Fuzzy Systems Evaluation: The Inference Error ~ The formulation of thenference errorcontradiction measure is
Approach presented in section 4. The validation of centroid defuzzifiers

using triangular memberships in look-up table fuzzy controllers is

reported in the fifth sectiorA conclusion section will stress the
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most important results.

Abstract— An inference method based on an equation image of a
rulebase and the minimisation of a cost index (inference error) is here [l. INFERENCE RULES AND EQUIVALENT EQUATIONS

presented. The method has several advantages : intuitive insight, Logic. k led In logic-b d temsknowledae i
allows more powerful rules, and also presents an interesting algebraic ogic, knowledge.[n logic-based Systemsy geis

(minimum distance) and functional (subsethood) formulation of the Usually available in both implication fornrues) and atomic
meaning of inference. Analysis of internal quality and completeness oforopositions with an associatecuth value (premisey Two-
a fuzzy rulebase and validity checks of inference methods can bealued logic deals with operators defined over the {0,Tal§e
expressed as numeric indexes. This is applied to logical verification ofrg}) set. In fuzzy logic, the truth values lie in the interval [0,1].
common structures widely used in PID fuzzy controllers Conjunction, disjunction and negation are triangular norms,
conorms and 1-complement, respectivalyPLICATION(O ) and
DOUBLE IMPLICATION(<«=) operators representingules are

Fuzzy logic [12] is a key element in the application of rulgnalysed in this paper. Generalisation of binary logic forms, such
based systems to engineering (process control, diagnosis, etay BB, is not obvious, leading to various interpretations [4].
integration of human knowledge. Nevertheless, there are variousets, conceptsGiven auniverse set) and a seADU, “X is
implication [4] and defuzzification methods [6], most of thepr-trye is defined equivalent tJA. Conceptsadmittingquanti-
intuitively clear but having ‘fat shape’ problems or erronegisation of meaning:an be represented hyzzysets[12], defined
output with nonconvex sets. To avoid this, other algorithms rSiNmembership‘unctions(MF) : the grade of membership to a
on entropy coefficients or heuristics[11]. fuzzy setFOU is expressed by a functige:U - [0,1]. Fuzzy set

In industry applications [1], the choice of fuzzy operatof§iersection union andcomplementatiomre generalised with the
defuzzification methods and rulebase construction, are base%ldﬂf?opriate fuzzy logic operators over their MF's. Generalisation

easiness of implementation, user understandability pdpsethoodo fuzzy sets is an inequality: given two fuzzy sets
experience, without any further optimisation or validation. MaRY. dB ACB if and only ifpa(X) < ps(x) OxOU.

current practical fuzzy systems carry out mere interpolation undefnference Given someremisesadditional knowledge can be

a reasonin'? mask., ?‘""ef to hulmgn SOIUt.IS.T.S. to some problem§nk?ghed by proving truth values of a set@nclusionsso that no
unnecesarily restricting fuzzy logic possibilities. 7;’cl)ntradictionarises. Well established techniques are used in the
t

|. INTRODUCTION

In t.he field of expert system verification ‘?nd v.alllda_t|on [ inary case. They cannot be carelessly extended to the fuzzy case.
there is a need to generalise two-valued logic verification to the

fuzzy case. Automated binary logic tools [8] based on graphs : . .

deci)s/ion tables [3], Petri nets, etc. have been devised. In t.ilS:uzzy inference equivalent equations.

paper, validation results are based on a generalisationArofequation image of fuzzy rulebases may be formed by an

contradiction from binary logic, being expressed as a cost inskeplication equation that meets binary generalisation

(inference erroy to be minimised. requirements. For various reasons, the Lukasiewicz bounded sum
The methods here presented defineideal inference as a(“AC B is true” equivalent tomin(1,1-A+B)=1) is advantageous

reference point for comparison of other algorithms and rulebager other choices, such as “Not A Or Brise” = max1-A,B)=1.

logic validation: for a coherent rulebasiference will be The former is equivalent to a simpler inequality, used as a basic

analogous to solving a set of equations; the concept will deginition forimplication

generalised so the correct conclusion will be the one that _ .. _ . .

minimisescontradiction This will allow extracting conclusions, D_ef'n_'t'orl 1. The eqyullvaler)t inequalitythat replaces fuzzy

even from inconsistent rulebases. An interpretation based orlfplication "AL B - tru€' is defined as: A<B 1)

extension principle [13] presents rules as examples of the functiofhus, thedouble implication“A«~ B - true’, represented as

a rulebase models. This provides interesting insights into fu&zB andB<A will be equivalent to the equationA=B 2

control design. See [5] for an alternate interpretation from vague i way, inference is transformed into solving a set of

environments and e.x.tensmn.al mappings. , equalities and inequalities. In composite propositions using the
Apart from providing validation methods of fuzzy inferenc . . .

. . . ! . ND, OR, and NOT logic operators, the algebraic representation
algorithms, the equation approach will provide ways to differén

tiate IF from IIF rules and allow conclusions ass A ORYy is will be; m_m(A,B)., max(A,Band 1A . . . .
; P ; . A similar choice has been taken into consideration by some
B', that do not easily fit in conventional paradigms.

The paper is structured as follows: first, rule equations gtrjéhors (see [9]). The Godel-Brouwer implication and oRer

. . icati i ity. Th i
presented. Contradiction and completeness are deflnedlmé?gwnonS [4] lead to the same inequality e extension

existence and uniqueness of solutions. Third section res%rr%?s(:iple and its relation with subsethood will prove that this
q ) P jon has interesting properties (section 3).

rulebases as function approximators, formalising some heurisagﬁemark Fuzzinessis only existent in premises. Rules are

Manubscript received ... assumed stated as [AB is TRUE. Rule truth in the interval (0,1)
may lead to presumption prejudice and paradoxes [9].
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reported in section 4. 3-Ifx is High Theny is High or z is High
If implication equations are combined with fuzzifieris defined equivalent to the set of equations:
(membership functions for sefs B over universed) andV for Low(x) < min(1-Lowy), Low(2) )
variables< andy, respectively) they present the form: Medium(x) = Low(y)
HA0) < () 1009 = () ® High(x) < maxigh(y), High(2) )
for “IF x is A Theny is B” and its IIF version, respectively. Given a particulak, a solution to the equations (valuesyof

Definition 2. Given a fuzzified rule as in (3), the setyofnat @nd 2 verifying them) is, by definition, a conclusion of the
are solution of (3) (givem) will be namedconclusion sebf the [nference. Rule 1 is equivalent to {Xfis Low Theny is NotLow,
rule. A rule isfired if its conclusion set is not the whole universell X is Low Thenz is Low} (prop. 2). Rule 3 does not fit into

Note. By using equations nalefuzzification is needed in ordlr?arydefuzmﬂe.rse'ttmgs but it easily QOes here. .
inference: ideally, onljuzzificationexists. Defuzzifiers are just GiVenx, Lowly) is fixed by rule 2. So, in rule 1-Low(y) is an
algorithms devised to actually carry out the equation solvitigPer bound folL.ow(X) : unlessMediun(x) andLow(x) verify
(maybe an approximation of it) ; they are ndbasic theoretical SOMe restrictions Low(x)<1-Mediun{x) -, contradiction arises :
entity. If some rules are contradictory then conflicts arise and€f{fer the rules or the concepts (MF's) used in them are wrong.
solution exists (individual conclusion sets are disjoint). (See B.)

Other properties Equation representation is a convenient way IIl. FUNCTIONAL INTERPRETATION OFRULES.
to derive properties coming from intuitive insights or from | the following, subsethood (prop. 1) is extended to rules “If
generallsa_tl_ons of binary logic, as po!nted ou'.[ by the following: jg A Theny is B” when modelling function&:U 00" - VOO with

Proposition 1(subsethoop If U =V in equation (3) then : fuzzy antecedents and consequents ouerV. It provides

"IFXISA - XiSA™ = U (X) S Hp(X) = AD A* interesting conclusions for applications in which fuzzy systems

Proposition 2 ‘Al (B andC) - A<min(B,C) - is equivalent to are used as function approximators (typically, fuzzy controllers).
{ A0 B,'AO C} ={A<B,A<C}. ‘(AorB)O C'={ ALC','BO C}. Definition 9. A functionf is coherentwith a rulebase if(x) is

Proposition 3.(Chaining. As A<B, B<C imply A<C , from a coherent conclusio®gf. 8) for premise, Ox(U.

{AO B, ‘BO C}rule * AO C'is derived. The extension principle[13] is the starting point in the
Definition 3. Two setsM, N defined over a certain universexposition: a functiof:U -V can be extended defining the image
are ‘fuzzymutuallyexclusivéif Ox p,, (X) + 4y (X < 1. of a fuzzy seAdU by: K ()= f?Ljp Uy (X) 4)
x)=y

The definition arises because the postulated equation is that of
“If x is M thenx is Not N': membership sum of 1 is the Conversely, the inverse image of aBEf1(V) is given by:
maximum ‘overlapping for mutual exclusion. This is very #f-l(B)(X):#B(f(X)) 5)
popular indeed in rulebase design (sect. 5), analogue tdMsets

For bijectivef, (4) t f into = 6
andN being disjoint over the Lukasiewitnorm [5]. or bijectivef, (4) transforms intog , (f (x))= ka(x) ~ (©)

It can be shown that the following properties are satisfied:

B. Rulebase analysis and formal verification. f(AD A)=f(AD f(A)
The utility of the presented algebraic image of rules is clear f(_fn A ) o f(_f‘) n f(_Al) . @
when defining concepts such as coherence, contradiction and F(BOB)= (B0 f(B)
redundancy in terms of existence and uniqueness of solutions of f*(BnB)=f(B)n f(B) 8
the equation set formed by replacing each rule by its equation (3). AOA* O f(A) Of(A%) 9)
Definition 4. If, for a given set of premises, there exists at least BO B* O f*(B)Of *(B*) (10)
one solution to the equation set, the rulebase is said to be A (f(A) (11)
coherentfor these premises. B=f(f *(B)) (12)
Definition 5. If, for a given set of premises, there exists exactlyFrom (4), i1, (X) <  ;(y, (f(X)) (13)

one solution, the rulebase is said tabmpletefor the premises.

Definition 6. If, for a given set of premises, there exists no
solution, the rulebase is said todmntradictoryfor the premises. ~Lemma 1.Givenf:U -V and a fuzzy seNlV, f is coherent

Definition 7. If the elimination of an equation does not chanyéth the rule XisM = yisN"if and only if M=f ~* (N).
the solutions, the rule as well as the rulebase are said to Haroof. If M=f*(N) then : H sy (X) = 1y (£(X)) . hence
redundant o —

Definition 8. A candidate conclusion is said to beherent Y= saflsﬂes @k () - Hy (y) (Suff). o
with a rulebase and its premises if it is a solution of the related f is coherent with the rulef(x) satisfies eq. (3)
equation set (maybe it is not the only one). My (X) = p ((X)) for all x, so it defines the séfl givenN, as

A rulebase is coherent if the intersection of all of the(5), henceM=f(N) (Neces3.
conclusion sets (Def. 2) is not empty. The inference error (sectioCorollary. If f is coherent with the referred IIF rule, then
4) evaluates adistance between conclusion sets in case f{iM)=N. Proved from (12). The reciprocalrist true as (11) does
conflict, to distinguish “absolutely contradictory” from “nearlyot hold, in general, ifl is replaced with an = sign. Thus, lemma

and (6) givesuf(M)(f (X)) =y, (X, closely resembling (3).

coherent” rulebases. 1 is not valid if stated witi(M)=N instead oM=f (N} .
Example.The following fuzzy rulebase : Lemma 2.Given a functiorf:U -V and a fuzzy sefV , the
1-Ifx is Low Theny is NotLowandz is Low function is coherent with the ruler'k is M THEN y is N” if and

20nly if x is MediumTheny is Low
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A|B | aF | &
0]0 0 0
01 1 0
110 1 1
1|1 0 0
Table 1. Inference error definitions (binary case).
only if MOf *(N) (or equivalentlf(M)ON ). antec. 00 consea. amtec. 00 consea
1 ) .
Proof. If MOf ~(N) then U, (X) < IJfa(N)(X) = 1, (£(%) SO, Fig. 1. Fuzzy inference error .
f(x) satisfies (3) Suff). “minimum” (mostprecisg consequeni. All supersets olN form

If f is coherent with the ruleu, (x) < p (f(X)), i-€. less or coherent IF rules. Conversely, for a given conseqbemroper
antecedentsefer to a “maximum” antecedelt All subsets o

form coherent IF rules witN.

Observing the difference between (11) and (12), and thdroposition 5.If rules “A0 B”, “A* O B*” are coherent with a
difference between and0 in (7), the following definition namesfunctionf, then “An A*O BnB*” and “A0A*0 BOB*" are also
a group of sets that do not have those differences. coherent. The proposition also holds for IIF rul&oof: If

Definition 10. Givenf:U -V , if MOU verifiesf * (f((M))=M AD f¥(B), A0 f(B) ., then An AOfYB n fYB)
then it will be named agroper antecedentfor function f. and A0 A [ f4 B O Y B),and then apply (8).
Equivalently, M is a proper antecedent if it exists a fuzzy set
N in V such that M = f (N). Note that iff is bijective, all
antecedents are proper.

By application of lemma 1, only # is a proper antecedent Propositions enables rule combination guaranteeing coherence
then the rule “IF and only Ik is M Theny is f(M)” is coherent but, in generalproper IF rules only remairproper if combined
with f. The analogous IF rule is also coherent (Lemma 2). Prapigh the union operator (7). Properness precisely defines
antecedents and IIF rules present a function as a bijective onéntbgively “useful”, “well-behaved” rules. If improperness is
consequent is the image of the antecedent and vice-versa, pgesent in some rules, it may lead to rulebase incompleteness.
“one to one mapping” between sets (not between set elements).

Interesting properties derived from (4)-...-(13) hold for proper IV. INFERENCEERROR
antecedents. They help to identify and set them up in practice:

- For anyNOV, f "*(N) is a proper antecedent (12).

- If and only ifM is a proper antecedent, it satisfies
F(x) = 10) O pyy (x) =ty (%)
- Even with not bijectiveys  ,, ((x)) = u (X)

equal to that given by (5), so M is a subset fN). (Necessity

Proposition 6. Proper rules satisfy MF peak equality:
maxp ,, (Y = max( Y. Proof easily derived from (4).
udu yay

Up to this point, inference over coherent rulebases and
transformations that keep coherence have been established. This
section presents approximate inference with inconsistent
rulebases, keeping previous results and intuition. The approach is
based on a cost index minimisation. The index oaceptual
Proposition 4.Union and intersection of proper antecedentsdistancefrom a candidate conclusion to the conclusion set of each

also a proper antecedent. Proof omitted for brevity. rule. This distance will assess how many rules are in contradiction
if a conclusion is assumed.
A. Intuitive interpretation of the lemmas. A functiong:[0,]] X[ Q] — O "-rule inference errofIE) - is

The intuitive meaning of the inverse function of asenay be d€fined such thalix, yL[0] &(x,y)20ande(x,y) =0 = x
such as “all the input conditions producing an outputinSo, is & solution of the rule equation. In the binary case, IE is a
the lemmas agree with intuition: “Af rule has in its antecedenfunction {0,1}x{0,1} - 0". When a conclusion is inconsistent it is
someof the inputs in which its consequent is produced” , thn defined as 1 to denote that one rule is contradicted (Table 1).
rule has in its antecedeait of them”. Definition 12. Once the inference error for each rule has been

This interpretation and (11) can be cast together: the outggf§ned, the cost index formed Byldingall the individual error
for input M (i.e.,f(M) ) are asubsetof N. That implies either thatfunctions will be callegjlobal inference erroof the rulebase.

M could be “extended” up to includingl situations inN (i.e. The global IE is equal to the number of contradicted rules for a
being propen or thatN could be “reduced” to includenly the particular combination of premises and conclusions. IE will be
actions inf(M). The rules in whictN cannot be “reduced” will benull only at the solutions of the equations. Thus, inference

now defined: consists on finding the zeroes of the global IE.
Definition 11. Rules in whichf(AntecedetConsequenare ~ Definition  13. The inference  error functions

calledproper ruleswith respect to functiofi €:[0,1]x[0,1] - [0,1] for fuzzy IIF and IF rules are (see Fig. 1) :
All coherentllF rules areproperbut somdF rules are not. g (A B)=|B- AP (14)
Example (nonfuzzy. Beingf(x)=x2 , x[-5,5], “x is {2,3}0 y 0o A<B

is {4,9,16)" is coherent witH. Lemma 2 holds as {2, 3¥ {2, -2, £: (A B)= E(A‘ B)° A>B (15)

3, -3, 4, -4} =f ({4, 9, 16}) , but the rule is nagproper. The
proper one isX is {2,3}0y is {4,9}". The proper antecedenbf
{4,9}is {-2,2,-3,3} : “lIF xis {-2,2,-3,3} Thery is {4,9}".

Given a functionand an antecedeM, proper ruleshave the

wherep>0is a design parameter with reference vadag. Higher

values relatively reduce small errors and lower do the opposite.
IE functions are aradation of contradictiona conclusiorB

may be coherent with premigeand a ruleg=0), it may be fully
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1 Once defined the IE functice(x) for a rulebase, a redefinition
ot ] of inference enables concluding from non-coherent rulebases.

I Definition 14. Given a rulebase, thdeal conclusionfor some
premises is the set of values thahimiseg(x).
] Minimising € is equivalent to minimising the number of rules
0z ] in contradiction weighted by their confidence leveideal
b NS ] inference finds a “central” conclusion given each rule’'s

Fig. 2. Example membership functions. conclusion set, calculated on the basis of the presenteztptual
distance (IE contradiction measure), not on geometric distance.

Remark Although in a general case ideal inference may
involve complex minimum search algorithms, piecewise linear
MF's produce piecewise linear IE curves, so successful
implementation of ideal inference is feasible with low computer
requirements. If MF's are carefully arranged, other inference-
defuzzifying algorithms, as centroid ones, provide consistent
conclusions (see section 5).

Definition 15. Given a rulebaseB with IE function
€:Ux0O -0 and a functiorf:U - O, beingU the domain of the
premisesof B, the error at |f(u)) is named ascoherence
mismatch indebetween R anélatudJU. The index denotes how

0.6

0.4

1

05+

-05¢+F

u many rules are in contradiction if the fuzzy system tries to nfodel
Fig. 31. Fuzzy IE curves faris Zero = yis Zero or conversely if tries to model ideal inference &n(section 5).
08 Example Let us consider the triangular MF'’s (for input and
0.6 output) labelledNegative, Zero, Positivedepicted in Fig. 2.
04 Considering the rule “lifa is Zero Theny is Zerd', its IE is given
02 by g(u,y)=[Zerau)-Zera(y)|. Some values are presented in table 2.
ol N = N/ ! For example, for premise=-1, theconclusiorsetis y={-1,1}.
Fig. 4. Inference error far=-0.5 . IE for rule 1 is plotted in the contour map in Fig. 3. Table 2 is a
particular case. For premise-0.5, the error curve as a function
ul yl zerg(u) Zerg(Y) 80 of y (Fig. 4) is given byg(y)=[0.33-Zeraly)|, i.e., a vertical |
1 o 0 1 1 constant) cut on the represented surface. Whierf'Not Zerd' it
1 1 0 0 0 may be eithepositiveor negative so incompleteness arises.
0 -1 1 0 1 As a further example, the following rulebase can be analysed:
0 o 1 1 0 {“lIF u is PositiveTheny is Positivé, “lIF u is NegativeTheny

is Negativé, “IF u is Zero Theny is Not Zerd}. It is
contradictory wheru is Zero: €(0,0)=1,...,€(0,-1)=1, £(0,1)=1.
contradictory §=1) or it may lie somewhere in between. No contradiction arises if is not significantly Zerd'. IE would
Whencombined withfuzzification the following IE functions have changed if different confidence levels had been introduced: if
e:UxV-[0,1] are obtained & and ¢ superscripts stand forthe third rule had a confidence level of 0.5, the error at (0,0)
antecedent and consequent MF’s, respectively): would have been 0.5, hence the ideal inference would have
_yafin— ¢ P concluded that for premise=0 the “optimum” conclusion ig=0,
Eue (U Y) = |H (W) - p (y)| because even conFt)radicting rule 3? other “more confident” ones
say that it is the correct conclusion.

Table 2. Some error values for u is Zefoy is Zero

£ (Uy)= [0 pe(u) < pe(y)
) - p

g Hurw - ) w > e
Rules are thus substituted by an equivalent IE representation. ) )

A rulebase can be represented by aggregating the individual rufé fuzzy control system can be considered as a black-box with a

IE functions (i is the total number of premises and conclusibhsS€t of input and output physical variables that produces a function

the number of rules, arid, V, W, ... the universes of discourse giPProximation.  Internally,  fuzzification, inference  and

(16)

V. VALIDATION OF FuzzYy SYSTEMS.

all premises and conclusions): defuzzification are carrieql out (see [2], [6], [10], gtc.).
£:U xV x Wx... - [0, ) The. IE poherence 'mlsmatch (def. 15) yalldates a 'rulebase
N approximating a function. It may be used in the opposite way:
g(x) = z @, (x)&, (%) (17) given a fuzzy rulebase, the function encoded in it is recovered by
=1 finding thef that makes IE as low as possiblef i restricted to

where x = (x, %,,..., %, )iS a vector consisting of all knowrbe a classical technique (fuzzy relations, centre of mass, etc.), a
premises and unknown conclusiorss, are the individual IE Validation method is thus defined: 1{x) is the output of a
functions and ¢:UxV xWx... (0,0) are user-defined fuzzification-inference-defuzzification paradigm overcaherent

fid functionsthat th lative i i ; rlulebase, its coherence mismatch is a quality measure of valitidy.
confidence functionsthat express the relative importance a rule.r <™\~ inimisation may not need to be actually

may have (in practice, they are constaifidencelevelg.
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Fig. 9. Memberships for coherent CDG defuzzification.

example, for output centroids (0, 0.5, 1) akdl1 the output in

Fig. 7 is produced.

o oz o4 06 08 Superimposing Fig. 7 and Fig. 6 the defuzzifier can be
Fig. 6. Intuitive modelling oy=x - IIF rules. validated with respect to consistency. The IE obtained for the

centroid algorithm (as a function xfis shown in Fig. 8, both for

the IIF and IF rulebase versions. Around 0.3-0.4 and 0.6-0.7 the

output is most contradictory: 0.25 (IF rules), 0.6 (lIF rules). As

IIF rules are more ‘specific’, the error is bigger.

Hence, contradiction arises from the defuzzifying method and
not from the rulebase. Note that an “ideal” algorithm should
reproduce the identity function as it is the only coherent one.

The procedure can be applied to validate any fuzzy system. A
_ _ B widely used one will be considered to illustrate the approach.

Fig. 7. Centroid defuzzifier output. Definition 16. A set of MF’s 4, (U) k=1,...n defined over an

- interval [a, b]O0O is anadd-1 normal fuzzy partitiorf there
0.4 1 exists a set of pointsuf} such thatuj < U i=1,..n ; u=a,

0.8]

0.6

0.4]

0.2|

0.2 0.2 0.6 0.8

0.2} ] u,=b, the MF’s satisfying the following conditions:
. . -ty (u)=0 OuD Uy, Uea] , 1<k<n; gy (u,) =1, k=1,..n
0 0.2 0.4 0.6 0.8 _ - H &

Fig. 8. IE of the centroid algorithm as a functiorxof _U1(u) g Hn(U)=0 outside &, uz] and [un., b, feSpe(itlveW

-in the interval @i, U] o, (U) + U () =1 k=1, ...n-1

implemented in a particular system. If the conclusions of theNote that these sets dtezzy mutually exclusi ®ef. 3).
actual algorithm (for example, centroid defuzzification) have ajf U, (u) 1<k<n are triangular fuzzy sets, the partition is
low inference error, its validity is asserted. Nevertheless, ﬁl&‘?nedriangular add-1 normal partition.
validity depends on particular rules and MF arrangements. Fof ainma 3.If a fuzzy system has the structure:
example, withfat shapeor non-convex setdNptintermediate = 1.ninput MF's Ilik (u) for fuzzy sets,defined in such a way

Smallor Big), centroid methods may provide myahd outputs. I.n that they conform and add-1 normal fuzzy partition over a 1-
that case MF rearrangement or changes in the defuzzifier

algorithm are needed : The IE approach can be used to assegg:]negjtlngL}:;?:;;T:;;;Zﬁébk]agZ}ﬁq’iI?;’a triangular add-1
which one of various conventional inference algorithms, and inn;)rmal partition (Fig. 9)

which circumstances, is best, based on algebraic and extensiog a rulebase formed .byr’uIeS'r . “IF uis I, Theny is Q;
principle considerations, and not on mere heuristic reasoning. ’ el P

Example.Given the MF’s (Low, Medium, High) identical for ordered in the form ficay rczy --:» e} .
so that for any two consecutive rules, their consequents verify

input and output depicted in Fig. 5, the rulebase probably given i , . . ) .
bypan expert rgodelligg the ident?ty functigax would t?e . y 9 [c@)-c(i+1)|<1 (output MF’s are either adjacent or identical),
. . . L then the following results hold :
{ xlow = ylow , xmedium<= y medium ,x high = y high} a) The rulebase is coherent
Representing the rules by LoggLow(y), ..., and using the IE . e .
b) The centroid defuzzificationmethod (equivalently, the

functions (16), the global IE is shown in Fig.y&x is theonly : . . . O
. T . ne-dimensional lookup-table linear interpolation):
coherent function, as intuitively expected. However, with e

-1
. , . . s . . n D D n D
proposed input MF’s, if aenter((:(f)rrefshke defuzzification : y*(U = ﬁz w(0 Yoo E_ BZ 1 ( QE (19)
out= 2 H N A (18) =
z U (X)A is coherent(performs ideal inference) foJ[uy, u].

c) If Oi |c@)-c(i+1)|]=1 , the rulebase is complete so this

is used, no values of/;, A can be found to produgsx. For defuzzifier produces the only possible coherent function.
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for each input. These atedents conform a piion of the input
space in fuzzy “tiles” (hypercubes in general) that may be not the
most suitable to model arbitranydimensional surfaces.
Nevertheless, interesting properties can also be derived for
them. To show the additional difficulties, extension of this lemma
to 2-input function$:UxVOO2- 0O, y=f(u, v) will be considered.
The MF arrangement to be analysed will be that in which two
1-dimensional add-1 normal fuzzy partitions withandk fuzzy
Fig. 10. 2-D antecedents for PD controller. sets, respectively, are defined over two intertalsndV that act
'K as input universes. The 2-D domain is partitioned & fuzzy
osf | 7\ sets by using the AND (minimum) connective. MF’s will be
) ) assumed continuous, as well as the fundtionbe modelled.
Coherent consequents must be obtained from these antecedents
via the extension principle, soxk rules are built in the form:
. . repg: “IF (Uis |y and ¢ is J) Theny is Q;"
o 2 40 60 80 100 where Q is the image of the antecedent with respedt ¥he
Fig. 11. Consequents for linei{e, €) . rules are arranged in the rule arrafada,1) r12¢1.2)s -+ M micmy}

T - For linearf and triangular input MF’s, overlapping triangular
fuzzy consequents form coherent proper rules (see example A in
this section). This is important from the practical point of view :
linear controllers can be modelled by eoherentfuzzy system
with proper rules withtriangular sets. Nonlinear functions may
be also modelled by this kind of MF’'s and coherent rulebases, but

10 20 %0 rules lose their properness if triangular output consequents are
Fig. 12. Proper antecedent of a consequent in Fig. 11. kept (they must be supersets of the non-triangular proper ones).
With the described input MF’s, equal membership zones in the
Corollary. If |c()-c(i+1)[>1 the rulebase is contradictory.Q  yxv input space are rectangular (maybe with “thick” edges
Proof. The denominator term in (19) equals 1 forwalh the corresponding to equal membership intervals in the 1-D
domain. If only one rule (say rujgfires with strength 1, the inputiunctions). These rectangles surround at least one “center” point
is obviouslyu;, and the defuzzifier output I8 =y, . This value with membership 1, contained in its interior, corresponding to the
is coherent with rulg as:u .\ (y,;,) =12 1, (u) =1, as well peak membership points of the 1-D MF’s. Those centers define a

0.6

0.4

0.2

as with the rest of the rules: kind of “fu;zy grid”. Any point in the input space has nonzero
Hego(Yy)) =02, (u)=0 Ok# j. membershlp in at most 4 sets : no more than 4 rules can be fired
. . . , simultaneously.
If two consecutive ruleg andj+1 are fired sail(y, . . Notwithstanding, the use of these simple eaatlents

ideal inference produces the following conclusion €gts): intuitively implies the assumption that functidn has local

- “anything" fgr noq-fired rules Ck(u):[a,b_] _ k#j.,J*1  pehaviour around the peak points similar to the referred “tiles”
- the interval in which output membership is greater or equa{ij[g_, that those tiles are defined by fuzzy sets that group

the input one, for rulgsandj+1, according to equation (3) : qualitatively similar function outputs). If does not have that
Ci(u) = [IJJ- (WY +@= 4 (D) Yy response, maybe the antecedent arrangement here analysed is not
the most efficient one. Not even linear functions have this property
My (W)Y + (1= (W) ¥(1)+1] (see example A). In fact the possibility of incompleteness arises
Cu(u= [,Jjﬂ(u) Yon @ H41(9) Yooy n due to improperness in antecedents. Note that this incompleteness
is neither counter-intuitive nor so detrimental : in the general case,
Hia (W)Yo ¥ @~ Hia (W) Yany 1] there are various ambiguous alternatives to carry out 2-D

Taking into account that1 -y, (u) = ,,(u) and that if the interpolation between 4 points.

output functions are consecutive, as stated in assumption 3 O{hﬂ%OpOSItlon 7.In the presented arrangement it can be shown

lemma, then eithec(j)-1=c(i+1) o c()+1=c(j+1) is true, i.e. at’it does not exist a Contlnuou§ fungtldnfor whlch all the
. . . \ ; antecedents are proper. The proof is omitted for brevity.
either the left or the right endpoint @(u) is an endpoint of . . , .
C.i(U) and that point is exactly the interpolative defuzzifi The following examples illustrate improperness, even with
7+ P s exaclly the interpolative deluzzilghe ¢ functions, and asses the incompleteness level.
outputy*. Note that, as the intersection of the two conclusion sets
has only one element in it, the rulebase is coherent and comp, etﬁ. I
. ’ oo . lica : .
If c(j) or cf+1) are 1 om, the treatment is similar. If consequents bplication examples: P, PP1) fuzzy controlers
are identicalc(j)=c(j+1), (19) yieldsy* = vy, i.e. the peak The MF organisation and defuzzifiers just analysed are widely
membership point of the conclusion sets, hence a coheusad to model nonlinearities in P, PD and Pl fuzzy controllers.
solution (but not the only one). Proportional controllers ¢=k-e) obtained from add-1 normal
Lemma 3, stated for single input functions, cannot be fullgzy partitions at the input variable are coherent, and centroid
extended to multi-input fuzzy systems with eosgdents defuzzification can be used (lemma 3) in fuzzy models of a linear
conformed by using thenD connective among add-1 partitionsr piecewise linear P controller with triangular input MF’s.
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(C) weight =1/ area

Fig. 15. Characteristic surface of a nonlinear controller. Fig. 17. Inf. error for CDG defuzzifier.
o 015 /\ 015 015 015 can be used in practice with linear 2-D functions to yield nearly
’ o o o ’ ideal inference results.
-2 0 2 -2 0 2 ~2 0 2 -2 0 2 -2 0 2
1 1 1
05 05 05 05 05 B. Nonlinear fuzzy controllers.
20 2 % o 2 % g 2 % 0 2 % o _ _ _ _
ot ot ot ot o5 One of the main reasons to use fuzzy systems in control is their
0 0 0 ability to model nonlinearities. In the same way that linear or
-2 0 2 -2 0 2 -2 0 2 -2 (] 2 -2 0 2 . . . .
1 1 1 1 piecewise linear P-like controllers have been analysed, general
o o o o o static nonlinear controllers=f(e) can be modelled by using non-
i—— 302 702 20 —Z ;0.2 linear input MF's (for example, polynomial-based ones, as in Fig.
0.5 0.5 0.5 0.5 /\ 0.5 9). In most practical cases these nonlinear controllers implement
% 0o 2 % o 2% o 2 % o 2 % o 2 monotonic functions. The application of the extension principle to
Fig. 16. Consequents for proper rules. those functions is simple and intuitive.

. . . As an example of a two-variable nonlinear design, a PD
In 2-var|able_ ED-I|ke fuzzy controll_ersu_— f(e.e) rule controller with control action and derivative saturation will be
a_nteceden_ts are “'f”‘_r to the ones shown_m Fig. 1_0 (frpm tw signed to be implemented on a fuzzy system. The controller

triangular input partitions). They produce images, if a linear nﬁjst achieve the control surface plot shown in Fig. 15.

controller is modelled, as shown in Fig. 11. Notwithstanding,.l.WO add-1 normal partitions on erra) @nd error derivative

proper antecedents (inverse image) for those consequents (@Wnputs with triangular MF’s will be defined. Each partition

the shape described in Fig. 12. Theeaatlents in Fig. 10 arg, .l have 5 fuzzy sets fegative big, negative small, zero,

subsets of these ones. This fact gives rise to mcompletenespsoéﬂive small, positive bjgwith peaks at -1, -0.5, 0, 0.5, 1
some zones of the input space. For example, witb+v,

respectively. They define 25 f 2-D antecedents. The
u[0,1], vO[0,1] with two linear fuzzy sets on each inp pectively y ! Hzzy

h . . ” ‘consequents, calculated by the extension principle, are represented
universe, all possible coherent interpolations are the functll(PpEig 16

between the two surfaces shown in Fig. 13.

For e=PB de=PB the consequent is a singleton (+2), as
Thecentroidinferencedefuzzificatioralgorithm given by: AND d g (+2)

well as for e=NB,de=NB (-2), because all the zone covered by the

N = {aﬂéﬁf}( mir(a (9, 4, (9) antecedent attains a constant value. An algorithm that does not
m m produce exactly that value would contradict that rule. Note also

y*(uy = z n,y / z n, (20) that piecewise linear proper consequents are produced due to the
i=1 i=1 selection of the antecedents and the particular geometry of the

is not fully coherent with the rule base, but it is coherent in alm@sittrol surface. That would not be the case in a general situation.
all the domain, and its maximum inference error is 0.05 at thenference error of a centroid algorithm that uses the peak
most incoherent points (fg=a+b), as shown in Fig. 14. Hence, ivalues as centroids, weighted by equal areas, produces an IE plot
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shown in Fig. 17-(A). If the weighting would have been By defining an error function related to the rule equations, ideal
proportional to areas, andnverse proportional to them, the inference is defined in terms of minimisation of the global
inference error would have been the one shown in Fig. 17-(B) autebase contradiction. Confidence levels stand as weights on the
Fig. 17-(C), respectively. Hence, in this case, the most valitor function. Rulebase and defuzzifier validity can be formally
defuzzifier is the one that doasot take into account areachecked. As one of the most prominent applications of fuzzy
weighting, as in the one-dimensional case. systems is fuzzy control, their use as function approximators has
Note that formal validation has been analysed for 1-D and ®4®n discussed and the validation of common fuzzy inference-
controllers, in a very restricted set of MF design possibilities. Tefuzzification strategies for static nonlinearityesf(u) or y= f(u,
more the required properties are not fulfilled the more intuitijefor P and PD-like fuzzy controllers has been carried out. As
“problems” (now clearly formulated) pose the referrezkpected, they are similar to ideal inference if consequents are
defuzzification methods. That is the reason why most of thangular add-1 partitions. They produce results with very low
practical implementations of fuzzy controllers have the Nifference error in most of the commonly used cases.

arrangement as in lemma 3 or in the 2-D analysis. The concepts here defined pave the way to further research on
automatic knowledge acquisition supervisiondetection of
A. Rulebase design tips for valid centroid defuzzification. contradictions, rulebase simplification (elimination of redundant

. A rules), multi-expert fusion and efficient learning.
In order to keep the centroid defuzzification coherent, the ) P g

following design tips for function approximation can be stated :

1. Rules have to be assumed of “IF” type.

2. Antecedents should have MF’s conforming add-1 partition] P. Albertos, M. Martinez, J.L. Navarro, and F. Morant.

3. Antecedent and consequent shoulshbenal sets (peak 1). “Fuzzy Controller Design : A methodologyProc. of IEEE

4. Input and output MF's should verify extension principle (if Conference on Control Applicationgancouver 1993.
the function to be modelled is explicitly known). [2] P. Albertos, “Fuzzy Logic Modelling and ControlFrom

5. In fuzzy 1-D lookup tables (ptewise linear interpolation) Identification to Learning,pp. 479-513. Ed.: S. Bittanti.
consequents should angular add-1 normal partitions. Springer-Verlag, 1996

6. For 2-D functions, [3] B. Cragun, and H. Steudel, “A decision-table-based processor

(a)- if sufficient knowledge about the function geometry is for checking completeness and consistency in rule-based
available, proper antecedents as well asngutéar add-1 expert systems.Int. J. Man-MachineStudies v. 26, no. 5. ,
consequents should be used to get perfect coherence. pp 633-648, 1987.

(b)- Assuming linear objective functions, the use of improdd} E.E. Kerre, “A comparative study of the behaviour of some
antecedents obtained BYWD operation over two triangular add-1  popular fuzzy implication operators”. FroRuzzy Logic for
partitions with overlapping triangular consequents (Fig. 10) will the management of uncertaintid.: L.A. Zadeh and J.
result in satisfactory operation from the IE point of view. For Kacprzyk, John Wiley & Sons.1992
arbitrary non-linear functions, centroid algorithms may be higfy F. Klawoon, J. Gebhardt and R. Kruse. “Fuzzy Control on the
incoherent (as shown in the example with IE over 0.4) -this is anbasis of equality relations with an example from idle speed
“inference error” version of the fact that these interpolations control”. IEEE Trans. Fuzzy System#ol. 3, No. 3, pp. 336-
cannot model arbitrary functions in middle points- (If improper 350, Aug. 1995.
antecedents are used even ideal inference is not complete). [6] C.C. Lee, “Fuzzy Logic in Control Systems ; fuzzy logic

7. Centroids should be set equal to the values having pealcontroller part I/1I"IEEE Trans. Systems,awl, Cybernetics.
output membership, in both 1-D and in 2-D arrangements. TheVol 20, no. 2, pp.404-435, Mar./Apr. 1990.
examples here analysed suggest that the “area” considerati¢f] i8. Lee, and R.M. O’Keefe, “Developing a Strategy for Expert
the defuzzification formula does not improve the results. System Verification and ValidatiodEEE Trans. on Systems,

8. Rules with neighbouring aetedent must have Man and Cyberneticsol. 24, no 4, pp 643-655, 1994.
neighbouring consequents for the rulebase to be coherent.  [8] M. Suwa, A.. Scott, and E.H. Shortliffe, “An approach to

If the MF arrangement is not similar to the ones here exposedverifying completeness and consistency in a rule-based expert
centroid defuzzificatioomay be anot valid inference algorithm.  system”Al Mag, pp 16-21. 1982.

The worse situations occurs with nonconvex consequents wignT. Whalen and B. Schott, “Presumption, prejudice and
taking its center of mass or mean of maxima as centroid: everregularity in fuzzy material implication”. Same source as [4].
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