
Fuzzy Systems Evaluation: The Inference Error
Approach

A. Sala, P. Albertos

 Abstract −− An inference method based on an equation image of a
rulebase and the minimisation of a cost index (inference error) is here
presented. The method has several advantages : intuitive insight,
allows more powerful rules, and also presents an interesting algebraic
(minimum distance) and functional (subsethood) formulation of the
meaning of inference. Analysis of internal quality and completeness of
a fuzzy rulebase and validity checks of inference methods can be
expressed as numeric indexes. This is applied to logical verification of
common structures widely used in PID fuzzy controllers.

I. INTRODUCTION

Fuzzy logic [12] is a key element in the application of rule-
based systems to engineering (process control, diagnosis, etc.) by
integration of human knowledge. Nevertheless, there are various
implication [4] and defuzzification  methods [6], most of them
intuitively clear but having ‘fat shape’ problems or erroneus
output with nonconvex sets. To avoid this, other algorithms rely
on  entropy coefficients or heuristics[11].

In industry applications [1], the choice of fuzzy operators,
defuzzification methods and rulebase construction, are based on
easiness of implementation, user understandability and
experience, without any further optimisation or validation. Many
current practical fuzzy systems carry out mere interpolation under
a reasoning mask, alike to human solutions to some problems but
unnecesarily restricting fuzzy logic possibilities.

In the field of expert system verification and validation [7],
there is a need to generalise two-valued logic verification to the
fuzzy case. Automated binary logic tools [8] based on graphs,
decision tables [3], Petri nets, etc. have been devised. In this
paper, validation results are based on a generalisation of
contradiction from binary logic, being expressed as a cost index
(inference error) to be minimised.

The methods here presented define an ideal inference as a
reference point for comparison of other algorithms and rulebase
logic validation: for a coherent rulebase, inference will be
analogous to solving a set of equations; the concept will be
generalised so the correct conclusion will be the one that
minimises contradiction. This will allow extracting conclusions
even from inconsistent rulebases. An interpretation based on the
extension principle [13] presents rules as examples of the function
a rulebase models. This provides interesting insights into fuzzy
control design. See [5] for an alternate interpretation from vague
environments and extensional mappings.

Apart from providing validation methods of fuzzy inference
algorithms, the equation approach will provide ways to differen-
tiate IF from IIF rules and allow conclusions as ‘x is A  OR y is
B’, that do not easily fit in conventional paradigms.

The paper is structured as follows: first, rule equations are
presented. Contradiction and completeness are defined as
existence and uniqueness of solutions. Third section presents
rulebases as function approximators, formalising some heuristics.

The formulation of the inference error contradiction measure is
presented in section 4. The validation of centroid defuzzifiers
using triangular memberships in look-up table fuzzy controllers is
reported in the fifth section. A conclusion section will stress the
most important results.

 II. INFERENCE, RULES AND EQUIVALENT EQUATIONS

Logic, knowledge. In logic-based systems, knowledge is
usually available in both implication form (rules) and atomic
propositions with an associated truth value (premises). Two-
valued logic deals with operators defined over the {0,1} ({false,
true}) set. In fuzzy logic, the truth values lie in the interval [0,1].
Conjunction, disjunction and negation are triangular norms,
conorms and 1-complement, respectively. IMPLICATION(⇒) and
DOUBLE IMPLICATION(⇔) operators representing rules are
analysed in this paper. Generalisation of binary logic forms, such
as -A+B, is not obvious, leading to various interpretations [4].

Sets, concepts. Given a universe set U and a set A⊆U, “x is
A”- true is defined equivalent to x∈A. Concepts admitting quanti-
fication of meaning can be represented by fuzzy sets [12], defined
by membership functions (MF ) : the grade of membership to a
fuzzy set F⊆U is expressed by a function µF:U→[0,1]. Fuzzy set
intersection, union and complementation are generalised with the
appropriate fuzzy logic operators over their MF’s. Generalisation
of subsethood to fuzzy sets is an inequality: given two fuzzy sets
A and B, A⊆B if and only if µA(x) ≤ µB(x) ∀x∈U.

Inference. Given some premises, additional knowledge can be
inferred by proving truth values of a set of conclusions so that no
contradiction arises. Well established techniques are used in the
binary case. They cannot be carelessly extended to the fuzzy case.

A. Fuzzy  inference equivalent equations.

An equation image of fuzzy rulebases may be formed by an
implication equation that meets binary generalisation
requirements. For various reasons, the Lukasiewicz bounded sum
(“A ⇒B is true” equivalent to min(1,1-A+B)=1) is advantageous
over other choices, such as “Not A Or B is true” ≡ max(1-A,B)=1.
The former is equivalent to a simpler inequality, used as a basic
definition for implication.

Definition 1. The equivalent inequality that replaces fuzzy
implication “A⇒B - true” is defined as:            A≤B  (1)

Thus, the double implication “A⇔B - true”, represented as
A≤B and B≤A will be equivalent to the equation:    A=B  (2)

In this way, inference is transformed into solving a set of
equalities and inequalities. In composite propositions using the
AND, OR, and NOT logic operators, the algebraic representation
will be: min(A,B) , max(A,B) and 1-A .

A similar choice has been taken into consideration by some
authors (see [9]). The Gödel-Brouwer implication and other R-
implications [4] lead to the same inequality. The extension
principle and its relation with subsethood will prove that this
option has interesting properties (section 3).

Remark. Fuzziness is only existent in premises. Rules are
assumed stated as “A⇒B is TRUE”. Rule truth in the interval (0,1)
may lead to presumption, prejudice and paradoxes [9].
Intermediate cases will be dealt with by confidence functions, as
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reported in section 4.
If implication equations are combined with fuzzifiers

(membership functions for sets A, B over universes U and V for
variables x and y, respectively) they present the form:

   µ µ µ µA B A Bx y x y( ) ( ) ( ) ( )≤ =  (3)

for “IF x is A Then y is B” and its IIF version, respectively.
Definition 2. Given a fuzzified rule as in (3), the set of y that

are solution of (3) (given x) will be named conclusion set of the
rule. A rule is fired if its conclusion set is not the whole universe.

Note. By using equations no defuzzification is needed in
inference: ideally, only fuzzification exists. Defuzzifiers are just
algorithms devised to actually carry out the equation solving
(maybe an approximation of it) ; they are not a basic theoretical
entity. If some rules are contradictory then conflicts arise and no
solution exists (individual conclusion sets are disjoint). (See B.)

Other properties. Equation representation is a convenient way
to derive properties coming from intuitive insights or from
generalisations of binary logic, as pointed out by the following:

Proposition 1 (subsethood). If U ≡V in equation (3) then :
 " IF x is A  x is A*"→ ⇔ ≤ ⇔ ⊆µ µA Ax x A A( ) ( ) **

Proposition 2. ‘A⇒(B and C)’ - A≤min(B,C) - is equivalent to
{‘ A⇒B’,‘ A⇒C’} ≡{ A≤B,A≤C}. ‘( A or B)⇒C”≡{‘ A⇒C’,‘ B⇒C’}.

Proposition 3. (Chaining). As A≤B, B≤C imply A≤C , from
{‘ A⇒B’ , ‘B⇒C’} rule ‘ A⇒C’ is derived.

Definition 3.  Two sets M, N defined over a certain universe
are “fuzzy mutually exclusive” if ∀ + ≤x x xM Nµ µ( ) ( ) 1.

The definition arises because the postulated equation is that of
“If x is M then x is Not N” : membership sum of 1 is the
maximum “overlapping” for mutual exclusion. This is very
popular indeed in rulebase design (sect. 5), analogue to sets M
and N being disjoint over the Lukasiewicz t-norm [5].

B. Rulebase analysis and formal verification.

The utility of the presented algebraic image of rules is clear
when defining concepts such as coherence, contradiction and
redundancy in terms of existence and uniqueness of solutions of
the equation set formed by replacing each rule by its equation (3).

Definition 4. If, for a given set of premises, there exists at least
one solution to the equation set, the rulebase is said to be
coherent for these premises.

Definition 5. If, for a given set of premises, there exists exactly
one solution, the rulebase is said to be complete for the premises.

Definition 6. If, for a given set of premises, there exists no
solution, the rulebase is said to be contradictory for the premises.

Definition 7. If the elimination of an equation does not change
the solutions, the rule as well as the rulebase are said to be
redundant.

Definition 8. A candidate conclusion is said to be coherent
with a rulebase and its premises if it is a solution of the related
equation set (maybe it is not the only one).

A rulebase is coherent if the intersection of all of the
conclusion sets (Def. 2) is not empty. The inference error (section
4) evaluates a distance between conclusion sets in case of
conflict, to distinguish “absolutely contradictory” from “nearly
coherent” rulebases.
Example. The following fuzzy rulebase :
          1-If x is Low Then y is Not Low and z is Low
          2-Only if x is Medium Then y is Low

          3-If x is High Then y is High or z is High
is defined equivalent to the set of equations:

Low(x) ≤ min(1-Low(y), Low(z) )
Medium(x) = Low(y)
High(x) ≤ max(High(y), High(z) )

Given a particular x, a solution to the equations (values of y
and z verifying them) is, by definition, a conclusion of the
inference. Rule 1 is equivalent to { If x is Low Then y is Not Low,
If x is Low Then z is Low} (prop. 2). Rule 3 does not fit into
ordinary defuzzifier settings but it easily does here.

Given x, Low(y) is fixed by rule 2. So, in rule 1, 1−Low(y) is an
upper bound for Low(x) : unless Medium(x) and Low(x) verify
some restrictions - Low(x)≤1−Medium(x) -, contradiction arises :
either the rules or the concepts (MF’s) used in them are wrong.

III. FUNCTIONAL INTERPRETATION OF RULES.

In the following, subsethood (prop. 1) is extended to rules “If x
is A Then y is B” when modelling functions f:U⊂ℜn→V⊂ℜ with
fuzzy antecedents and consequents over U, V. It provides
interesting conclusions for applications in which fuzzy systems
are used as function approximators (typically, fuzzy controllers).

Definition 9. A function f is coherent with a rulebase if f(x) is
a coherent conclusion (Def. 8) for premise x, ∀x∈U.

The extension principle [13] is the starting point in the
exposition: a function f:U→V can be extended defining the image
of a fuzzy set A⊂U  by :   µ µf A

f x y
Ay x( )

( )
( ) sup ( )=

=

 (4)

Conversely, the inverse image of a set B∈Π(V) is given by:
µ µ

f B Bx f x− =1 ( )
( ) ( ( )) (5)

For bijective f, (4) transforms into:µ µf A Af x x( ) ( ( )) ( )=      (6)

It can be shown that the following properties are satisfied:
       f A A f A f A( ' ) ( ) ( ' )∪ = ∪

f A A f A f A( ' ) ( ) ( ' )∩ ⊆ ∩   (7)

        f B B f B f B− − −∪ = ∪1 1 1( ') ( ) ( ')

f B B f B f B− − −∩ = ∩1 1 1( ' ) ( ) ( ' )   (8)

   A ⊆ A* ⇒ f(A) ⊆ f(A*) (9)
B⊆ B* ⇒ f -1 (B)⊆f -1 (B*)  (10)
A⊆ f -1 (f(A)) (11)
 B=f(f -1 (B))  (12)

From (4), µ µM f Mx f x( ) ( ( ))( )≤                                   (13)

and (6) gives µ µf M Mf x x( ) ( ( )) ( )= , closely resembling (3).

Lemma 1. Given f:U→V and a fuzzy set N⊂V, f is coherent
with the rule  “x is M ⇔ y is N” if and only if M=f −1 (N).

Proof. If M=f-1(N) then : µ µ
f N Nx f x− =1( )

( ) ( ( )) , hence

y=f(x) satisfies (3),µ µM Nx y( ) ( )=  (Suff.).

If f is coherent with the rule, f(x) satisfies eq. (3)
µ µM Nx f x( ) ( ( ))= for all x, so it defines the set M given N, as

in (5), hence  M≡ f -1(N)  (Necess.).
Corollary. If f is coherent with the referred IIF rule, then

f(M)=N. Proved from (12). The reciprocal is not true as (11) does
not hold, in general, if ⊆ is replaced with an = sign. Thus, lemma
1 is not valid if stated with f(M)=N instead of M=f −1 (N) .

Lemma 2. Given a function f:U→V and a fuzzy set N⊂V , the
function is coherent with the rule “IF x is M THEN y is N” if  and
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only  if  M⊆f -1(N)   (or equivalently f(M)⊆N ).
Proof. If M⊆f  -1(N) then µ µ µM f N Nx x f x( ) ( ) ( ( ))

( )
≤ =−1

 so,

f(x) satisfies (3) (Suff.).
If f is coherent with the rule, µ µM Nx f x( ) ( ( ))≤ , i.e. less or

equal to that given by (5), so M is a subset of f  -1(N). (Necessity)

Observing the difference between (11) and (12), and the
difference between ∩ and ∪ in (7), the following definition names
a group of sets that do not have those differences.

Definition 10. Given f:U→V , if M⊂U verifies f -1 (f(M))=M
then it will be named as proper antecedent for function f.
Equivalently,  M is a proper  antecedent  if  it  exists a  fuzzy  set
N  in V such  that   M = f −1(N). Note that if f is bijective, all
antecedents are proper.

By application of lemma 1, only if M is a proper antecedent
then the rule “IF and only IF x is M Then y is f(M)” is coherent
with f. The analogous IF rule is also coherent (Lemma 2). Proper
antecedents and IIF rules present a function as a bijective one: the
consequent is the image of the antecedent and vice-versa, i.e. a
“one to one mapping” between sets (not between set elements).

Interesting properties derived from (4)-...-(13) hold for proper
antecedents. They help to identify and set them up in practice:

    - For any N∈V, f  -1 (N) is a proper antecedent (12).
    - If and only if M is a proper antecedent, it satisfies
             -f x f x x xM M( ) ( ) ( ) ( )1 2 1 2= ⇒ =µ µ
             - Even with f not bijective,µ µf M Mf x x( ) ( ( )) ( )=
Proposition 4. Union and intersection of proper antecedents is

also a proper antecedent. Proof omitted for brevity.

A. Intuitive interpretation of the lemmas.

The intuitive meaning of the inverse function of a set N may be
such as “all the input conditions producing an output in N”. So,
the lemmas agree with intuition: “An IF rule has in its antecedent
some of the inputs in which its consequent is produced” , “An IIF
rule has in its antecedent all of them”.

This interpretation and (11) can be cast together: the outputs
for input M (i.e., f(M) ) are a subset of N. That implies either that
M could be “extended” up to including all situations in N (i.e.
being proper) or that N could be “reduced” to include only the
actions in f(M). The rules in which N cannot be “reduced” will be
now defined:

Definition 11. Rules in which f(Antecedent)=Consequent are
called proper rules with respect to function f.

All coherent IIF  rules are proper but some IF rules are not.
Example (nonfuzzy). Being f(x)=x² , x∈[-5,5], “x is {2,3}⇒y

is {4,9,16}” is coherent with f. Lemma 2 holds as {2, 3} ⊆ {2, -2,
3, -3, 4, -4} = f -1 ({4, 9, 16}) , but the rule is not proper. The
proper one is “x is {2,3}⇒y is {4,9}”. The proper antecedent of
{4,9} is {-2,2,-3,3} : “IIF x is {-2,2,-3,3} Then y is {4,9}”.

Given a function and an antecedent M, proper rules have the

“minimum” (most precise) consequent N. All supersets of N form
coherent IF rules. Conversely, for a given consequent N, proper
antecedents refer to a “maximum” antecedent M. All subsets of M
form coherent IF rules with N.

Proposition 5. If rules “A⇒B”, “A* ⇒B*” are coherent with a
function f, then “A∩A* ⇒B∩B*” and “A∪A* ⇒B∪B*” are also
coherent. The proposition also holds for IIF rules. Proof : If
A f B⊆ −1( ) , A f B* ( *)⊆ −1  , then A A f B f B∩ ⊆ ∩− −* ( ) ( *)1 1

and A A f B f B∪ ⊆ ∪− −* ( ) ( *)1 1 , and then apply (8).

Proposition 6. Proper rules satisfy MF peak equality:
max u max y
u U

A
y Y

C∈ ∈
=µ µ( ) ( ) . Proof easily derived from (4).

Proposition 5 enables rule combination guaranteeing coherence
but, in general, proper IF rules only remain proper if combined
with the union operator (7). Properness precisely defines
intuitively “useful”, “well-behaved” rules. If improperness is
present in some rules, it may lead to rulebase incompleteness.

IV. INFERENCE ERROR

Up to this point, inference over coherent rulebases and
transformations that keep coherence have been established. This
section presents approximate inference with inconsistent
rulebases, keeping previous results and intuition. The approach is
based on a cost index minimisation. The index is a conceptual
distance from a candidate conclusion to the conclusion set of each
rule. This distance will assess how many rules are in contradiction
if a conclusion is assumed.

A functionε:[ , ] [ , ]0 1 0 1× → ℜ + -rule inference error (IE ) - is

defined, such that ∀ ∈x y, [ , ]0 1 ε( , )x y ≥ 0andε( , )x y = ⇔0 x

is a solution of the rule equation. In the binary case, IE is a
function {0,1}x{0,1}→ℜ+. When a conclusion is inconsistent it is
defined as 1 to denote that one rule is contradicted (Table 1).

Definition 12.  Once the inference error for each rule has been
defined, the cost index formed by adding all the individual error
functions will be called global inference error of the rulebase.

The global IE is equal to the number of contradicted rules for a
particular combination of premises and conclusions. IE will be
null only at the solutions of the equations. Thus, inference
consists on finding the zeroes of the global IE.

Definition 13. The inference error functions
ε:[0,1]×[0,1]→[0,1] for fuzzy IIF and IF rules are (see Fig. 1) :

ε IIF
pA B B A( , ) = −  (14)

ε IF pA B
A B

A B A B
( , )

( )
=

≤
− >





0  (15)

where p>0 is a design parameter with reference value p=1. Higher
values relatively reduce small errors and lower do the opposite.

IE functions are a gradation of contradiction: a conclusion B
may be coherent with premise A and a rule (ε=0), it may be fully

A B εIIF εIF

0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 0

Table 1. Inference error definitions (binary case).

Fig. 1. Fuzzy inference error .
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contradictory (ε=1) or it may lie somewhere in between.
When combined with fuzzification, the following IE functions

ε:U×V→[0,1] are obtained (a and c superscripts stand for
antecedent and consequent MF’s, respectively):

ε µ µIIF
a c p

u y u y( , ) ( ) ( )= −

( )ε
µ µ

µ µ µ µIF

a c

a c p a cu y
u y

u y u y
( , )

( ) ( )

( ) ( ) ( ) ( )
=

≤
− >





0
    (16)

Rules are thus substituted by an equivalent IE representation.
A rulebase can be represented by aggregating the individual rule
IE functions (n is the total number of premises and conclusions, N
the number of rules, and U, V, W, ... the universes of discourse of
all premises and conclusions):

ε: [ , )U V W× × × → ∞� 0

ε φ ε( ) ( ) ( )x x xi i
i

N

=
=

∑
1

 (17)

where x x x xn= ( , ,..., )1 2 is a vector consisting of all known

premises and unknown conclusions, εi are the individual IE
functions and φ i U V W: ( , )× × × → ∞� 0  are user-defined

confidence functions that express the relative importance a rule
may have (in practice, they are constant confidence levels).

Once defined the IE function ε(x) for a rulebase, a redefinition
of inference enables concluding from  non-coherent rulebases.

Definition 14. Given a rulebase, the ideal conclusion for some
premises is the set of values that minimise ε(x).

Minimising ε is equivalent to minimising the number of rules
in contradiction weighted by their confidence level : ideal
inference finds a “central” conclusion given each rule’s
conclusion set, calculated on the basis of the presented conceptual
distance (IE contradiction measure), not on geometric distance.

Remark. Although in a general case ideal inference may
involve complex minimum search algorithms, piecewise linear
MF’s produce piecewise linear IE curves, so successful
implementation of ideal inference is feasible with low computer
requirements. If MF’s are carefully arranged, other inference-
defuzzifying algorithms, as centroid ones, provide consistent
conclusions (see section 5).

Definition 15. Given a rulebase B with IE function
ε :U×ℜ→ℜ and a function f:U→ℜ, being U the domain of the
premises of B, the error at (u,f(u)) is named as coherence
mismatch index between R and f at u∈U. The index denotes how
many rules are in contradiction if the fuzzy system tries to model f
or conversely if f tries to model ideal inference on B (section 5).

Example. Let us consider the triangular MF’s (for input and
output) labelled Negative, Zero, Positive, depicted in Fig. 2.
Considering the rule “IIF u is Zero Then y is Zero”, its IE is given
by ε(u,y)=|Zero(u)-Zero(y)|. Some values are presented in table 2.
For example, for premise u=-1, the conclusion set is y={-1,1}.

IE for rule 1 is plotted in the contour map in Fig. 3. Table 2 is a
particular case. For premise u=-0.5, the error curve as a function
of y (Fig. 4) is given by: ε(y)=|0.33−Zero(y)|, i.e., a vertical (u
constant) cut on the represented surface. When u is “Not Zero” it
may be either positive or negative, so incompleteness arises.

As a further example, the following rulebase can be analysed:
{“IIF u is Positive Then y is Positive”, “IIF u is Negative Then y
is Negative”, “IF u is Zero Then y is Not Zero”}. It is
contradictory when u is Zero : ε(0,0)=1,..., ε(0,-1)=1, ε(0,1)=1.
No contradiction arises if u is not significantly “Zero”. IE would
have changed if different confidence levels had been introduced: if
the third rule had a confidence level of 0.5, the error at (0,0)
would have been 0.5, hence the ideal inference would have
concluded that for premise u=0 the “optimum” conclusion is y=0,
because even contradicting rule 3, other “more confident” ones
say that it is the correct conclusion.

V. VALIDATION OF FUZZY SYSTEMS.

A fuzzy control system can be considered as a black-box with a
set of input and output physical variables that produces a function
approximation. Internally, fuzzification, inference and
defuzzification are carried out (see [2], [6], [10], etc.).

The IE coherence mismatch (def. 15) validates a rulebase
approximating a function. It may be used in the opposite way:
given a fuzzy rulebase, the function encoded in it is recovered by
finding the f that makes IE as low as possible. If f is restricted to
be a classical technique (fuzzy relations, centre of mass, etc.), a
validation method is thus defined: If f(x) is the output of a
fuzzification-inference-defuzzification paradigm over a coherent
rulebase, its coherence mismatch is a quality measure of  valitidy.

Thus, IE minimisation may not need to be actually

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Fig. 2. Example membership functions.
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 0.07

 0.3

 0.3

 0.3
 0.3

 0.7

 0.7

 0.7  0.7

 0.96

 0.96

 0.96  0.96

u

y

Fig. 3. Fuzzy IE curves for u is Zero ⇔  y is Zero

Fig. 4. Inference error for u=-0.5 .

u y Zero(u) Zero(y) ε
-1 -1 0 0 0
-1 0 0 1 1
-1 1 0 0 0
0 -1 1 0 1
0 0 1 1 0

Table 2. Some error values for  u is Zero ⇔  y is Zero



Fuzzy Systems Evaluation. The Inference Error Approach.

implemented in a particular system. If the conclusions of the
actual algorithm (for example, centroid defuzzification) have a
low inference error, its validity is asserted. Nevertheless, the
validity depends on particular rules and MF arrangements. For
example, with fat shape or non-convex sets (NotIntermediate =
Small OR Big), centroid methods may provide invalid outputs. In
that case MF rearrangement or changes in the defuzzifier
algorithm are needed : The IE approach can be used to assess
which one of various conventional inference algorithms, and in
which circumstances, is best, based on algebraic and extension
principle considerations, and not on mere heuristic reasoning.

Example. Given the MF’s (Low, Medium, High) identical for
input and output depicted in Fig. 5, the rulebase probably given
by an expert modelling the identity function y=x would be :
 { x low ⇔ y low  ,  x medium ⇔ y medium ,  x high ⇔ y high}

Representing the rules by Low(x)=Low(y), ..., and using the IE
functions (16), the global IE is shown in Fig. 6. y=x is the only
coherent function, as intuitively expected. However, with the
proposed input MF’s, if a center of mass-like defuzzification :

out
x y A

x A
i i i

i i

= ∑
∑

µ
µ

( )

( )
 (18)

is used, no values of y Ai i,  can be found to produce y=x. For

example, for output centroids (0, 0.5, 1) and Ai=1 the output in
Fig. 7 is produced.

Superimposing  Fig. 7 and Fig. 6 the defuzzifier can be
validated with respect to consistency. The IE obtained for the
centroid algorithm (as a function of x) is shown in Fig. 8, both for
the IIF and IF  rulebase versions. Around 0.3-0.4 and 0.6-0.7 the
output is most contradictory: 0.25 (IF rules), 0.6 (IIF rules). As
IIF rules are more ‘specific’, the error is bigger.

Hence, contradiction arises from the defuzzifying method and
not from the rulebase. Note that an “ideal” algorithm should
reproduce the identity function as it is the only coherent one.

The procedure can be applied to validate any fuzzy system. A
widely used one will be considered to illustrate the approach.

Definition 16. A set of MF’s µ k u( )  k=1,...,n defined over an

interval [a, b]⊂ℜ is an add-1 normal fuzzy partition if there
exists a set of points {uj} such that u uj j< +1  j=1,...,n ; u1=a,

un=b, the MF’s satisfying the following conditions:
- µ k u( )=0  ∀ u ∉ [uk-1, uk+1] ,  1<k<n ; µ k ku( ) = 1, k=1,...,n

- µ1(u) , µn(u)=0 outside [a, u2] and [un-1, b], respectively
-in the interval [uk, uk+1] µ µk ku u( ) ( )+ =+1 1    k=1, ..., n-1

Note that these sets are fuzzy mutually exclusive (Def. 3).
If µ k u( )  1<k<n are triangular fuzzy sets, the partition is

named triangular add-1 normal partition.
Lemma 3. If a fuzzy system has the structure:
1. n input MF’s µ k

i u( )  for fuzzy sets Ik defined in such a way
that they conform and add-1 normal fuzzy partition over a 1-
dimensional input universe [a,b] (Fig. 9),
2. m output MF’s for fuzzy sets Ok defining a triangular add-1
normal partition  (Fig. 9),
3. a rulebase formed by n rules:rpq :  “IF u is Ip Then y is Oq”

ordered in the form { r1c(1), r2c(2), ...,  rnc(n) }
so that for any two consecutive rules, their consequents verify
|c(i)-c(i+1)|≤1 (output MF’s are either adjacent or identical),

then the following results hold :
    a)    The rulebase is coherent.
    b) The centroid defuzzification method (equivalently, the

one-dimensional lookup-table linear interpolation):

y u u y ui c i
i

n

i
i

n

* ( ) ( ) • ( )( )= 









= =

−

∑ ∑µ µ
1 1

1

             (19)

is coherent (performs ideal inference) for u∈[u1, un].
    c) If ∀i |c(i)-c(i+1)|=1 , the rulebase is complete so this

defuzzifier produces the only possible coherent function.

Fig. 5. Memberships for validation example.
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Fig. 6. Intuitive modelling of y=x - IIF rules.
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Fig. 7. Centroid defuzzifier output.

 
Fig. 8. IE of the centroid algorithm as a function of x.

Fig. 9. Memberships for coherent CDG defuzzification.
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Corollary. If |c(i)-c(i+1)|>1 the rulebase is contradictory.   �
Proof: The denominator term in (19) equals 1 for all u in the

domain. If only one rule (say rule j) fires with strength 1, the input
is obviously uj, and the defuzzifier output is y*  = yc(j) . This value
is coherent with rule j as:µ µc j c j j jy u( ) ( )( ) ( )= ≥ =1 1, as well

as with the rest of the rules:
  µ µc k c j k jy u k j( ) ( )( ) ( )= ≥ = ∀ ≠0 0 .

If two consecutive rules j and j+1 are fired so u∈(uj, uj+1) ,
ideal inference produces the following conclusion sets Ck(u):

- “anything” for non-fired rules : Ck(u)=[a,b] k ≠ j , j+1
- the interval in which output membership is greater or equal to

the input one, for rules j and j+1, according to equation (3) :

[
]

C u u y u y

u y u y

j j c j j c j

j c j j c j

( ) ( ) ( ( )) ,

( ) ( ( ))

( ) ( )

( ) ( )

= + −

+ −

−

+

µ µ

µ µ

1

1

1

1

[
]

C u u y u y

u y u y

j j c j j c j

j c j j c j

+ + + + + −

+ + + + +

= + −

+ −

1 1 1) 1 1) 1

1 1) 1 1) 1

1

1

( ) ( ) ( ( )) ,

( ) ( ( ))

( (

( (

µ µ

µ µ
Taking into account that  1 1− = +µ µj ju u( ) ( )  and that if the

output functions are consecutive, as stated in assumption 3 of the
lemma, then either c(j)-1=c(j+1) or c(j)+1=c(j+1) is true, i.e.
either the left or the right endpoint of Cj(u) is an endpoint of
Cj+1(u) and that point is exactly the interpolative defuzzifier
output y*. Note that, as the intersection of the two conclusion sets
has only one element in it, the rulebase is coherent and complete.
If c(j) or c(j+1) are 1 or m, the treatment is similar. If consequents
are identical c(j)=c(j+1), (19) yields y* = yc(j), i.e. the peak
membership point of the conclusion sets, hence a coherent
solution (but not the only one).

Lemma 3, stated for single input functions, cannot be fully
extended to multi-input fuzzy systems with antecedents
conformed by using the AND connective among add-1 partitions

for each input. These antecedents conform a partition of the input
space in fuzzy “tiles” (hypercubes in general) that may be not the
most suitable to model arbitrary n-dimensional surfaces.

Nevertheless, interesting properties can also be derived for
them. To show the additional difficulties, extension of this lemma
to 2-input functions f:U×V⊂ℜ²→ℜ, y=f(u, v) will be considered.

The MF arrangement to be analysed will be that in which two
1-dimensional add-1 normal fuzzy partitions with m and k fuzzy
sets, respectively, are defined over two intervals U and V that act
as input universes. The 2-D domain is partitioned into m×k fuzzy
sets by using the AND (minimum) connective.  MF’s will be
assumed continuous, as well as the function f to be modelled.

Coherent consequents must be obtained from these antecedents
via the extension principle, so m×k rules are built in the form:

rspq :  “IF (u is Is) and (v is Jp) Then y is Oq”
where Oq is the image of the antecedent with respect to f. The

rules are arranged in the rule array: {r11c(1,1), r12c(1,2) , ... , rmkc(m,k)}
For linear f and triangular input MF’s, overlapping triangular

fuzzy consequents form coherent proper rules (see example A in
this section). This is important from the practical point of view :
linear controllers can be modelled by a coherent fuzzy system
with proper rules with triangular sets. Nonlinear functions may
be also modelled by this kind of MF’s and coherent rulebases, but
rules lose their properness if triangular output consequents are
kept (they must be supersets of the non-triangular proper ones).

With the described input MF’s, equal membership zones in the
U×V input space are rectangular (maybe with “thick” edges
corresponding to equal membership intervals in the 1-D
functions). These rectangles surround at least one “center” point
with membership 1, contained in its interior, corresponding to the
peak membership points of the 1-D MF’s. Those centers define a
kind of “fuzzy grid”. Any point in the input space has nonzero
membership in at most 4 sets : no more than 4 rules can be fired
simultaneously.

Notwithstanding, the use of these simple antecedents
intuitively implies the assumption that function f has local
behaviour around the peak points similar to the referred “tiles”
(i.e., that those tiles are defined by fuzzy sets that group
qualitatively similar function outputs). If f does not have that
response, maybe the antecedent arrangement here analysed is not
the most efficient one. Not even linear functions have this property
(see example A). In fact the possibility of incompleteness arises
due to improperness in antecedents. Note that this incompleteness
is neither counter-intuitive nor so detrimental : in the general case,
there are various ambiguous alternatives to carry out 2-D
interpolation between 4 points.

Proposition 7. In the presented arrangement it can be shown
that it does not exist a continuous function  f for which all the
antecedents are proper. The proof is omitted for brevity.

The following examples illustrate improperness, even with
linear functions, and asses the incompleteness level.

A. Application examples: P, PD (PI) fuzzy controllers.

The MF organisation and defuzzifiers just analysed are widely
used to model nonlinearities in P, PD and PI fuzzy controllers.

Proportional controllers (u=k·e) obtained from add-1 normal
fuzzy partitions at the input variable are coherent, and centroid
defuzzification can be used (lemma 3) in fuzzy models of a linear
or piecewise linear P controller with triangular input MF’s.

Fig. 10. 2-D antecedents for PD controller.

. 0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

Fig. 11. Consequents for linear f(e, �e) .

Fig. 12. Proper antecedent of a consequent in Fig. 11.
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In 2-variable PD-like fuzzy controllers u=f(e, �e) rule
antecedents  are similar to the ones shown in Fig. 10 (from two
triangular input partitions). They produce images, if a linear PD
controller is modelled, as shown in Fig. 11. Notwithstanding,
proper antecedents (inverse image) for those consequents  have
the shape described in Fig. 12. The antecedents in Fig. 10 are
subsets of these ones. This fact gives rise to incompleteness in
some zones of the input space. For example, with y=u+v,
u∈[0,1], v∈[0,1] with two linear fuzzy sets on each input
universe, all possible coherent interpolations are the functions
between the two surfaces shown in Fig. 13.

The centroid inference-defuzzification algorithm given by:

{ }
η µ µj

a b r
a bmax min u v

abj

=
∃,

( ( ( ), ( )))

y u v yj j
j

m

j
j

m

* ( , ) /=
= =

∑ ∑η η
1 1

                                    (20)

is not fully coherent with the rule base, but it is coherent in almost
all the domain, and its maximum inference error is 0.05 at the
most incoherent points (for y=a+b), as shown in Fig. 14. Hence, it

can be used in practice with linear 2-D functions to yield nearly
ideal inference results.

B. Nonlinear fuzzy controllers.

One of the main reasons to use fuzzy systems in control is their
ability to model nonlinearities. In the same way that linear or
piecewise linear P-like controllers have been analysed, general
static nonlinear controllers u=f(e) can be modelled by using non-
linear input MF’s (for example, polynomial-based ones, as in Fig.
9). In most practical cases these nonlinear controllers implement
monotonic functions. The application of the extension principle to
those functions is simple and intuitive.

As an example of a two-variable nonlinear design, a  PD
controller with control action and derivative saturation will be
designed to be implemented on a fuzzy system. The controller
must achieve the control surface plot shown in Fig. 15.

Two add-1 normal partitions on error (e) and error derivative
( �e ) inputs with triangular MF’s will be defined. Each partition
will have 5 fuzzy sets {negative big, negative small, zero,
positive small, positive big}, with peaks at -1, -0.5, 0, 0.5, 1
respectively. They define 25 fuzzy 2-D antecedents. The
consequents, calculated by the extension principle, are represented
in Fig. 16.

For e=PB AND de=PB the consequent is a singleton (+2), as
well as for e=NB,de=NB (-2), because all the zone covered by the
antecedent attains a constant value. An algorithm that does not
produce exactly that value would contradict that rule. Note also
that piecewise linear proper consequents are produced due to the
selection of the antecedents and the particular geometry of the
control surface. That would not be the case in a general situation.

Inference error of a centroid algorithm that uses the peak
values as centroids, weighted by equal areas, produces an IE plot

Fig. 13. Incompleteness due to improper antecedents.
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Fig. 14. Inference error for 2-D centroid defuzzifier
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Fig. 17. Inf. error for CDG defuzzifier.
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Fig. 15. Characteristic surface of a nonlinear controller.
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Fig. 16. Consequents for proper rules.
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shown in Fig. 17-(A). If the weighting would have been
proportional to areas, and inverse proportional to them, the
inference error would have been the one shown in Fig. 17-(B) and
Fig. 17-(C), respectively. Hence, in this case, the most valid
defuzzifier is the one that does not take into account area
weighting, as in the one-dimensional case.

Note that formal validation has been analysed for 1-D and 2-D
controllers, in a very restricted set of MF design possibilities. The
more the required properties are not fulfilled the more intuitive
“problems” (now clearly formulated) pose the referred
defuzzification methods. That is the reason why most of the
practical implementations of fuzzy controllers have the MF
arrangement as in lemma 3 or in the 2-D analysis.

A. Rulebase design tips for valid centroid defuzzification.

In order to keep the centroid defuzzification coherent, the
following design tips for function approximation can be stated :

1. Rules have to be assumed of “IF” type.
2. Antecedents should have MF’s conforming add-1 partitions.
3. Antecedent and consequent should be normal sets (peak 1).
4. Input and output MF’s should verify extension principle (if

the function to be modelled is explicitly known).
5. In fuzzy 1-D lookup tables (piecewise linear interpolation)

consequents should be triangular add-1 normal partitions.
6. For 2-D functions,
(a)- if sufficient knowledge about the function geometry is

available, proper antecedents as well as triangular add-1
consequents should be used to get perfect coherence.

(b)- Assuming linear objective functions, the use of improper
antecedents obtained by AND operation over two triangular add-1
partitions with overlapping triangular consequents (Fig. 10) will
result in satisfactory operation from the IE point of view. For
arbitrary non-linear functions, centroid algorithms may be highly
incoherent (as shown in the example with IE over 0.4) -this is an
“inference error” version of the fact that these interpolations
cannot model arbitrary functions in middle points- (If improper
antecedents are used even ideal inference is not complete).

7. Centroids should be set equal to the values having peak
output membership, in both 1-D and in 2-D arrangements. The
examples here analysed suggest that the “area” consideration in
the defuzzification formula does not improve the results.

8. Rules with neighbouring antecedent must have
neighbouring consequents for the rulebase to be coherent.

If the MF arrangement is not similar to the ones here exposed
centroid defuzzification may be a not valid inference algorithm.
The worse situations occurs with nonconvex consequents when
taking its center of mass or mean of maxima as centroid: even
totally contradictory results (ε=1) may be produced.

VI. CONCLUSIONS

An equation-based representation of fuzzy logic rulebases has
been presented taking into account the extension principle, the
fuzzy subsethood formulas and the Lukasiewicz implication.

By this representation, rules may be understood as examples of
a function to be modelled obtained by applying that function to
some fuzzy sets. The concepts of proper rules and proper
antecedents formalise intuitive notions such as equality of
membership peaks and differences between IF and IIF rules.

By defining an error function related to the rule equations, ideal
inference is defined in terms of minimisation of the global
rulebase contradiction. Confidence levels stand as weights on the
error function. Rulebase and defuzzifier validity can be formally
checked. As one of the most prominent applications of fuzzy
systems is fuzzy control, their use as function approximators has
been discussed and the validation of common fuzzy inference-
defuzzification strategies for static nonlinearities y= f(u) or y= f(u,
v) for P and PD-like fuzzy controllers has been carried out. As
expected, they are similar to ideal inference if consequents are
triangular add-1 partitions. They produce results with very low
inference error in most of the commonly used cases.

The concepts here defined pave the way to further research on
automatic knowledge acquisition supervision: detection of
contradictions, rulebase simplification (elimination of redundant
rules), multi-expert fusion and efficient learning.
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