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Dynamic Cluster Generation for a Fuzzy
Classifier with Ellipsoidal Regions

Shigeo Abe

Abstract—In this paper, we discuss a fuzzy classifier with ellipsoidal
regions that dynamically generates clusters. First, for the data belonging
to a class we define a fuzzy rule with an ellipsoidal region. Namely, using
the training data for each class, we calculate the center and the covariance
matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules,
i.e., the slopes of the membership functions, successively until there is
no improvement in the recognition rate of the training data. Then if the
number of the data belonging to a class that are misclassified into another
class exceeds a prescribed number, we define a new cluster to which those
data belong and the associated fuzzy rule. Then we tune the newly defined
fuzzy rules in the similar way as stated above, fixing the already obtained
fuzzy rules. We iterate generation of clusters and tuning of the newly
generated fuzzy rules until the number of the data belonging to a class
that are misclassified into another class does not exceed the prescribed
number. We evaluate our method using thyroid data, Japanese Hiragana
data of vehicle license plates, and blood cell data. By dynamic cluster
generation, the generalization ability of the classifier is improved and the
recognition rate of the fuzzy classifier for the test data is the best among
the neural network classifiers and other fuzzy classifiers if there are no
discrete input variables.

Index Terms— Blood cell data, cluster generation, fuzzy classifiers,
license plate recognition, membership function, neural networks, rule
extraction, thyroid data, tuning.

1. INTRODUCTION

To facilitate analysis of classifiers as well as to accelerate training
of classifiers, many types of fuzzy classifiers with a learning capa-
bility have been proposed [1]-[6]. We have developed three types of
fuzzy classifiers: 1) a fuzzy classifier with hyperbox regions whose
surfaces are parallel to one of the input variables [2]; 2) a fuzzy
classifier with polyhedron regions whose surfaces are expressed by
a linear combination of input variables [3]; and 3) a fuzzy classifier
with ellipsoidal regions [6]. .

Training time of the fuzzy classifier with hyperbox regions is very
short because we need only to calculate the minimum and maximum
values of the training data in each input variable, and if the principal
axes of the training data distribution for each class are parallel to
input variables, we can obtain a good generalization ability. But
if the principal axes are not parallel, the generalization ability of
the classifier is not so good compared with that of neural network
classifiers. The fuzzy classifier with polyhedron regions does not
have this problem since the polyhedron regions are approximated
by shifting the hyperplanes extracted from the trained neural network
classifier. But since the fuzzy classifier is based on the neural network
classifier, training is slow. To overcome this we have developed a
fuzzy classifier with ellipsoidal regions. According to performance
evaluation of four benchmark data sets, i.e., an iris data set, a
numeral data set, a blood cell data set, and a thyroid data set, the
recognition rates of the test data for the first three data sets were
comparable to or better than the maximum recognition rate of the
neural network classifier and the fuzzy classifiers with hyperbox
regions and polyhedron regions, although only one fuzzy rule was
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defined for each class. But for the thyroid data, the fuzzy classifier
with ellipsoidal regions performed poorly even if more than one fuzzy
rule were defined for each class. The reasons of poor performance
were that most of the input variables were discrete and class data
overlapped heavily and appropriate clustering was not possible before
training.

In this paper, to overcome the difficulty of clustering, we discuss
a fuzzy classifier with ellipsoidal regions that dynamically generates
clusters. In [6], to improve the recognition rate, the training data
were clustered in advance. Here, instead, clustering is postponed
after the training is completed. Namely, first for the data belonging
to a class we define one fuzzy rule with an ellipsoidal region, by
calculating the center and the covariance matrix of the ellipsoidal
region for the class. Then we tune the fuzzy rules, i.e., the slopes of
the membership functions, successively until there is no improvement
in the recognition rate of the training data. Then, if the number of
the data belonging to a class that are misclassified into another class
exceeds a prescribed number, we define a new cluster to which those

“data belong. Then we tune the newly defined fuzzy rules in the similar

way as stated above, fixing the already obtained fnzzy rules. We
iterate cluster generation and tuning of newly generated fuzzy rules
until the number of the data belonging to a class that are misclassified
into another class does not exceed the prescribed number.

In Section II, we describe the classifier architecture which consists
of two layers. In Section III, we describe dynamic cluster generation
in which a cluster is generated during training if the number of the
data belonging to a class that are misclassified into another class
exceeds a prescribed number. In Section III, using the thyroid data,
Japanese Hiragana data for vehicle license plate recognition, and
the blood cell data, we compare the performance of the proposed
classifier with that of other fuzzy classifiers and the neural network
classifier.

II. CLASSIFIER ARCHITECTURE

Consider classification of an m dimensional input vector x into
n classes. Assume that the training data for class ¢ (¢ = 1, ---, n)
are divided into several clusters 75 (j = 1, ---) where cluster 7j
denotes the jth cluster for class . For each cluster ¢7, we define the
following fuzzy rule:
R;;: if x is ¢;; then x belongs to class ¢ (N
where c;; is the center of cluster 7j and is calculated by using the
training data belonging to cluster ij:

1

el 2
N Tk 2)

X € cluster ¢y

Cij ke =

where [V;; is the number of the data belonging to cluster ¢j. The
membership function m;; (x) of (1) for input x is given by

mij(x) = exp(—hi;(x)) 3)
dz;(x)

W) = == @

d7(x) = (x — ¢i;)'Q;; (x — ¢i) (5)

where d;;(x) is the weighted distance between x and c;; =
(Ciji1, * s Cij,m)’, hij(x) is the tuned distance, o;;(>0) is a
tuning parameter for cluster ¢j, Q;; is the m x m covariance matrix
of cluster ¢j, the superscript ¢ denotes the transpose of a matrix,
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and the superscript —1 denotes the inverse of a matrix. Then we
calculate the covariance matrix Q;; by

(x = cij)(x — cij)". (6)

1
Qij = Nis Z

X € cluster 17

If the covariance matrix @);; is singular, we set all the off diagonal
elements of Q;; to zero so that @;; becomes regular. By making
the covariance matrix diagonal, the principal axes of the associated
ellipsoidal region are parallel to the input axes.

For input x if the membership function m;(x) is the largest, input
x is classified into class k. The exponential function in (3) makes the
output range of (3) lie in [0, 1]. Thus, if we classify input x using the
input of the exponential function in (3), we need to find the smallest
hij(x). This is the simplest architecture that is conceivable. If we
add a layer to the output of the above architecture, we can obtain
the radial basis function network [4]. The centers and the covariance
matrices are determined by unsupervised competitive learning [7], by
the steepest descent method [8], or estimated by the Gram-Schmidt
orthogonalization [4]. Here, we determine them using (2) and (6).
These are good estimates if the training data obey the Gaussian
distributions. To improve generalization ability when the training
data do not obey the Gaussian distributions, we introduce the tuning
parameter o;; that resolves overlaps of ellipsoidal regions belonging
to different classes [6]. An increase of o;; decreases the slope of
the membership function m.,(x) or increases the value of m;;(x).
And a decrease of «;; increases the slope of m;;(x) or decreases the
value of m;;(x). The sophisticated tuning algorithm of the tuning
parameter «;; developed in [6] is summarized in Section II and the
Appendix. '

The other factor that affects the generalization ability of the fuzzy
classifier with ellipsoidal regions is how to divide the training data
into clusters. If the training data are divided into clusters with small
numbers of data, good generalization ability of the classifier is not
expected because of overfitting. In [6], we discussed a simplified
algorithm to divide the training data, but we found that the trial
and error was necessary to optimize the division. Also, the four
benchmark data set evaluated in [6], clustering was necessary only for
the thyroid data set. This means that whether clustering is necessary or
not is judged best after evaluating the recognition rate of the training
data for a fuzzy classifier with one fuzzy rule for each class. This leads
to dynamic cluster generation, in which first the classifier is generated
without clustering the training date and then if the number of the data
belonging to a class that are misclassified into another class exceeds
the specified number, a cluster is defined for those misclassified data.
In the following section, we discuss dynamic cluster generation.

III. DyNAMIC CLUSTER GENERATION

A. Concept

Using two-dimensional training data for classes ¢ and j shown in
Fig. 1, we explain the concept of dynamic cluster generation. First,
we approximate each class region by an ellipsoid with the center and
the covariance matrix calculated using (2) and (6), respectively. Let
Fig. 1(a) show the result and the ellipsoids in the figure have the same
degree of membership. Then the class boundary of classes ¢ and j
becomes as shown in the figure and the seven data in the overlapping
region of the two ellipsoids are misclassified.

Since we determine the centers and the covariance matrices without
considering the overlapping of class regions, we can improve the
recognition rate of the training data by tuning the tuning parameters

Class boundary

()

Class boundary

(b)

Fig. 1. Concept of dynamic cluster generation. (a) Define a rule for each
class, (b) decrease «;; to improve the recognition rate, and (c) generate a
cluster for class j.

a;1 and o, If we increase a1, the degree of membership for class
¢ increases. Thus we can make the three data belonging to class
¢ in the overlapping region be correctly classified, while the four
misclassified data remain misclassified. Or if we decrease i, the
degrees of membership for class ¢ decreases. Thus we can make the
four data belonging to class j in the overlapping region be correctly
classified, while the three misclassified data remain misclassified. We
can do the same thing by increasing or decreasing ;1. Thus, the
maximum recognition rate is obtained if we decrease ;1 or increase
o1. Fig. 1(b) shows the case when «;; is decreased.

After tuning, the three data belonging to class 7 that are in the
ellipsoid for class j are misclassified. These data can be correctly
classified if we define a cluster for these data as shown in Fig. 1(c).
But if we define a cluster for a small number of training data, the
generalization ability becomes poor because of overfitting. Therefore,
we introduce a minimum number of the training data belonging to
a class that are misclassified into another class, V.. If the number
of the data belonging to a class that are misclassified into another
class is larger than or equal to N, we define a cluster and calculate
the center and the covariance matrix using (2) and (6), respectively.
In the following we describe the general flow of dynamic cluster
generation and fuzzy rule tuning.
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For class i (i = 1,..., ), Letj < j+ 1 and define
define a fuzzy rule R;; using fuzzy rules Rj; using (2) and

(2) and (6) where jl]= 1. (6).

!

For the newly defined fuzzy
rules, tune a; successively
until the maximum
recognition rate is obtained.

Tune ;i (i=1,..,nj=1 |
successively until the
maximum recognition rate
is obtained.

! yes i yes
< The number of misclassiﬁed>d < The number of misclassiﬂed>J

data fromitok 2N, ? data fromitok >N_?

no {= - I o

Fig. 2. Flow chart of dynamic cluster generation.

B. General Flow

The general flow of dynamic cluster generation is as follows (see
Fig. 2).

1) Assume that each class consists of one cluster, calculate
the centers and the covariance matrixes for classes i (i =
1, .-+, n) using (2) and (6), respectively, and define fuzzy
rules given by (1).

2) Let the maximum allowable number of misclassified data
that are previously correctly classified be I[n; — 1. Increase
or decrease «; (i = 1,---,n) successively so that the
recognition rate of the training data is maximized, allowing
{n — 1 correctly classified data to be misclassified.

3) If the number of the data belonging to a class that are misclas-
sified into another class is larger than or equal to N, and these
misclassified data are not previously defined as a cluster, define
a new cluster that includes only these misclassified data. Then
calculate the centers and the covariance matrixes of the newly
defined clusters using (2) and (6), respectively, and define fuzzy
rules given by (1). Otherwise, terminate the algorithm.

4) Tune the tuning parameters of the newly defined fuzzy rules
successively, fixing the already tuned tuning parameters. The
tuning procedure is the same as in Step 2. Go to Step 3.

In Step 3, we check whether the training data belonging to a class that
are misclassified into another class are previously defined as a cluster.
The reason is as follows. If the recognition rate is not improved by the
newly defined cluster, the same misclassified data remain. Thus, if we
do not check this situation, a new cluster will be defined indefinitely.

Tuning of «;; in Steps 2 and 4 is done if the recognition rate
of the training data is improved. In addition, in Step 4, we fix the
tuning parameters that are already tuned. Thus by our dynamic cluster
generation, the recognition rate of the training data is monotonically
improved. But this does not guarantee that the recognition rate of the
test data is also monotonically improved.

C. Fuzzy Rule Tuning

Tuning of the tuning parameters av;; is discussed in [6]. Here,
we summarize the procedure of tuning and we discuss the detailed
procedure in the Appendix. To explain the concept of tuning, we
consider a two-class case with one rule for each class as shown in
Fig. 3. (In the figure, instead of the Gaussian function, we use the
triangular function as the membership function.) Datum 1 is correctly
classified into class 2, while data 2—4 are misclassified into class 2.
If we increase «v;; or decrease oy, datum 1 is first misclassified, but

M :Class 1
® :Class2
Class 1 Class 2
1
(=¥
£
w
5]
)
5]
O
=
Yt
Q
Q
1=
&
[=]
0
1 234 5 X1
Input

Fig. 3. Concept of tuning.

@ : Correctly classified

M : Misclassified

Current o

Tuned oy
L@ Ly l Uy1)

l- Uy

F 1 f

%2 %D B B2

Fig. 4. Determination of tuned «;;. If the current o;; is modified to the
tumed or;; in (B;5(2), Us;(2)), one correctly classified datum is misclassified
but four misclassified data are correctly classified.

if we allow datum 1 to be misclassified we can make data 2—4 be
correctly classified. Fig. 3 shows this when ap; is decreased so that
the degree of membership for class 2 lies between the shaded regions.
Then by allowing one datum to be misclassified, three data are
correctly classified, i.e., the recognition rate is improved by two data.

Now suppose we tune the tuning parameter «;;. Up to some
value we can increase or decrease «v;; without making the correctly
classified data belonging to class ¢ be misclassified. Now let U;;(1)
and L;;(1) denote the upper and lower bounds that do not make
the correctly classified data be misclassified, respectively. Likewise,
U;;(1) and L;;(I) denote the upper and lower bounds in which
{—1 correctly classified data are misclassified, respectively. Then, for
instance, if we set a value in the interval [U;; (1), U;;(2)) to ;;, one
correctly classified datum belonging to class ¢ is misclassified, where
[a, b] and (a, b) denote the closed and open intervals, respectively.

Similarly, if we increase or decrease c;;, misclassified data may
be correctly classified. Let 3;;({) denote the upper bound of a;; that
is smaller than U;;(!) and that makes the previously misclassified
data be correctly classified. And ~;;(l) denotes the lower bound
of aj; that is larger than L;;(!) and that makes the previously
misclassified data be correctly classified. Fig. 4 shows an example.
If we change the current «;; to the tuned ay; in (5s5(2), Ui;(2)),
one correctly classified datum is misclassified but four misclassified
data are correctly classified.

Then, the next task is to find which interval among (L:;({), vi; (1))
and (8:;(1), Us; (1)) (I =1, - - -) gives the maximum recognition rate.
To limit the search space, we introduce the maximum [, i.e., [as. Let
(Li;(1), 7i; (1)) be the interval that gives the maximum recognition
rate of the training data among (L;;(k). vi; (k)) and (8;;(k), Us;(k))
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TABLE 1
BENCHMARK DATA SPECIFICATIONS AND TRAINING CONDITIONS
OF THE THREE-LAYERED NEURAL NETWORK CLASSIFIER

Thyroid  Hiragana Blood Cell
No. Inputs 21 13 13
No. Classes 3 38 12
No. Training Data 3772 8375 3097
No. Test Data 3428 8356 3100
No. Hidden Units 3 25 15
No. Epochs 10000 10000 15000
No. Runs 10 1 25
for k = 1, -+, lps. Then even if we set any value in the interval

to aij, the recognition rate of the training data does mot change
but the recognition rate of the test data may change. To control the
generalization ability, we set «;; as follows:

aij = Bij (1) + 6(Us; (1) = Biz (D) D
for (Bi; (1), Ui; (1)), where 6 satisfies 0 < 6 < 1 and
aij = vi; (1) = 6(vi; () — Lis (1) (8

for (Ls; (1), i ().

According to the above discussion, the tuning algorithm becomes
as follows.

1) Set a positive number to parameter {57, where Ins — 1 is the
maximum number of misclassifications allowed for tuning o ;,
set a value in (0, 1) to 6 in (7) and (8), and set the same positive
initial value (usually 1) to osj.

2) Fora;; i=1,---,n,5 =1, --), calculate L;;(1), Us;(1),
Bij(l), and ~;;(l) for I = 1,---,1n. Find the interval
(L,‘j(l), ’)’ij(l)) or (,5,‘3'(1), Ui]‘(l)) that realizes the maximum
recognition rate of the training data, and change «;; using (7)

. or (8).

3) Iterate Step 2 until there is no improvement in the recognition

rate of the training data.

Usually {ps = 10 is sufficient [6]. According to our experiments
[6], the value of § did not affect the recognition rate of the test data
significantly, but a small value of § sometimes gave a better recogni-
tion rate of the test data. Thus in the experiments in Section IV, we
use 0.1. The detailed tuning algorithm is discussed in the Appendix.

We call the update of all ai; (1 = 1,---,n,§ = 1,--) one
iteration of tuning, and if there is no improvement in the recognition
rate for the two consecutive iterations, or the recognition rate of the
training data reaches 100%, we stop tuning. Our tuning algorithm
determines, for each fuzzy rule E;;, the optimum tuning parameter
@;;, allowing the data that are correctly classified before tuning R;;
to become misclassified after tuning R;; as long as the recognition
rate of the training data-is improved. To allow the data that are
correctly classified before tuning some fuzzy rule to be misclassified
after tuning that fuzzy rule is, so to speak, to prevent the tuning
process from leading to convergence to a local minimum. But of
course, since the tuning process is nonlinear, we cannot guarantee
that this method always gives the optimal solution.

IV. PERFORMANCE EVALUATION

We evaluated the performance of the fuzzy classifier with ellip-
soidal regions using the thyroid data [9], the hiragana data for license
plate recognition [10], and the blood cell data [11], and compared the
performance with that of the multilayered neural network classifier,
the fuzzy classifier with hyperbox regions [2], and the fuzzy classifier
with polyhedron regions [3]. The upper part of Table I shows the
benchmark data specifications. And the lower part of the table shows

TABLE 1I
PERFORMANCE FOR THE THYROID DATA

ifier Rate (%) No. Rules _ Time (s)
N.N. 98.00 (99.02) 3 units 61 min
Hyperbox 99.15 (100) 10 0.7

Ellipsoid _ 86.41 (86.77) — 97.29 (99.02) 13 133

(): Recognition rate of the training data

TABLE III
PERFORMANCE OF THE Fuzzy CLASSIFIER WITH ELLIPSOIDAL
REGIONS FOR THE THYROID DATA BY CHANGING NN,

N Rate (%) No. Rules Time (s)

- 95.60 (96.02) 3 25
40 97.00 (98.12) 5 36
30 97.00 (98.12) 5 36
20 97.17 (98.67) 10 9
10 97.29(99.02) 13 133

(): Recognition rate of the training data

the training conditions of the neural network classifier. We used the
backpropagation algorithm to train the three-layered neural network
classifier with the learning rate of 1.0 and the momentum coefficient
of 0. For the thyroid data and the blood cell data, we trained the
neural network classifier ten and 25 times, respectively, changing
the initial weights and calculated the average recognition rates. But
since it took eight hours to train the neural network classifier for the
Hiragana data, we trained the network only once.

Unless otherwise stated, for the fuzzy classifier with ellipsoidal
regions, we set o;; = 1, 6 = 0.1, and l5r = 10 [6].

For evaluation of the fuzzy classifier with hyperbox regions, we
used a 16 MIPS workstation and for evaluation of the fuzzy classifier
with polyhedron regions we used a 70 MIPS workstation. For all
other evaluations, we used a 60-MIPS mainframe computer, and the
calculation times listed in the following tables are the CPU times.

A. Thyroid Data

The thyroid data include 15 digital features and are not suited
for the fuzzy classifier with ellipsoidal regions [6]. Table II shows
the results for the thyroid data by the neural network classifier and
the fuzzy classifiers with hyperbox regions and ellipsoidal regions.
The recognition rates of the neural network classifier are the average
values of ten runs. The maximum and minimum recognition rates
of the test data (training data) were 98.48% (99.36%) and 97.78%
(98.54%), respectively. For the “no. Rules” column of the neural
network classifier, we list the number of hidden units. For the fuzzy
classifier with hyperbox regions the expansion parameter, which
controls the generalization ability, was set to 0.01. The recognition
rates of both the training data and the test data were the best. The
initial recognition rates of the fuzzy classifier with ellipsoidal regions
is listed on the left hand side of the arrow and the final recognition
rate is listed on the right hand side of the arrow. The parameter Ne
was set to ten. The recognition rates were drastically improved by
tuning and cluster generation. Initially, the number of clusters was
three and during training ten clusters were dynamically generated.
The final recognition rate of the training data was comparable to those
of the neural network classifier and the fuzzy classifier with hyperbox
regions. The final recognition rate of the test data was comparable to
that of the neural network classifier. The training time of the fuzzy
classifier with hyperbox regions was the shortest. Training time of
the fuzzy classifier with ellipsoidal regions was about 2 min but it
was much shorter than that of the neural network classifier.

Table III shows the performance of the fuzzy classifier with ellip-
soidal regions by changing N.. Without dynamic cluster generation,
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TABLE IV
PERFORMANCE FOR THE THYROID DATA USING Six CONTINUOUS INPUTS

_Classifier Rate (%) No. Rules Time (5)
N.N. 96.42 (97.64) 3units 23 min
Hyperbox 96.79 (100) 61 2
Ellipsoid 94.31 (94.88) — 97.32 (98.25) 13 11

(): Recognition rate of the training data

TABLE V
PERFORMANCE OF THE Fuzzy CLASSIFIER WITH ELLIPSOIDAL
REGIONS FOR THE THYROID DATA BY CHANGING N,

_N. Rate (%) No. Rules Time (s)

- 96.65 (97.06) 3 4
40 96.56 (97.19) 4 .5
30 97.00 (97.72) 8 9
20 97.20 (98.01) 11 11
10 97.32 (98.25) 13 11

(): Recognition rate of the training data

after tuning, 118 data belonging to class 2 were misclassified into
class 3. Thus if V. was set to be larger than 118, clusters were not
generated.

For N. = 40, two additional clusters were generated, and the
recognition rates of both the test data and the training data were
improved greatly and the improvement for V. smaller than 40 was
small. .

By dynamic cluster generation the recognition rate of the test data
was improved but still a little lower than the average recognition
rate of the neural network classifier. The main reason for the lower
recognition rate was that most of the input variable were discrete and
they did not obey the Gaussian distributions. To eliminate the effect of
discrete input variables, we compared the performance of the neural
network classifier, the fuzzy classifiers with hyperbox regions and
ellipsoidal regions only using the six continuous inputs that were
the first and the seventeenth to the twenty first inputs. Table IV
shows the results for the neural network classifier and the fuzzy

classifiers with hyperbox regions and ellipsoidal regions. The training -

conditions of the neural network classifier were the same as those
with the 21 inputs. The maximum and minimum recognition rates
of the test data (training data) were 96.53% (97.77%) and 96.38%
(97.56%), respectively. The recognition rate of the fuzzy classifier
with ellipsoidal regions was the best for the test data.

Table V shows the performance of the fuzzy classifier with el-
lipsoidal regions when the six continuous inputs were used and
N. was changed. Comparing Tables III and V, the corresponding
recognition rates were almost the same. This meant that the discrete
input variables did not contribute to improving the recognition rate
of the fuzzy classifier with ellipsoidal regions.

B. License Plate Recognition System

The data used in this study were Japanese Hiragana characters col-
lected to develop a license plate recognition system [10]. The original
gray-scale images of 38 Hiragana characters were transformed into
T x 15 pixels, the value of each pixel varied from O to 255. Then by
performing gray scale shift, position shift, and random noise addition
to the 7 x 15 images, the training and test data were generated. Then
to reduce the number of input variables, ie., 7 X 15 = 105, we
calculated the 13 central moments for the 7 x 15 images [10], [12].

Table VI shows the results for the three-layered neural network
Classifier and the fuzzy classifiers with hyperbox regions and ellip-
Soidal regions. It took 8.6 h to train the neural network classifier
with 25 hidden units. When we changed the number of hidden units
to 20 and 30, the recognition rates of the test data were 98.76 and

TABLE VI
PERFORMANCE FOR THE HIRAGANA DATA
Classi % Rules Ti
N.N. 99.20 (99.63) 25 units 8.6 h
Hyperbox 96.73 (100) 1097 43
Eltipsoid 99.66 (99.84) — 99.78 (100) 39 127

(): Recognition rate of the training data

TABLE VII
PERFORMANCE FOR THE BLOOD CELL DATA

Classifier Rate (%) No. Rules__Time (s)

N.N. 87.44 (90.46)! 1Sunits 2.15h

Polyhedron 90.58 (91.68)! 302 2.15h
Hyperbox 86.52(100)2 217 7
Ellipsoid 87.45 (92.64)2 — 92.13 (95.96)2_ 13 35

(!: Maximum recognition rate
()2: Recognition rate of the training data

99.16%, respectively. The expansion parameter of the fuzzy classifier
with hyperbox regions was set to 0.3 and the number of fuzzy rules
generated was 1097; in average 29 rules were generated for each

- Hiragana character. Although the recognition rate of the test data

was not so good, the training time was extremely fast. When the
expansion parameter was 0.01, the recognition rate of the test data
was 93.93% and the number of rules generated was 612. The fuzzy
classifier with ellipsoidal regions realized the best recognition rate of
the test data with 39 fuzzy rules. Without dynamic cluster generation,
the recognition rate of the training data was 99.99%. Namely, one
datum failed to be correctly classified. When we set N. = 1, one
additional cluster was generated. The recognition rate of the training
data reached 100% but the recognition rate of the test data was the
same. The training time was about 2 min and the superiority over the
neural network classifier was evident.

C. Blood Cell Data

The blood cell classification involves classifying optically screened
white blood cells into 12 classes using 13 features. This is a very
difficult problem; class boundaries for some classes are ambiguous
because the classes are defined according to the growth stages of
blood white cells.

Table VII shows the results for the neural network classifier, the
fuzzy classifier with polyhedron regions, the fuzzy classifier with
hyperbox regions, and the fuzzy classifier with ellipsoidal regions.
The average recognition rates of the neural network classifier and the
fuzzy classifier with polyhedron regions for the training data were
92.4 and 95.7%, respectively [3]. We set the expansion parameter to
0.2 for the fuzzy classifier with hyperbox regions. The recognition
rate of the test data was comparable to the average performance of
the neural network classifier and the initial recognition rate of the
fuzzy classifier with ellipsoidal regions. The parameter N, was set to
25 for the fuzzy classifier with ellipsoidal regions. The recognition

rate of the test data was better than the maximum recognition of the

fuzzy classifier with polyhedron regions. _
Table VIII shows the performance of the fuzzy classifier with
ellipsoidal regions when N. was changed. When clusters were dy-
namically generated, the recognition rates of the test data were better
than that without dynamic clustering and the best recognition rate was
achieved for N, = 295, in which one additional cluster was generated.

V. DISCUSSION

The fuzzy classifier with ellipsoidal regions is suited for appli-
cations whose training data belonging to a class obey the Gaussian
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TABLE VI
PERFORMANCE OF THE FuzzY CLASSIFIER WITH ELLIPSOIDAL
REGIONS FOR THE BLOOD CELL DATA BY CHANGING N,

_N. Rate(%) _ No.Rules Time (s)
- 91.65 (95.41) 12 29
25 92.13 (95.96) 13 35
20 92.10 (96.32) 14 42
15 92.03 (96.29) 14 36
10 92.03 (96.29) 15 43
S 91.81(97.03) 29 77

(): Recognition rate of the training data

distribution. Thus if the input variables include discrete variables such
as the thyroid data, the recognition rate of the test data is lower than
that of the neural network classifier and other fuzzy classifiers, even
by dynamic cluster generation.

By introducing dynamic cluster generation, the recognition rates
of the fuzzy classifier with ellipsoidal regions improved remarkably
for the thyroid data. In [6], to improve the recognition rate, the
training data were divided in advance. The best recognition rates
of the thyroid test data were 96.79% with the 21 input variables and
96.47% with the six continuous input variables. These recognition
rates were obtained by trial and error. By the dynamic clustering the
best recognition rates of the thyroid data were 97.29% with the 21
input variables and 97.32% with the six continuous input variables.
These recognition rates were obtained without much effort. We need
to set a proper value to V.. The optimal value may change according
to applications. One way to avoid trial and error is to decrease N,
during training. First, we set a large value to V. and if the recognition
rate of the training data is poor for a given N., we decrease N.. To
avoid overfitting, the training is terminated when the recognition rate
of the test data begins to increase.

V1. CONCLUSIONS

We discussed a fuzzy classifier with ellipsoidal regions that dy-
namically generates clusters. First, for the data belonging to a class
we define a fuzzy rule with an ellipsoidal region. Namely, using
the training data for each class, we calculate the center and the
covariance matrix of the ellipsoidal region for the class. Then we
tune the fuzzy rules, i.e., the slopes of the membership functions,
successively until there is no improvement in the recognition rate
of the training data. Then, if the number of the data belonging to a
class that are misclassified into another class exceeds a prescribed
number, we define a new cluster to which those data belong. Then
we tune the newly defined fuzzy rules in the similar way as stated
above, fixing the already obtained fuzzy rules. We iterate generation
of clusters and tuning of newly generated fuzzy rules until the number
of misclassified data does not exceed the prescribed number. We
evaluated our method using the thyroid data, the Hiragana data of
vehicle license plates, and the blood cell data. By dynamic cluster
generation, the generalization ability of the classifier was improved
and the recognition rate of the fuzzy classifier for the test data was
best among the neural network classifiers and other fuzzy classifiers
if there were no discrete input variables.

APPENDIX

In Appendix A, we calculate the upper bound and the lower bound
of «;; that allow the I — 1(>0) data that are correctly classified
to become misclassified. And in Appendix B, we check how many
data that are misclassified are correctly classified if «;; is changed
within the bounds calculated in Appendix A. Then in Appendix C,
i; is determined so that the recognition rate of the training data is
maximized.

A. Upper and Lower Bounds of o;

We calculate the upper bound Us;(!) and the lower bound L;(l)
of a;; allowing the [ — 1 (>0) data that are correctly classified to be
misclassified. We divide a set of input data into X and Y, where X
consists of the data correctly classified using the set of fuzzy rules
{Ri;} and Y consists of the misclassified data. Then, we choose
x (€X) that belongs to class 4, and that satisfies

hij(x) < min hik(x). )

If (9) does not hold, x remains to be correctly classified even if we
change a;;. If x further satisfies

R (x) = M < min A (x) < min 3 (x) (10)
i @i o#ip=l, . P =i
there is a lower bound L;;(x) to keep x correctly classified.
d;(x)
L‘} (X) - 'IIliIl hgp (X) < Cl(” " (11)
) o#i, p=1, .-
If (10) is not satisfied, namely
RZ(x) = 4 (x) <minhl(x) < min A2 (%) (12)
g w; ki otip=1, PN

a;; can be decreased without making x become misclassified.

Now the lower bound L;;(1), which is defiried as the lower bound
that does not make any correctly classified data become misclassified,
is

Lij(1) = max Lij(x). (13)
To clarify the discussion, we assume that L;;(x) is different for
different x. Then (13) is satisfied by one x. Similarly, L;;(2), which
is defined as the lower bound that allows one correctly classified
datum to be misclassified, is the second maximum among L;;(x)
and is given by

Lz’j(2) = L;; (X) (14)

max
x€X, L;;(x)#L;;(1)
In general,

Li;(l) = Lij(x). (15)

max
X€X, Lyj(x)#L;5(1), -+, Li;(1-1)
In the similar manner that we determined the lower bound L;;(!),
we can determine the upper bound U;; (7). We choose x (€X ) which
belongs to. class o (7). Let cluster op have the minimum tuned
distance hop(x)

hop = min hep(X). (16)
q .

Since the tuned distance h;;(x) is larger than h,(x), the upper

bound U;;(x) of a;; in which x remains correctly classified is

(%)

min hZ,(x)’ an
q

U;; (x) =

Now the upper bound U;; (1), which is defined as the upper bound
that does not make any correctly classified data be misclassified, is

Ui;(1) = }1’(%1}1{1 Us;(x). (18)

Here we also assume that U (x) is different for different x. Then (18)
is satisfied by one x. Similarly, U;;(2), which is defined as the upper
bound that allows one correctly classified datum to be misclassified,
is the second minimum among U;;(x) and is given by

Ui;(2) = (19)

min Usj (x).
x€X, U;j(x)#U;5(1)
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In general

Ui;(1) = Uij(x). (20)

min
x€X, Us(x)2U;5(1), -, Usz5(1-1)
Thus «;; is bounded by
oo < Lij(l) < Lij(1 = 1) < - -+ < Liji(1) < aij < Ui5(1)

<< UG- < U () < -ee 21

If we change «;; in the range of (L;;(1), U;;(1)), the correctly
classified data remain to be correctly classified where (a, b) denotes
the open interval. And if we change . in the range of [U;; (I — 1),
Us; (1)), or (Lij(1), Lij(I — 1)], the I — 1 correctly classified data are
misclassified where [z, b] denotes the closed interval.

B. Resolution of Misclassification by Changing o

For x (€Y") which is misclassified into class ¢ or which belongs to
class 7 but is misclassified into class o (#1), we check whether it can
be correctly classified by changing ;. First, we consider increasing
a;j. Let x, which belongs to class ¢, be misclassified into class o.
This datum can be correctly classified if

d?;(x)

— 22
mgn h2,(x) 22)

aij > Vij(x) =

irrespective of the values of Rz (x) (k # ) where V;;(x) is the lower
bound of «;; that makes the misclassified x correctly classified.

Let Inc(!) denote the number of the misclassified data that are
correctly classified if we set the value of ay; in [U;; (I — 1), Us;(1)).
We increase Inc(l) by one if V;;(x) is included in (ouj, Us; (1)) and
we define

Bi; = max (23)

Vij) <Uig (D)

Vij (x).

If a;; is set to be larger than max(f;;(!), Us;(I — 1)), Inc(l) data
are correctly classified although the [ — 1 correctly classified data are
misclassified.

Let x, which belongs to class o, be misclassified into class ¢. Then
similar to the above discussions, we check whether x can be correctly
classified by decreasing «;;. First, the minimum tuned distance for
class o should be the second minimum among n classes, namely ¢
in the following equation needs to be o:

min hik(x) <  min ke (%). 24
k g#i, =1,

Second, hi;(x) needs to be the minimum in class 4, and the second

minimum in class ¢ is larger than the minimum tuned distance in

class o

hij(x) < min hep(x) < min hix(x). (25)
P k#j
Then, the datum can be correctly classified if
dz;
g < Ky (x) = J(X) (26)

mpin h2,(x)

where K;;(x) is the upper bound of «;; that makes misclassified x
become correctly classified.

Let Dec(!) denote the number of the misclassified data that are
correctly classified if we set the value of a; in (Ls;(1), Li; (1 — 1)].
We increase Dec(l) by one if K;;(x) is included in (Li;(1), aij).
We define

@7

min
K;5(x)>Li; (1)
If oij is set to be smaller than min(~;;(1), L;; (I — 1)), Dec(l) data
are correctly classified although the [ — 1 correctly classified data are
misclassified.

Y (1) = Kij(x).

C. Modification of c;;

For Inc(l), I =1, - -+, las, where Iy is a positive integer, we find
[ that satisfies

max (Inc(l) = 14+ 1). (28)
Similarly, for Dec(l), 1 =1, ---, la, we find [ that satisfies
mla,x(Dec(l) —1+1). (29)

If there are plural I’s that satisfy (28) or (29), we chose the smallest {.
First, we consider the case where (28) is larger than or equal to (29).
If we increase ;; so that it is larger than 3;;(!) in (v, Uij(1)), the
net increase of the correctly classified data is Inc(l) — I+ 1. Thus we
set ai; in [Bi;(1), Us;(1)) as follows:

a;; = Bi; (1) + 6(U; (1) — Bs; (1),

where 6 satisfies 0 < 6 < 1. Here, Bi;(I) > Ui;j(I — 1) holds,
otherwise [ cannot satisfy (28).

Likewise, if (28) is smaller than (29), we decrease «;; so that it is
smaller than ~v;; (1) in (L:;(1), 1:;(1)] as follows:

aij =y (1) = 8(yi; (1) = Liz(1)).

Equations (30) and (31) are the same as (7) and (8), respectively.
The parameter § is used to control the recognition rate of the test
data (the recognition rate of the training data is the same irrespective
of the value of §).

(30)

(€}Y
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Functional Graph Model of a Neural Network

Igor T. Podolak

Abstract—A model representing neural networks is proposed. It uses
the functional graphs notion defined by Jakubowski [6]. This is a system
of nodes connected with functional edges between which binary relations
can be defined. Multilayer artificial neural networks can easily be defined
using functional edges to model neurons, and parametrized binary rela-
tions to model synaptic connections. Learning is also defined in terms of
functional graphs. The proposed description can produce descriptions of
whole classes of networks.

Index Terms—Artificial peural networks, functional graphs.

I. INTRODUCTION

As neural networks are being more and more widely used in recent
years, the need for their more formal definition becomes increasingly
apparent.

Haykin [5] gives the following definition of artificial neural
network (ANN) based on signal-flow graphs which are networks of
directed links interconnected at nodes (see Fig. 1). )

Definition 1: A neural network is a directed graph consisting
of nodes with interconnecting synaptic and activation links, and is
characterized by four properties:

* each neuron is represented by a set of linear synaptic links, an
externally applied threshold, and a nonlinear activation link; the
threshold is represented by a synaptic link with an input signal
fixed at a value of —1;

« the synaptic links of a neuron weight their respective input
signals;

« the weighted sum of the input signals defines the total internal
activity level of the neuron in question;

+ the activation link squashes the internal activity level of the
neuron to produce an output that represents the state variable of
the neuron.

This definition describes the architecture of an ANN, the activation

function used, and the modes of computation at nodes.

For the purpose of checking the uniqueness of ANN weights
Albertini et al. [2] define a single hidden layer feedforward ANN
with m inputs, n hidden nodes, and p outputs as a 5-tuple

EZE(BaCnBaCU)J) (1)

where B and C are ‘real matrices of sizes n X m and p X n; 8 and
co are vectors of sizes m and p;o: IR — R is any function. These
authors define a behavior function behs

behs: R™ — R: u — CF(Bu+ )+ co 2)
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Fig. 1. A typical feed forward neural network architecture.

where
O-!(xl"'an) = (0’(1:1),-~-,(T(:12n)). (3)

The authors then say that two networks % and 3 are equivalent
when behs = behsg.

There is a number of graphical ANN models where numerical
signals are propagated along the links of the graph: Ahson in [1]
gives a model based on Petri nets, Haykin [5] as a signal flow graph,
Saul and Jordan [8] represent ANN’s as a hidden Markov model for
the case of Bolztmann machines.

All these models define ANN’s only as static objects where no
change in parameters is done and the learning phase is only said
to have taken place previously, or it is defined using a different
formalism than the one describing the ANN’s architecture. There
seems to be a need for an ANN model, where all its phases (i.e., both
learning and knowledge extraction) as well as ANN’s architecture,
are defined using the same formalism. Functional graphs seem to be
perfect for this purpose.

The rest of the paper is organized as follows. In Section II the basic
definition of functional graphs is given; in sections III the architecture

“and in Section IV learning models of a feedforward ANN are given.

Concluding remarks are given in Section V. A cascade correlation
ANN model is given in the Appendix.

II. FUNCTIONAL GRAPHS

In [6], Jakubowski gives a definition of a functional graph.
Definition 2: Functional graph is a system S = (X,Y,F,R)
where X and Y are sets of inputs and outputs of the system elements

X=U~ X;

Y= U;ll Y.

X ={zi1, -, Tia; }

Yi ={yi1, s Yiay } C))

where F is a set of elements f; called functional edges which are
pairs f; = (X;,Y:)and F = {fi:t = 1,---,m}, Ris a set of binary
relations R C Y x X. The relation

Ri={(y,z: (y,z) € RAz € Xi}

is called a connecting edge.
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