement
be shown to be concentrated around the global optimum speed of convergence because of parallelization. Pattern
of V(f) [18]. classification under both deterministic as well as stochastic
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TABLE 111 0.55
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0161 0.95 245 g oar % SolidLine - No Noise .
16032 0.8 | 190 i S,
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S A,
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setups are considered. A feedforward network is employei-25;
for the purpose. The network in general, comprises thrgﬁeo_z,
layers [19]. The first layer has several units; each unit has
several LA which choose weights that multiply each attribute %51
of the input pattern. Each unit of the first layer outputs a ,,i
binary value which is computed as in case of the standard

perceptron. Thus the network is capable of learning as many-°% 2 a 6 8 10 12
hyperplanes as the number of first layer units. Units in the arations () x10*
second layer perform the AND operation on the outputs @fy . Leaming curves based on average fractional error in classification
selected units in the first layer and thus learn convex seftsris data.

with piecewise linear boundaries. The third layer performs

an OR of the outputs of the second layer units to give tr?

r module sizes of 1, 2, and 4, respectively. The figure shows

clgssjficqtion. The env 'iron.ment compares this classificatiﬂpe fractional error in classification averaged over ten runs
with its internal classification and provides a payoff to thgs a function of the number of iterations. The algorithm was

network. It is assumed that a unit payoff results on correﬁ}n in two phases; learning phase and the error computation

clagsmcatlon; otherw::t;e fthere |shn0 faﬁﬁ' d network phase. During the learning phase no error computation is
. o_nvergence results for such a teediorward networ Brformed. A sample pattern is chosen at random, and its
identical to those of a common payoff game. Hence

. . o .Classification is altered with probability 0.1 in the noisy case.
elaboration of these results is made here. A simplified VerSIfherwise the given classification itself is maintained. The

of the iris data [20] i considered for studies using the para.”l%twork of modules classifies the pattern using its internal

Lp—r algorithm for common payoff games (19). This isqn probability vectors and based on the payoffs obtained
a three CI‘T’ISS (iris-setosa, |r|s-verS|_coI.or, and INS-VEIgINICR, each module, the probability vectors are updated using (19).
problem with four features. Setosa is linearly separable fr e error computation phase was performed once every 250

the other two classes and the problem solved here is a Wations. The probability vectors were not updated during

class version ignoring this class. There are 50 samples frqms phase. The set of 100 sample patterns was presented

each clags with known classification. The network C.omprisggquentially to the team of modules. This was repeated over
Qf nine first _Iayer qnlts and three se'cond layer units. Ea‘fgn cycles and the fraction of patterns classified wrongly was
first layer unit has five LA.‘ corresponding to the. four feature(§0mputed. Repeated presentations are meant to average out the
anc_i ghehthreshfold.hA'll f|r§t layer q Lﬁ‘ have nine (.:Orr]nmogtochastic classification effects of the network to yield realistic
weight choices for their actions and the common weig USetddror estimates. As in the learning phase, classification of the
{-4, =3, =2, =1, 0, 1, 2, 3, 4}. All the first layer LA use a

i | £1/9 for all th ) babili imulati input pattern is altered with probability 0.1 in the noisy case.
starting value of 1/9 for all the action probabilities. Simulations The figures indicate the faster speed of convergence for

are reported both for O% and 10% _nois_e. In the latter case, 1% larger module sizes, with learning parameters chosen such
noise means that the given classification of a randomly chosgl; the |imiting values of the error are approximately same

sample pattern is changed with probability 0.1. COMParisops e noise free and noisy cases respectively. The chosen
with backpropagation with momentum (BPM) algorithm [7],5)es for the limiting errors in the noise free and noisy cases

have shown the superiority of ther_; scheme; BPM did \\are .1 and 0.2, respectively. The values(af, X»), the

not converge in noisy situations. Comparison was also Carri@%rning parameters used in the first and second layer units
out with the quickprop algorithm [21]. In the zero nOiseare respectively, (0.005, 0.002)

case, quickprop took, on the average, about 16 000 iterations.

This is comparable to the best performance obtained using

the proposed parallel algorithm with 4 LA. However, like VI. CONCLUSION

backpropagation with momentum, quickprop did not converge An algorithm was proposed to operate a module of LA

in the noisy case. Even after 100000 iterations, errors keptparallel. The algorithm was shown to keoptimal and

fluctuating between 10% and 75%. Superiority of LA algosufficiency conditions were derived on the learning parameter

rithms in noisy circumstances is thus clearly established. value as well as the module size for the desired accuracy.
The objective of the following study is to improve thelmprovements resulting in speed of convergence were the-

speed performance of the sequential algorithm by employingetically shown as well as demonstrated using simulations.

a module of LA. Simulation studies are presented in Fig. Phe algorithm was shown to yield a general procedure for
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parallelizing a large class of LA algorithms in a shared memortys] M. A. L. Thathachar and K. R. Ramakrishnan, “A cooperative game of
setup. The procedure was used to develop parﬁljﬁlf and a pair of learning automatafutomatica vol. 20, pp. 797-801, 1984.

. 17] P. S. Sastry, V. V. Phansalkar, and M. A. L. Thathachar, “Decentral-
PLA algorithms for teams of modules of LA to solve Commor[' ized learning of Nash equilibria in multiperson stochastic games with

payoff games. Finally, pattern recognition examples under incomplete information,IEEE Trans. Syst., Man, Cybernol. 24, pp.

; ; ; 769-777, May 1994.
uncertainty were considered to demonstrate the |mprovemem§ F. Aluffi-Pentini, V. Parisi, and F. Zirilli, “Global optimization and

in speed of convergence resulting from parallel operation. "~ stochastic differential equationsy. Optim. Theory Appl.vol. 47, no.
Applicability of the ideas of this paper to associative a[s &e’ gp-L_l—ZG, 1985A>. roduct - | netEEE
; : ; . P. Lippmann, “An introduction to computing with neural ne

well as delayed reinforcement sche.mes and the'lr operatlon%_ ASSP Mag.pp. 4-22, Apr. 1987,

more general setups such as multiteacher environments W] R. 0. Duda and P. E. HarRattern Classification and Scene Analysis

be reported elsewhere. New York: Wiley, 1973. ' ) _

[21] S. E. Fahlman, “An empirical study of learning speed in backpropagation
networks,” CMU-CS-88-162, Carnegie Mellon Univ., Pittsburgh, PA,
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