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Parallel Algorithms for
Modules of Learning Automata

M. A. L. Thathachar,Fellow, IEEE, and M. T. Arvind

Abstract—Parallel algorithms are presented for modules of
learning automata with the objective of improving their speed of
convergence without compromising accuracy. A general proce-
dure suitable for parallelizing a large class of sequential learning
algorithms on a shared memory system is proposed. Results
are derived to show the quantitative improvements in speed
obtainable using parallelization. The efficacy of the procedure
is demonstrated by simulation studies on algorithms for common
payoff games, parametrized learning automata and pattern clas-
sification problems with noisy classification of training samples.

I. INTRODUCTION

A stochastic learning automaton (LA) [1]–[3] is a model
based on the stimulus–response learning characteristics

studied in psychology and is used to solve decision and control
problems under uncertainty. LA have the capability to learn
optimal action combinations based on stochastic feedbacks
from the environment in which they operate. The conventional
LA model can handle finite action sets. Generalizations of
the LA model have enabled handling associative information
[4], [6], [7] and continuous action sets [5]. It is also possible
to construct feedforward networks using teams of LA and
applications of such structures to pattern classification have
been well studied [6], [7]. Other applications include control
of Markov chains [8], telephone traffic routing, and queuing
networks [1].

In its simplest form, an LA has a finite set of actions,
that form the stimuli to a random environment. The response
(payoff) of the environment to an action selected by the
LA is based on a fixed (but unknown) distribution for each
action. The goal of the LA is to asymptotically choose that
action which results in the maximum expected payoff. The
LA maintains a probability distribution over the action set. At
every instant it chooses an action based on this distribution,
and employs the reinforcement signal of the environment
to refine the action probability distribution using a learning
algorithm.

Most of the LA algorithms use a learning parameter to refine
the action probability distribution in order to obtain improved
performance. The learning parameter can be considered both
as a step size as well as a confidence measure of the reinforce-
ment signal. It often represents the tradeoff between speed and
accuracy of the algorithm. Small values of learning parameter
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imply smaller weight to the stochastic payoff and thus a
greater accuracy, but at the cost of speed of convergence. For
large problems, even with reasonable demands on accuracy,
permissible learning parameter values are quite small, thus
rendering the algorithms slow and limiting their applications.
There is hence a need to improve the speed characteristics of
the LA without sacrificing the accuracy.

The basic LA model is essentially sequential; only one
action is applied to the environment at a time and a single
response is elicited. This model is possibly motivated by
applications such as telephone traffic routing [1] where only
one route is selected at a time for routing a call. However,
there are several applications where the LA is used as more
of a computational device, and several actions can be tried
at a time. An example is a pattern recognition problem in
which actions correspond to parameter values and the binary
reinforcement signal indicates matching or otherwise of the
classification resulting from the parameter selection [9]. In
such a situation, several actions could be tried at the same
instant for a given sample pattern and all the reinforcement
signals could be used to refine the action probability distri-
bution. Since the response of the environment to an action is
stochastic, a decision based on several responses would have
less expected error than a decision based on a single response.
The refinements to the action probability vector would thus be
more accurate and facilitate faster convergence. A first step in
this direction is made in [10], where improvements in speed
of convergence are demonstrated for a group of LA operating
in parallel.

This paper presents a parallel version of the well-known
[1], [2] algorithm applicable to a module of LA op-

erating in parallel in a stationary environment. This parallel
algorithm for a module of LA forms the subject of Section II.
The basic idea here is the simultaneous operation ofLA
in a module to result in a nearly-fold increase in speed
of convergence. Results are derived to show the-optimality
and improved rate of convergence of the proposed procedure.
Bounds are derived for the value of the learning parameter
as well as the module size for the required accuracy of
convergence. Simulation studies supplement the results and
demonstrate the efficacy of the proposed procedure.

The development of the parallel LA scheme is shown to
yield a general procedure for parallelizing a large class of LA
schemes. The schemes are derived in Section III; justifications
will be provided for the improved rate of convergence using
an ordinary differential equation (ODE) approach. The subse-
quent sections are devoted to studies of several examples of
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parallel LA algorithms derived using the general framework.
The problems considered include common payoff games and
feedforward networks comprising of LA. Pattern classification
examples with noisy classification of training samples are
also considered. The studies clearly indicate the efficacy of
parallelization in improving the speed of convergence.

II. PARALLEL ALGORITHM FOR A MODULE OF LA

An algorithm is proposed in this section to improve the
speed of convergence of LA by using a number of LA
operating in parallel, which could be regarded as forming a
module. Each LA of the module selects an action at every
instant, and the environment gives a payoff to each action.
The motivation for the algorithm is that agents acting
simultaneously should speedup a process roughly by a factor

; the idea is similar to that of using a population in handling
a complex task as in genetic algorithms [11].

Motivation is also derived from the algorithm, where
the action probability of the selected action is incremented
proportional to the product of reward received by it and a
term linear in the current value of the action probability.
Since a number of LA in the module could choose the same
action, the idea in this paper is to change an action probability
by a quantity proportional to the difference between the net
payoff obtained by that action and the estimated fraction of
the total payoff associated with that action. The algorithm
presented in this paper has the characteristic that a module
of size one corresponds to the well known [1] learning
algorithm; the scheme can thus be viewed as a generalization
of . The algorithm exhibits better speed of convergence
characteristics, but retains all other properties of . The
features of the proposed scheme for a module of LA are as
follows:

• the action probability distribution is common to all mem-
bers of the module;

• each member of the module selects an action based on
the common action probability distribution, independent
of other members;

• the updating depends on actions selected by all members
of the module, as well as the payoffs obtained by these
actions.

The setup is shown in Fig. 1. It uses a module ofidentical

LA, with the common action set .
Each of them selects an action (independent of others)

based on the common action probability distribution
. is the action selected by the

th module member at instant, denotes the corre-

sponding payoff; denotes

the action vector at ; and
denotes the corresponding payoff vector. It is assumed that

. The outputs of the environment are fed to
a fuser1 that merges them suitably and supplies the required

1Although the fuser is depicted as a single block in the diagram, it can
be implemented in a distributed fashion in several ways depending on the
application and the number of processors. This fact is elaborated upon in
Section II-C.

Fig. 1. Module of learning automata.

quantities to all the LA for updating the action probability
distribution. The fuser at every instant computes

• total payoff to at
;

• total payoff at .

is the learning parameter for the algorithm and

the quantity is the normalized value of the learning
parameter. is the indicator function taking values 1 or 0.
The actual algorithm is

(1)

At any instant , the expected fraction of choices of is
. The quantity could be considered as a figure

of merit of the performance of , and the update term could
be regarded as moving toward . It should be
noted that the update preserves the probabilistic nature of the
common state vector. In practice, the action probability
is updated once and not necessarily by each LA; the updated
value is shared by all the LA in the module.

A. Analysis

In this section, it is shown that optimal action being unique,
the proposed algorithm (1) is-optimal. Cases not satisfying
this assumption are commented upon subsequently (see Re-
mark 4). The explicit dependence onis omitted whenever
there is no scope for ambiguity. A learning algorithm is said
to be -optimal [1] if it is possible to make the limiting
expected payoff arbitrarily close to its best possible value.
To demonstrate -optimality it is sufficient to show that for
any given , that there exists a learning parameter

such that

prob. of choosing the best action

The following definitions are used during the analysis:
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The environment is assumed to be stationary; theare hence
constant

From the algorithm, (omitting )

(2)

Substituting for and

(3)

Remark 1: does not depend on .
Now,

(4)

Substituting this in (3),

(5)

Let . Then . It is easy to
see that is a Markov process and 0 and 1 are absorbing
states for . To eliminate other possible zeros of , the
condition that is unique, is enforced. Then,

such that (6)

Proposition 1: Let be unique. Then converges to
0 or 1 w.p. 1.

Proof: Since , is a sub-Martingale. Since
is unique, by (5) and (6), only when or

1. The proposition follows from the Martingale convergence
theorem [12].

1) -Optimality: In this section, sufficiency conditions are
derived on such that the algorithm is -optimal in all
stationary random environments. The concept of subregular
functions [1], [2] is used for this purpose. A continuous
function is said to be subregular if

where, is the simplex .
Also, let

Proposition 2: Let be subregular with,
and ( is the unit vector with 1 in the
th component). Then .

Proof: See [1].

Remark 2: Let

Then satisfies the boundary conditions of Proposition 2.
Now, using (1) it can be shown that

(7)

where, for any

(8)

(9)

Hence, is sufficient to ensure subregularity of
. The following inequalities are used while obtaining

sufficiency conditions:

i) for ;

ii) for .

Let ; is the second best

action. Let .
Lemma 1: Let . Then is subregular whenever

.
Proof: From (8) and (9) and the inequalities given above,

(10)

For the quantity on the right hand side to be smaller than unity,
it is necessary that . Using the inequality,

(10) simplifies to

(11)
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The result follows by enforcing .
The main result of this section is now proved.

Theorem 1: The proposed algorithm is-optimal in all
stationary random environments with .

Proof: It is enough to prove that for any given ,
it is possible to have , by a suitable choice of.

Now, by definition where .
Choosing , is ensured.
By Lemma 1 subregularity of is assured whenever

, where

(12)

Choosing , and using Proposition 2, the result
follows.

Remark 3: It is seen that the accuracy of the process is
controlled by the parameter, while and can be varied to
control the speed of convergence for any given accuracy. Since
both speed and accuracy can be controlled independently, this
algorithm is more flexible when compared with the sequential

algorithm.
Corollary 1: If the optimal action is unique, given any

, and , there exists
such that , in
all stationary random environments with .

Corollary 2: If the optimal action is unique, given any
, , , there exists such that

, in all stationary
random environments with .

These corollaries indicate the freedom in selection of pa-
rameters. While Corollary 1 gives sufficiency conditions on
the step size of the algorithm for a given module size and
given accuracy, Corollary 2 gives sufficiency conditions on
the module size for a given step size. Since a larger step size
indicates larger speed, as shown in the following subsection,
it means that speed of convergence of the algorithm can be
improved, without sacrificing the accuracy, by using a module
of LA. Sufficiency conditions on and are given by

Remark 4: In situations where there are multiple optimal
actions and there is at least one suboptimal action, similar
analysis holds if is interpreted as the sum of action probabil-
ities corresponding to all the optimal actions. It can be shown
that the combined probability of choosing one of the optimal
actions at a time, can be made as close to unity as desired
with a high probability, by choosing a small enough learning
parameter. Such a result intuitively makes sense, since, if there
is more than one optimal action, best performance is obtained
when any of them is attempted; it is sufficient that the sum
of the probabilities of attempting them goes to unity. With
interpreted this way, exactly the same analysis holds as earlier
for demonstrating -optimality.

TABLE I
FIVE-ACTION PROBLEM, pi(0) = 0:2; 8i

2) Speed of Convergence and Module Size:A popular
method of analyzing algorithms of type (1) for any given

is to study an associated ordinary differential equation
(ODE). The ODE of the algorithm is given by

(13)

where is the variable in the associated ODE corresponding
to and . Using the weak convergence theory
of [13] it can be shown that the large time behavior of the
algorithm can be approximated by that of the associated ODE
(13) for small enough values of. It can also be verified that
the only stable equilibrium point of the associated ODE of the
algorithm is the unit vector with 1 at the position of the
optimal action. Under these conditions, it can be shown [2], [8]

that and
.

These expressions help analyze the speed of convergence
of the algorithm to its ODE and/or to the desired point

. Specifically, can be viewed as an accuracy
parameter, relating the averaged process to the associated
ODE. However, the speed of convergence of the ODE is
completely characterized by for a given . If is fixed,
the algorithm for a module of size tracks an ODE which
is times faster, but retains the same level of accuracy. This
amounts to a fold compression of the time axis. On the
other hand, if is fixed, whenever and the
algorithm and the ODE trajectory match better in the former
case.

B. Simulation Studies

A five-action problem (i.e., ) with expected payoffs
0.9, 0.81, 0.7, 0.6, and 0.5 is considered for simulation studies.

is the average value ofin 100 runs for which
remained beyond. To demonstrate sufficiency conditions, the
same value of was used for all module sizes in Table I.
The table indicates speedups of roughly the order of module
size, thus demonstrating the efficacy of the approach. For this
problem, . With , the sufficiency condition
(12) yields , which is in good agreement with the
value employed in simulations. This shows that the
sufficiency bounds are quite reasonable.
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C. Some Implementation Issues

This section addresses some implementation issues for
the parallel model described earlier. Questions relating to
performance of the algorithm on various parallel random
access machine (PRAM) models and those relating to fuser
implementation on multiprocessor machines, are briefly dis-
cussed.

1) Speedup and Efficiency on PRAM Models:The speed-
ups of the order of the number of LA, indicated by simulation
studies in Table I are idealistic, in the sense that they do not
account for communication overheads and other implementa-
tion aspects involved while programming on shared memory
systems. The goal of this subsection is to obtain more realistic
estimates of the speedups on PRAM [14] models. PRAM
models model the ideal parallel machine with a shared memory
and synchronized read-memory, compute, and write-memory
cycles. Speedup figures obtained from such models constitute
an upper bound on those achievable in practice.

It is assumed that each LA is, in reality, a processor or a
processing element (PE). Since each processor has to update
the common state vector, exclusive write (EW) model is
assumed. Since the state vector can be read simultaneously
by several PE, both common read (CR) and exclusive read
(ER) policies are acceptable. Hence the PRAM model could
be either EREW or CREW. Assume each memory read and
write takes and units of time respectively, and the
computation by each processor which includes choosing an
action randomly, computing or obtaining a stochastic payoff
for the action and computing its contribution of state update,
take units of time. Further, it is assumed that the ideal
speedup is , the number of processors. This is consistent
with the simulation results observed till now, which indicate
average speedups of the order of the number of processors.

Assuming that all processors read the state information
simultaneously, the speedup ( ) and efficiency ( )
on the CREW model are

where the factor appears in the denominator aswrite
operations are required in the CREW model. Since the state
is assumed to be read simultaneously, only one read overhead
is incurred, as given by the term in the denominator. The
corresponding quantities for the EREW model are

where the factor appears in the denominator as
read and write operations are required in the EREW model.
It is clear from the expressions that good speedups and
efficiencies can be achieved for problems that involve large
overheads in payoff computation. Such applications arise in
complex stochastic optimization problems, where actions of

LA are parameter values, based on which a noisy version of
the function to be optimized is given as a payoff. As is true
with most of parallel processing applications, good speedups
can be achieved in applications where read-write overheads
are a small percentage of the overall computational burden.

2) Fuser Implementation:The fuser indicated in Fig. 1 is
actually a summing element. It is meant to collect the updates
of the processors, sum them, scale and add the net update
to the common internal state. Whenis small, the processors
themselves could add their updates to the common internal
state directly, making the fuser implicit (this would correspond
to the uniform memory access shared memory model [14, Sec.
1.2]). However, when is large, this strategy is not efficient
as it creates huge memory write overheads. To alleviate this
problem, a distributed memory implementation of the fuser
could be considered.

When the processors are divided into clusters, with each
cluster having its own common shared memory, it makes
sense to have alocal fuser that collects the updates computed
by each processor in its cluster. These partial updates are
summed to form the final update by aglobal fuser and added
to the common internal state vector. This leads to a distributed
cum shared implementation of the fuser (a hierarchical cluster
nonuniform memory access shared memory model is suitable
in this case). The concept can be generalized to have a tree of
fusers, whenever the number of processors is large. However,
feasibility of such implementations is directed by specific
applications and the computation versus communication over-
heads involved. Such implementations do not in any way
affect the -optimality of the algorithm. In fact, as long as the
sequential version of the algorithm is-optimal, the parallel
version also is; a small enough learning parameter can always
be chosen, depending on the number of processors, to obtain
the required accuracy.

III. GENERAL PROCEDURE

In this section, a general parallelization paradigm applicable
to a large class of LA algorithms is proposed. The design
of the proposed parallelization procedure closely follows the
developments of the previous section. The setup includes
several learning agents operating in a stochastic environment
which presents them with a common situation at each instant.
Each learning agent responds to the situation by selecting an
action, and obtains a payoff. The learning agents belonging to
a modulecooperatein some sense, as they have a common
internal state representation. A shared memory system housing
the common internal state is particularly suitable for such a
setup. Actions selected by each learning agent depend on the
common internal state, but the selected actions, conditioned
on the internal state, are independent of one another.

Let each learning agent, in the sequential case, use the
following algorithm for updating its internal state ,
represented usually by the action probability vector

(14)

Here denotes the observation vector comprising the
chosen action and payoff.
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Although the proposed parallelization procedure is appli-
cable in general, special attention is paid here to algorithms
satisfying the following assumptions [13], [15].

• The vector has a Semi-Markov representation con-
trolled by . is a function of the extended state

, which is a Markov chain with
transition probability a function of

It is assumed that for fixed in the effective domain of
the algorithm, the Markov chain has a unique
stationary asymptotic behavior. A special case of this is
when the transition probability does not depend on.

• The function may admit discontinuities, but it
is assumed that there exists amean vector fieldwhich is
regular and is defined by

where denotes the distribution of for
a fixed value and is the corresponding
expectation.

These assumptions are fairly general, and most of the LA
algorithms fit into this framework. To avoid possible confusion

will be explicitly denoted by the tuple in the sequel.
The advantage of such assumptions is that the algorithms’
behavior becomes tractable.

Under these assumptions, the associated ODE of the algo-
rithm (14) is given by

(15)

In addition, the large time behavior of the algorithm can be
approximated by the trajectory of the associated ODE [13].
This also follows from the following theorem of [15].

Theorem 2: Given sufficiently small and .
Then there exists a constant , with

and

Thus, the algorithmtracks the ODE for as large a time as
required, provided the learning parameter is small. Further,
whenever the ODE is globally stable with a unique stable equi-
librium point , the following result from [15] characterizes
the asymptotic behavior of the algorithm, with this additional
assumption:

• grows at most at a polynomial rate, and the growth
of the random term is similarly con-
trolled.

Theorem 3: Given sufficiently small; ODE (15)
globally stable with unique stable equilibrium point. Then
there exists a constant , with and

Thus for a small enough value of the learning parameter, the
algorithm tracks its associated ODE asymptotically with the
required accuracy.

In deriving the parallel version of algorithm (14) in the
framework just described, it is useful to rewrite (1) as

(16)

The parallel version of the algorithm is thus seen to
have an update vector which is just the sum of the update
vectors of LA employing the algorithms individually.
Using the same methodology, the parallel version of (14) is
obtained as

(17)

where replaces .
Following the same arguments as in the sequential case, the

associated ODE of (17) is

(18)

For a given , ODE’s (15) and (18) have the same set of
stationary points with identical properties. Further, (18) is
nothing but ODE (15) with the time axis compressed-fold. If

were fixed at the same value for both the ODE’s andwere
such that is within permissible limits, if any, then for a given

, ODE (18) which is faster by a factor of in comparison
with ODE (15), is tracked for a time within desired
levels of accuracy by algorithm (17). As regards asymptotic
accuracies in case of a unique stable equilibrium point, the
same arguments hold for both the algorithms. In particular, the
proposed procedure does not alter the asymptotic properties of
the sequential algorithm while parallelizing it.

Remark 5: The comments above would lead one to believe
that the speed of convergence could be improved arbitrarily
by increasing the value of as desired. This is in general
not possible, as in most cases, the increase infor a fixed

is limited by a ceiling on . A reason for this could be
the constraints on the state space; for example, most of the
LA algorithms maintain a state vector whose elements are
probabilities and it is necessary that . It is easy to
see that the behavior of the scheme whenis fixed and ,
and hence , are variable, is characterized by the strong law
of large numbers.

IV. COMMON PAYOFF GAMES

Common payoff games have traditionally served as models
for decentralized decision making and multivariable optimiza-
tion. A common payoff game among LA has each player
represented by an LA and the actions of the LA corresponding
to the player’s strategies [16]. Schemes wherein each LA uses
the algorithm have been studied in [8], [16], [17]. It has
been demonstrated in [8] that whenever the expected payoff
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matrix is unimodal, this strategy is-optimal. The multimodal
case is studied in [17]; it is shown that all the modes of the
matrix are stable equilibrium points of the associated ODE,
and the process weakly converges to the ODE trajectory as
the learning parameter value is reduced. Estimator algorithms
have also been considered for solving such games [9]. It has
been demonstrated that whenever the globally optimal strate-
gic combination is unique, the algorithm converges to that
combination with a high probability. However, the memory
requirement becomes a bottleneck as an estimate of the entire
payoff matrix has to be maintained.

A. Parallel Algorithm

The common payoff game considered in this section in-
volves players, each of whom comprises of a module
of identical LA. There are plays of the game at each
instant; play involves selection of action by theth mem-
ber of each module and their receiving a common payoff.
Thus there are teams, the th team consisting of theth
members of each module (player), . All the
features of algorithm (1) carry over to the game situation
also. The same notations apply here with the correspond-
ing change in interpretation. Specifically, each member of
module has actions and its action probability vector is

. now denotes the
action probability vectors of all the players put together and

denotes the corresponding quantity in the associated
ODE. The update for , the probability of selecting ,
the th action of the th player, is given by

(19)

where is the total payoff to at ;
for any ; and is the total payoff received

by any player at .
A brief outline of the analysis of this algorithm for the uni-

modal and multimodal case is given here. Since this algorithm
directly comes under the framework of the previous section,
all the analysis of that section holds here about the speed of
convergence.

1) Unimodal Case:Let be the unique optimum pure
strategy combination and be the corresponding pure strategy
action probability vector. Under this assumption, it is now
shown that algorithm (19) is-optimal.

Theorem 4: For a common payoff game with a unique pure
strategy equilibrium, algorithm (19) is-optimal.

2) Outline of Proof: 1) It can be shown that is the only
stable equilibrium point of the associated ODE (see previous
section). Hence whenever has all nonzero entries, the
ODE trajectory converges to . 2) The algorithm is strictly
distance diminishing [8] and the state space of the overall
Markov process is compact. Hence converges to the set
of absorbing states w.p. 1. 3) Given with all nonzero
entries, using arguments similar to those of [2], [8] it can
be shown that , where is the
corresponding variable of in the associated ODE. Hence
for any such that ,

TABLE II
MULTIMODAL GAME, LR�I , ~� = 0:00625

. 4) The algorithm tracks
an ODE which converges to faster by a factor of , with a
high degree of accuracy, for sufficiently small values of.

3) Multimodal Case:Whenever the common payoff ma-
trix is multimodal, it is observed that all the modes of the
matrix are stable equilibrium points of the associated ODE
[17], and the large time behavior of the algorithm can be ap-
proximated by the ODE trajectory for small learning parameter
values [13], [15]. The situation is similar to the single player
case in which the optimal action is not unique; the algorithm
converges to one of the modes with a high probability,
whenever the learning parameter is small. Comments made
in Section III about the speed of convergence readily hold in
both the unimodal and multimodal cases. It only remains to
verify these using simulation studies.

4) Example: Simulation results are presented for a two
player, two actions per player multimodal game. The game
matrix is given by

Entries 0.9 and 0.8 are the two modes of the matrix and
convergence to either mode is observed to occur. Convergence
is assumed when action probabilities corresponding to either
of the modes exceeds 0.95. Algorithm (19) is used for updating
the action probabilities of both modules of players. For each

, 50 runs of simulation were conducted, andwas chosen
such that no wrong convergence resulted in any of these runs.

was set to 0.006 25 and in each case. All action
probabilities start from 0.5. Speedups of the order of the
module size are observed from Table II.

B. Parametrized Learning Automata

Parametrized learning automata (PLA) have been employed
in [6] to achieve convergence to a global optimum in common
payoff games as well as feedforward networks. The updating
procedure in PLA involves a random walk term along with the
gradient following term, thus facilitating wide exploration of
the search space. Unlike simulated annealing, the random term
does not tend to zero; adaptation to time varying environments
is hence possible. With the addition of the random term, it is
difficult to preserve the internal state of the conventional LA
as a probability vector. This is circumvented by allowing the
internal state to be a vector in , and using a probability
generating function to obtain the action probabilities.

Although PLA are useful in achieving global convergence,
they tend to be quite slow. It is necessary to improve their
speed characteristics to make them utilizable in practical
problems. A parallel version of the PLA algorithm is presented
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here. The algorithm does not fit into the framework of the
analysis given in the previous section directly, as it involves
an additional random term. The analysis of [6] shows that the
large time behavior of the algorithm, with a small step size, can
be approximated by a stochastic differential equation (SDE).
A similar result holds here also and simulation studies clearly
indicate the improved speed performance.

1) Algorithm for Modules of PLA:A common payoff
game among players is considered. Player has
actions and his internal state is represented by

. is the vector comprising
and is the quantity

corresponding to in the associated SDE. , the
probability of selecting action of player , is obtained by
means of the probability generating function

As in the previous sections, each player now corresponds to
a module of size . Thus there are plays of the game at
any instant and theth play involves the th members of each
module selecting their actions and receiving a common payoff

. and denote the payoffs as in (19). The
update for is given by

(20)

where is given by

(21)

where are real and is a positive integer.
is a sequence of

i.i.d. random variables with zero mean and variance.
The third term on the right side is employed to bound the

solutions, while the last term facilitates exploration of the
search space. The algorithm could be regarded as the parallel
version of the algorithm of [6] as this can be obtained by
setting in (20). A brief outline of the analysis is now
presented.

• The large time behavior of the algorithm can be approx-
imated by the SDE [13]

(22)

where

for any

and is the standard Brownian motion of the appropriate
dimension.
• The invariant probability distribution of this equation can

be shown to be concentrated around the global optimum
of [18].

• Globally optimizing the function , can be shown to
be equivalent to globally optimizing the given common
payoff game [6].

The SDE could be regarded as a perturbation over an ODE
which is essentially the same equation without the random
term. Since the ODE in this case has a multiplicative factor
associated with it, the SDE could be regarded as a perturbation
over an ODE that converges faster by a factor ofin
comparison with the sequential case.

2) Example: This section considers simulation results for
algorithm (20) on a bimodal two player, two actions per player
game with the following payoff matrix

It is easy to see that options corresponding to 0.9 and 0.8
entries of the matrix are locally optimal; options corresponding
to the former being globally optimal. Each player has a scalar
internal state, since each of them has only one independent
action probability. Designating the internal states asand ,
and th player’s th action as , the probability generating
functions are chosen as

where denotes the action selected by theth member of
player (module) .

To demonstrate the efficacy of PLA, starting points biased
toward convergence to the local but not global optimum are
considered. The algorithm makes use of a large value of
standard deviation in the beginning, progressively reduces it to
a small nonzero value, and maintains this value constant later
on. No change in the analysis is required for handling this
case. For each value of, 20 simulation runs were conducted
and was chosen such that no wrong convergence resulted
in any of these runs. The value of was initially set to ten
and reduced as

where . is maintained constant at 0.01 once
falls below 0.01. The results are given in Table III

for the minimum value of for which correct convergence
resulted in every run. The other parameters of the algorithm
are . From the table it can be seen
that the improvement in speed is not linear in. This could
be attributed to the effect of the random term which has an
effective standard deviation of for a given , and the
different reduction parametersemployed in each case.

V. PATTERN CLASSIFICATION EXAMPLE

In this section, classification results on the iris data problem
are presented using feedforward networks of modules of LA.
The objective of the study is to demonstrate the improvement
in speed of convergence because of parallelization. Pattern
classification under both deterministic as well as stochastic
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TABLE III
MULTIMODAL GAME, PLA

setups are considered. A feedforward network is employed
for the purpose. The network in general, comprises three
layers [19]. The first layer has several units; each unit has
several LA which choose weights that multiply each attribute
of the input pattern. Each unit of the first layer outputs a
binary value which is computed as in case of the standard
perceptron. Thus the network is capable of learning as many
hyperplanes as the number of first layer units. Units in the
second layer perform the AND operation on the outputs of
selected units in the first layer and thus learn convex sets
with piecewise linear boundaries. The third layer performs
an OR of the outputs of the second layer units to give the
classification. The environment compares this classification
with its internal classification and provides a payoff to the
network. It is assumed that a unit payoff results on correct
classification; otherwise there is no payoff.

Convergence results for such a feedforward network are
identical to those of a common payoff game. Hence no
elaboration of these results is made here. A simplified version
of the iris data [20] is considered for studies using the parallel

algorithm for common payoff games (19). This is
a three class (iris-setosa, iris-versicolor, and iris-verginica)
problem with four features. Setosa is linearly separable from
the other two classes and the problem solved here is a two
class version ignoring this class. There are 50 samples from
each class with known classification. The network comprises
of nine first layer units and three second layer units. Each
first layer unit has five LA corresponding to the four features
and the threshold. All first layer LA have nine common
weight choices for their actions and the common weight set is

. All the first layer LA use a
starting value of 1/9 for all the action probabilities. Simulations
are reported both for 0% and 10% noise. In the latter case, 10%
noise means that the given classification of a randomly chosen
sample pattern is changed with probability 0.1. Comparisons
with backpropagation with momentum (BPM) algorithm [7]
have shown the superiority of the scheme; BPM did
not converge in noisy situations. Comparison was also carried
out with the quickprop algorithm [21]. In the zero noise
case, quickprop took, on the average, about 16 000 iterations.
This is comparable to the best performance obtained using
the proposed parallel algorithm with 4 LA. However, like
backpropagation with momentum, quickprop did not converge
in the noisy case. Even after 100 000 iterations, errors kept
fluctuating between 10% and 75%. Superiority of LA algo-
rithms in noisy circumstances is thus clearly established.

The objective of the following study is to improve the
speed performance of the sequential algorithm by employing
a module of LA. Simulation studies are presented in Fig. 2

Fig. 2. Learning curves based on average fractional error in classification
of Iris data.

for module sizes of 1, 2, and 4, respectively. The figure shows
the fractional error in classification averaged over ten runs
as a function of the number of iterations. The algorithm was
run in two phases; learning phase and the error computation
phase. During the learning phase no error computation is
performed. A sample pattern is chosen at random, and its
classification is altered with probability 0.1 in the noisy case.
Otherwise the given classification itself is maintained. The
network of modules classifies the pattern using its internal
action probability vectors and based on the payoffs obtained
by each module, the probability vectors are updated using (19).
The error computation phase was performed once every 250
iterations. The probability vectors were not updated during
this phase. The set of 100 sample patterns was presented
sequentially to the team of modules. This was repeated over
ten cycles and the fraction of patterns classified wrongly was
computed. Repeated presentations are meant to average out the
stochastic classification effects of the network to yield realistic
error estimates. As in the learning phase, classification of the
input pattern is altered with probability 0.1 in the noisy case.

The figures indicate the faster speed of convergence for
the larger module sizes, with learning parameters chosen such
that the limiting values of the error are approximately same
for the noise free and noisy cases respectively. The chosen
values for the limiting errors in the noise free and noisy cases
were 0.1 and 0.2, respectively. The values of , the
learning parameters used in the first and second layer units
are. respectively, (0.005, 0.002).

VI. CONCLUSION

An algorithm was proposed to operate a module of LA
in parallel. The algorithm was shown to be-optimal and
sufficiency conditions were derived on the learning parameter
value as well as the module size for the desired accuracy.
Improvements resulting in speed of convergence were the-
oretically shown as well as demonstrated using simulations.
The algorithm was shown to yield a general procedure for
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parallelizing a large class of LA algorithms in a shared memory
setup. The procedure was used to develop parallel and
PLA algorithms for teams of modules of LA to solve common
payoff games. Finally, pattern recognition examples under
uncertainty were considered to demonstrate the improvements
in speed of convergence resulting from parallel operation.
Applicability of the ideas of this paper to associative as
well as delayed reinforcement schemes and their operation in
more general setups such as multiteacher environments will
be reported elsewhere.
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