
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 4, AUGUST 1999 469

Randomized Neural Networks for
Learning Stochastic Dependences

Vivek S. Borkar,Senior Member, IEEE, and Piyush Gupta

Abstract—We consider the problem of learning the dependence
of one random variable on another, from a finite string of
independently identically distributed (i.i.d.) copies of the pair.
The problem is first converted to that of learning a function of
the latter random variable and an independent random variable
uniformly distributed on the unit interval. However, this cannot
be achieved using the usual function learning techniques because
the samples of the uniformly distributed random variables are
not available. We propose a novel loss function, the minimizer
of which results in an approximation to the needed function.
Through successive approximation results (suggested by the pro-
posed loss function), a suitable class of functions represented by
combination feedforward neural networks is selected as the class
to learn from. These results are also extended for countable as
well as continuous state-space Markov chains. The effectiveness
of the proposed method is indicated through simulation studies.

I. INTRODUCTION

T HIS paper considers the following basic problem and
its variants. Given a finite string

of copies of the random-variable pair , we want
to learn the dependence of on . The conventional
procedure would be to seek a functionso as to minimize an
appropriately defined error betweenand the estimate .
A common choice is the well-knownmean square errorgiven
by . For this error criterion, the best estimate
is given by the conditional mean . Our
problem then reduces to learning this based on observed
samples.

Having done so, suppose we also want to know the best
estimate of given for a prescribed function .
Having estimated , a natural candidate
would be . But this need not equal
the true “best estimate” . Thus the “functional
learning” approach sketched above runs into trouble when
one wants to learn more than one function (e.g., the first few
conditional moments) of given .

Ideally, what one would really need to know is the con-
ditional law of given . This, of course, is a classical
statistical problem and various techniques for its resolution,
both parametric and nonparametric, are available. Our aim here
is to present an alternative that retains the “functional learning”

Manuscript received April 5, 1998; revised September 16, 1998. This paper
was recommended by Associate Editor K. Pattipati.

V. S. Borkar is with the Department of Computer Science and Automation,
Indian Institute of Science, Bangalore 560012, India.

P. Gupta is with the Department of Electrical and Computer Engineer-
ing, University of Illinois, Urbana-Champaign, IL 61801 USA (e-mail:
piyush@decision.csl.uiuc.edu).

Publisher Item Identifier S 1083-4419(99)05268-1.

flavor and allows us to use neural network techniques in a
convenient manner.

The key step is to invoke a standard result of probability
theory which allows us to write , where
are independent random variables uniformly distributed over

and independent of , and a suitable (measurable)
map. The problem of learning the conditional law of given

is then equivalent to that of learning the function.
But there is a catch here, viz., that the samples of

are not available. We work around this by choosing our error
measure so that the learning does not require. Yet another
problem is that “measurable map” is far too general a
search domain to be computationally amenable. One therefore
restricts a priori the class of candidate’s, or the “architecture”
for learning, keeping in mind the error measure being used.
The remainder of this section makes these ideas precise.

To motivate our choice of the function class, consider the
evolution of as a three step process:

1) take the family indexed by ;
2) evaluate for ;
3) pick one of them, , according to a uniform

distribution on .

With this picture in mind, consider as a first approximation
replacement of the uncountable family , by
a finite family . Correspondingly, we replace

by its approximation

where is a partition of . (As we argue later in the
Appendix, the choice of can be based upon how many
“averages” of and (we wish to match.) The
family can be picked from a suitable function space,
say the space of continuous functions, and chosen so that
they are “well spread” in this space. This makes a case
for choosing them from a parameterized family known to
have good approximation properties. We choose the family of
feedforward neural networks, justified by the approximation
theorems of [1] and [8], among others. We let denote the
parameter vector parameterizing the feedforward neural net

.
Given the above architecture for, suppose one wishes to

match and , for some prescribed
functions . The latter could be, for example, the first few
moments or the first few elements of a complete orthonormal
basis of a suitable Hilbert space of functions, or something

1083–4419/99$10.00 1999 IEEE

470 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 4, AUGUST 1999

else (such as “features”) motivated by the application in mind.
In any case, these are assumed to be prescribed a priori. The
“matching” can then be defined in terms of minimizing the
“error”

(1)

where . Note that the second
term in the difference above is not as intended, but
its conditional expectation given . This is because the
former depends on explicitly and is therefore not available.
Furthermore, this replacement is justified by an “asymptotic
equivalence” (i.e., as) between the two, described in
the Appendix. Parameters are a priori weights. Without
any loss of generality, these may be taken to be positive with

.
The advantage of the above criterion is that it no longer

involves or explicitly, only the probabilities .
The learning problem then amounts to minimizing this error
criterion simultaneously over . To ensure that
different ’s do not converge to the same value leading to a
degenerate representation, we may introduce lateral inhibition
among them. We did not, however, find this necessary in our
simulation studies. It seems to suffice to initialize the’s
randomly.

It is important to note that in the summation in the square
brackets of (1), the ’s appear as multipliers of and not
of ’s. Thus they can truly be viewed as probabilities
with which we randomize between the ’s. This is to be
distinguished from a mere “weighted average of feedforward
nets” which would be the case if we replaced the expression in
square brackets by . This is the difference
between “conditional expectation of a function” and “function
of conditional expectation” that we alluded to in the beginning.
With this interpretation in mind, we refer to this architecture
as randomized neural networks (RNN’s).

The foregoing discussion also underscores the key differ-
ence between RNN’s and standard multilayer perceptrons.
Note that the architecture of RNN appears as though it were
just a multilayer perceptron with a linear layer at the output.
If we treat it as such and use the usual training methods for
the same, we would not be justified in using the weights
of the linear layer as probability weights as done above. In
particular, an estimate of , say, can be justifiably taken
to be , which is not the case with a standard
multilayer perceptron. This difference has come about because
of our error criterion and our stochastic realization theoretic
formulation. To repeat, RNN’s try to learn an approximation
to conditional law, not a particular conditional average as a
multilayer perceptron would.

The next section describes the training algorithm for the
RNN, followed by numerical experiments for the indepen-
dently identically distributed (i.i.d.) case sketched above, as
well as the Markov case in Sections III and IV, respectively.

A more detailed mathematical motivation for our formulation
is given in the Appendix. We conclude this section with a brief
comparison with some representative works related to ours.

Most of the earlier approaches assume that the true con-
ditional distribution comes from a known countable family
of distributions [9], [14]. For example, DeSantiset al. [9]
consider the problem of learning the conditional distribution
from a countable class of distributions, so as to minimize the
entropyof the observed data. In the approach taken here, we
do not make any such assumptions. In [14], on the other hand,
the ’s are interpreted as different algorithms and the output
is a weighted sum of them where the weights are learned from
data. This is the “weighted average” formalism described and
contrasted with our approach in an earlier paragraph.

Another approach which is closely related to the issues
addressed here, is the generalized probably approximately
correct (PAC) model of learning from examples [12]. In this
model, the learning system is required to decide on an action,
say , after observing the input . Depending on and
actual output , there is a “loss” and the objective
is to find a decision rule (i.e., a function which maps
to) so as to minimize the time-averaged empirical loss.
The idea, illustrated by examples, is to make the system learn
various features of the conditional distribution, by choosing an
appropriate loss function. The formulation a priori is strong
enough to subsume the most general problem, viz., that of
learning conditional distributions. One simply lets the domain
of to be the space of probability measures on the
domain of and let denote the estimated conditional
distribution of given . The accent of [12], however, is
on the general learning theoretic issues of the abstract model,
whereas our aim is to propose a specific learning scheme with
theoretical and empirical support.

Another related strand of work is the estimation of condi-
tional distributions based on density mixtures [13]. Here the
conditional mean is estimated from the class of weighted sums
of a prescribed family of functions such as Gaussian (more
generally, radial basis functions). Our approach differs both
in our choice of the ’s and our choice of the loss function
which goes for “conditional expectation of function” rather
than visa versa, as already argued.

Yet another development with apparent similarity is the
techniques of “bagging” and “arcing” [7] wherein one retrains
the same architecture several times with data resampled with
replacement (the two differ in the choice of sampling distri-
butions) and then takes a weighted average. The concluding
comments of the preceding paragraph also apply here.

Finally, we note that function learning with a single feed-
forward neural network can be viewed as a special case of
RNN corresponding to .

II. L EARNING ALGORITHM

In this section we describe the learning algorithm for the
proposed RNN architecture. The various steps involved in the
algorithm are as follows:

• given , the set of training
samples;

BORKAR AND GUPTA: RANDOMIZED NEURAL NETWORKS 471

• compute such that ,
where is given by (1);

• output .

The above algorithm requires that the functionis chosen
to be a global minimum of , which is usually difficult
to achieve. Thus we can use a variant of the above algorithm
which performs local search to find. As described in (§I),
each can be interpreted as the output of a linear
unit whose inputs are the outputs of neural nets, and
the linear unit weighs the th input by . We can train
the aforementioned neural nets using the backpropagation
algorithm [16] so as to minimize the loss function (1).

More specifically, since each , is specified
by a set of weights of a neural net, can be parameterized
by these sets of weights and’s. Therefore, we can perform
search in the weight space to find the minimizerof
in . We can use the gradient descent approach to accomplish
the goal in two steps. In the first step,’s are updated as

where is the learning rate parameter. In the second step,
the weights in the neural nets are updated using the
backpropagation algorithm, i.e., for all weights

where the gradients are computed by backpropagating the error
term as illustrated below. Let

Then, corresponding to (36), we have

(2)

Differentiating (2) with respect to , we get

(3)

Let be the weight between neural unitsand , and
be the output of the th neural net, then

by the chain rule of differentiation, we have

(4)

where , can be computed using
the backpropagation algorithm. In the actual implementation of
the algorithm, the weights are updated after every input–output
pair seen, as done in usual practice.

In the next few sections we give the simulation results for
the above algorithm for a number of problems.

III. SIMULATIONS FOR THE i.i.d. CASE

We first give the simulations for the i.i.d. case. The simula-
tions for the discrete state-space Markov chains are given in
§IV. We discuss the extension to the continuous state-space
Markov chains in §V.

As motivated in §I and discussed in detail in the Appendix,
we consider the following modified loss function:

(5)

Note that, in the above, we consider just ’s to
match conditional moment functions ,
even though, theoretically, we are required to take

’s to match functions
(derived in 36). The simulation results

indicate that we are justified in doing so.
We consider six synthetic problems. For all the problems, we

have used two-layer feedforward neural nets with sigmoidal
hidden units and linear output unit to learn .
The neural networks are trained using the backpropagation
algorithm so as to minimize the loss function , given
in (5) (see §II for other details). As in usual practice, we
use themomentumterm to update the weights. The training
is stopped when the incremental change in the average loss
function (averaged over input–output pair) goes below a
pre-specified threshold. We give the results in terms of a table
which includes the following entries:

• #Iter, the number of iterations taken for training. One
iteration stands for the number of input–output pairs over
which the loss function is averaged;

• , the error (value of the loss function) at the
start of training for the given moment functions ;

• , the error at the start of training for the test moment
functions . (Our choice of moments for test func-
tions is in conformity with the long statistical tradition
of using moments as key “features” of a probability
distribution. As observed in the introduction, alternative
choices are possible);

• , the error at the end of training for the given functions
;

• , the error at the end of training for the test functions
.

The error for test functions is computed using the loss function
(5) with being replaced by the given test moments

. We include this error so as to indicate that the learned
function approximates well the averages of functions other
than the ones used for training .

472 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 4, AUGUST 1999

(a) (b)

(c) (d)

Fig. 1. The desired and the learned moments of the target function of (6): (a)�g1(y) = y, (b) �g2(y) = y2, (c) G1(y) = y3, and (d)G2(y) = y4.

In view of Theorem 1, we specify for the problems
by giving the such that . The first problem
we consider is for the target function

(6)

where is uniformly distributed over (recall that
). We match two functions, namely and , with

and . The test functions are taken
as and , with and . Each of the three
neural nets has two hidden nodes. The number of input–output
pairs over which the loss function is averaged,, is taken to
be 200.

Table I gives the performance of the algorithm for the above
chosen parameters. Fig. 1 gives the plots of “
v/s ” for both the training functions, , and the test
functions, . As the plots indicate, the algorithm not

TABLE I
OUTPUT OF THEALGORITHM FOR VARIOUS TARGETFUNCTIONS IN THE i.i.d. CASE

only performs well on the training functions, but also well-
approximates the averages of the test functions. In the next
three problems, we take , with each
component of being uniformly distributed over . The

BORKAR AND GUPTA: RANDOMIZED NEURAL NETWORKS 473

parameters are taken as in the above problem except that each
neural net now has five hidden units. The target functions are

(7)

(8)

(9)

The performance of the algorithm is summarized in Table I.
Finally, in the last two problems we take
. Each component of has uniform density over . The

parameters are assigned the same values as above. The target
functions are

(10)

(11)

Again, Table I gives the performance of the algorithm for the
above target functions.

IV. SIMULATIONS FOR THE MARKOV CHAIN CASE

In this section we present the simulation results for the
discrete state-space Markov chains. As in the i.i.d. case, we
consider the loss function having ’s to match
conditional-moment functions , as against

’s derived in §B; that is, the loss function is taken as

(12)

In the following, we consider five problems. The first four
problems are for when the state space of the Markov chain is
finite, and the last problem is for infinite-but-countable state
space. In all the problems, we have used two-layer feedforward
neural networks with sigmoidal hidden nodes and linear output
nodes, for learning .

Example 1: This example is theLRU-stack modelfor page
referencing behavior of programs[17, ch. 7]. For -state
model, the transition matrix, , is defined
as follows: Let , and ,
then

otherwise.

(13)

Here we take and

As in the i.i.d. case, we match two functions, namely,
and , with and . The test functions

are taken as and with and .
Finally, each of the three neural subnets has six hidden nodes,
and the inputs and the outputs of the neural nets lie in [0,1].

TABLE II
OUTPUT OF THE ALGORITHM FOR THE MARKOV CHAIN CASE

That is, the interval [0,1] is divided into subintervals, and
each subinterval stands for one state of the Markov chain.

Table II gives the performance of the algorithm for
the above chosen parameters. Fig. 2 gives the plots of
“ v/s ” for both the training functions,

, and the test functions, . As the plots indicate,
the algorithm not only performs well on the training functions

, but also well-approximates the averages of the test
functions .

Example 2: Let the transition probabilities be

(14)

Here we take and . The parameters are the
same as in the previous example except that the number of
hidden nodes in each neural nets is two. The performance of
the algorithm is summarized in Table II.

Example 3: The next example corresponds to theBernoulli-
Laplace diffusion model[11, ch. 15]. The transition probabil-
ities are given by

(15)

Here we take . The parameters are assigned the
same values as in the previous example. Table II summarizes
the performance of the algorithm for this Markov chain.

Example 4: In this example, we consider theEhrenfest
diffusion model. The Markov chain has states, and
the transition probabilities are

(16)

Here we take . The parameters are taken as in the
previous examples. The output of the algorithm is given in
Table II.

Example 5: Finally, we consider the M/G/1 Queuing sys-
tem, i.e., a single-server queuing system whose arrival process

474 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 4, AUGUST 1999

(a) (b)

(c) (d)

Fig. 2. The desired and the learned moments for the Markov chain with transition probabilities given in (13): (a)�g1(y) = y, (b) �g2(y) = y2, (c)
G1(y) = y3, and (d) G2(y) = y4.

is Poisson with the average arrival rate. The service times are
independent and identically distributed with some unknown
but fixed distribution. Let denote the number of cus-
tomers in the system (those in the queue plus any in service) at
time . Since, in general, need not be a Markov
chain, we consider the process , where

is the number of customers in the system at the time of
departure of the th customer. Now can be shown to be
a Markov chain. Furthermore, it can be shown that the limiting
distribution of the number of customers observed at an
arbitrary point in time is identical to the number of customers
observed at times of departures of customers [19, ch. 5], i.e.,

(17)

Let denote the number of arrivals during the service time
of the th customer, then

if
if

And the transition probabilities of the Markov chain are
given by

if
if
otherwise.

(18)

Since the service times are assumed to be i.i.d., then so are
. Let be the limiting probability measure for . We

are then interested in learning an approximation ofso as

BORKAR AND GUPTA: RANDOMIZED NEURAL NETWORKS 475

to match a given set of moments of
the steady-state average number of customers in the system,
which by (17) is

where is the occupation measure for , i.e.,
. Hence the problem falls in the framework

analyzed in §B.
In the following, we consider the service process to be

hyperexponential with two components, i.e., ifdenotes the
service-time random variable, then

(19)

Here we take and . The average
arrival rate is . We consider the first and the second
moments of for matching, i.e., and ; while
the test moment functions are and . Finally,
each of the three neural subnets in the learning structure has
six hidden nodes. The performance of the algorithm is given
in Table II.

V. EXTENSION TO CONTINUOUS STATE SPACE

In this section we discuss the simulation results for the
continuous state-space Markov chains. The problem formu-
lation remains the same as in the discrete case except that
now ’s take values in a closed bounded subsetof ;
that is, given a finite string , we desire
to learn the transition probability distribution .
A result similar to Theorem 3 can be obtained so to convert
the problem of learning to that of learning an appropriate
function, i.e., it can be shown that there exist a measurable
function , such that

where are i.i.d. random variables, uniformly distributed over
(for details see [3]). As in the discrete case, we minimize

the following loss function:

(20)

so as to match conditional moments of given
. A result similar to Theorem 4 can be proved by identical

arguments, which can justify using such a loss function.
In the following, we consider five problems. We use feed-

forward neural networks with sigmoidal hidden nodes and
linear output nodes, for learning .

TABLE III
OUTPUT OF THE ALGORITHM FOR VARIOUS TARGET FUNCTIONS

IN THE CONTINUOUS STATE–SPACE MARKOV CHAIN CASE

As indicated above, we specify the transition probability
distribution of for the problems by giving the such
that . The first problem we consider is for
the target function

(21)

where is uniformly distributed over . As in the discrete
case, we match two functions: namely, and ,
with and . The test functions
are taken as and , with and .
Each of the three neural nets has two hidden nodes. Table III
gives the performance of the algorithm for the above chosen
parameters. It also summarizes the results for various other
target functions.

Finally, we discuss an example from queuing theory. Con-
sider a GI/G/1 queue. Let be the sequence of inter-arrival
times to the queue, and let be the sequence of service
times. The time spent in the system by theth customer,
denoted by , satisfies the following recurrence relation:

(22)

Here we take both the service process and the arrival
process to be hyperexponential (19). The parameters for

are: and ; and for
are: and . The performance of the
algorithm is given in Table III.

VI. CONCLUSION

We have considered the problem of learning the stochastic
dependence of one random variable on another, from a finite
string of copies of the pair. The problem formulation has been
adapted from [4]. We have improved upon some of the results
of [4], by suggesting an alternate loss function when the given
string consists of i.i.d. copies of the random-variable pair. We
have also extended the results for the case when the given
string is a Markov chain over a countable state space, as well
as for when the state space is continuous. We have given
simulation results to indicate that our approach performs well
on standard problems.

Some possible extensions we hope to pursue in the future
are as follows.

• Choosing from a mixed family of Neural Network
architectures (e.g., some could be based on sigmoids, oth-
ers on radial basis functions). This may capture different

476 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 4, AUGUST 1999

features of the data better. One can also consider different
training algorithms for different ’s as in [14].

• The RNN architecture may provide a useful parameteri-
zation forModel Reference Adaptive Controlof nonlinear
stochastic systems.

APPENDIX

MATHEMATICAL FORMALISM

Here we give a detailed mathematical motivation for our
formulation of the problem of learning stochastic dependences.

A. The i.i.d. Case

Let be independent and identically dis-
tributed pairs of random variables taking values in

, where and are closed bounded subsets.
Let denote the laws of , respectively.
Then we can write as

(23)

where is the regular conditional law of given
, defined -a.s. uniquely [6, ch. 3]. Now the problem is

to learn the conditional law . To this end, the
problem is first converted into another equivalent problem via
the following theorem [2], [4, Theorem 1].

Theorem 1: Given an i.i.d. sequence , as
above on some probability space, there exist a measurable
function and a sequence of i.i.d. random
variables defined on a possibly augmented probability
space such that each is uniformly distributed over ,

are independent and

(24)

Hence the problem is reduced to that of learning the function
in (24).
Let be the set of measurable functions
, and a prescribed subset thereof that will

serve as thehypothesis spacefor the learning algorithm, i.e.,
the approximation of , denoted , is sought from . Let

be a loss function, i.e., has the
interpretation as the loss associated with decidingwhen the
target function is . Then, the problem is to choose a function

that minimizes .
We next discuss our choices of the loss function

and the hypothesis space.
1) Choice of Loss Function:This subsection gives some

preliminary motivation for the choice of loss function.
If we had a control on the random variables featuring

in (24), we could learn by minimizing the mean-square
difference between and , where is the
current approximation of . But are not known except
for their distribution. Thus the next best thing to do is to
generate that mimic in law, i.e., are i.i.d.
uniformly distributed on such that is an
independent family. One may then compare with

, for a proposed . This comparison
cannot be made sample path-wise, as are unrelated

except in law. Hence we can compare only
in law, i.e., if is the law of , we can compare
as elements of (the space of probability measures on

with the topology of weak convergence). A standard metric
on is the Prohorov metric defined by [6, ch. 2]

for all Borel

where such that . is,
however, not computationally tractable, and hence an alternate
equivalent metric is used, where

(25)

where (the space of all real-valued contin-
uous functions on) is a bounded countableconvergence
determiningclass [6, ch. 2], i.e., it satisfies

in

Correspondingly, the loss function can be taken as

(26)

where . (26) differs from (25) in the
following: It has only a finite number of terms in the sum
(to make the loss function computationally tractable), it has
more generalweights , and finally, the modulus has been
replaced by its square (to make it differentiable with respect
to certaindesign parametersto be defined later).

A natural approximation for and is given by the
empirical measures and , respectively, defined by

for Borel in . Thus the empirical loss is now defined as

(27)

We shall successively modify the above loss function further
after the choice of is made in the next subsection.

2) Choice of Hypothesis Space:The choice of the hypoth-
esis space, , is based on the following observation. Given
the loss function (26), we need only to find somesuch that

(28)

where is as in (24). The next theorem [4, Theorem 3]
gives one such .

BORKAR AND GUPTA: RANDOMIZED NEURAL NETWORKS 477

Theorem 2: There exists a partition of
into intervals (some of them possibly empty) and mea-

surable functions such that
defined by

(29)

satisfies (28).
Proof [4]: Since is compact, so is by

Prohorov’s theorem [6, ch. 2]. Let
is of the form . Then is closed

(hence compact) and convex. By Lemma 2.2 of [3], extreme
points of are precisely those for which as
in (23) is a Dirac measure for-a.s. . Now consider

By a result of [10] (see also [18]), the extreme points of
can be expressed as a convex combination of at most
extreme points of . That is, they correspond to
of the form

for some with
measurable and the -function (for mathematicians, a
“Dirac measure”) at for . Now partition into

with the length of ,
and define as in (29). The claim follows.

Thus the search of can now be restricted to those of the
form (29). Correspondingly, we can modify the empirical loss
function (via a simple “conditioning”) as

(30)

where

composition of functions;
satisfies ,
and ;
measurable with
defined correspondingly by

(i.e., has two com-
ponents the first being , and
the second);

empirical measure for the input
process, defined by

Borel in

Note that (30) does not require the knowledge of .
Equation (30) was the loss function used in [4]. We shall
modify it further.

If in (28) are taken to be functions of only the second
variable, then only the law of is learned and not the joint
law of . But, suppose we are given functions,

(underscores the fact that the domain
of ’s is , distinct from that of ’s, which was), and
we are required to match their conditional expectations, i.e.

-a.s. (31)

which can be equivalently written as

(32)

where is a bounded countable convergence
determining class (i.e.,

in). Again, for computational tractability, we desire
to match (32) for only finitely many , i.e.,

(33)

Now, by Theorem 2, there exists awhich satisfies (33) and
can be expressed as

(34)

The ideal loss function corresponding to (31) in our setup
would be

Let . Then is the “empirical
conditional law” of given . Now one approximation of
the above loss function is

(35)

This is a better choice for the loss function than (30) because
whenever (35) is zero, then so is (30), but the converse, in
general, is not true. However, this loss function requires the

478 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 4, AUGUST 1999

knowledge of , which was the goal we started with.
Hence we consider the following loss function instead:

(36)

where (notation chosen so that we can give a
unified exposition for (30) and (36) in the following). Equation
(36) is minimized in the limit (i.e., as), by exactly the
same set of solutions that minimizes (35). That can be seen as
follows: (36) can be rewritten as (by adding and subtracting

within the square, and then expanding the
square appropriately)

(37)

In (37), the first term in the summand is independent of the
parameters and . The last term goes to
0 as , as follows:

The only remaining middle term in (37) corresponds exactly
to (35) (after using (34) in the latter). Hence the claim follows.

Now is minimized over the choice of from among
-dimensional probability vectors, as well as over

from the set of measurable maps from to . We can
restrict our attention to continuous, as continuous functions
are dense in -spaces for , and by Lusin’s theorem
[15], given any measurable function on , there exists a
continuous function which agrees with the given function
outside a set of arbitrarily small positive measure.

We can now use some parameterized family of continuous
functions to learn ’s. In particular, we can consider the
family of continuous functions that can be formulated as a
specific type of feedforward neural network: The class of two-
layer networks with an unrestricted number of sigmoidal units
in the first layer and a linear unit in the second layer. Hence
the learning structure consists of two-layer feedforward
networks, stacked in parallel and receiving common inputs,
and a linear unit in the last layer whose inputs are the
outputs of the aforementioned nets, and whose corresponding
weights are .

B. Markov Chain Case

In this section, we generalize the results of the previous
section for Markov chains. It is worth noting that the case
of Markov chains is not fundamentally different from the i.i.d.
case insofar as we are still being presented pairs with
the task of finding the probabilistic dependence of the second
component on the first, except for the additional feature:

. There is, however, a subtle difference. The
expectation in the expected error criterion in i.i.d. case was
with respect to a distribution explicitly given as the joint law
of the pair, now it is with respect to the stationary distribution
of the process defined only implicitly through the dynamics.
Nevertheless, beyond this technical issue, the two problems
are really the same, but the Markov chain case has the added
attraction of linking this theory to the “system identification”
problem of electrical engineers of which it is the simplest
specimen.

Let be a stationary Markov chain on a countable state
space . We assume, without loss of generality, that the states
are labeled as . Let be the
transition probability matrix for , i.e., the probability

. If is an invariant
probability measure under, we associate with the pair
an “occupation measure” defined by

(38)

The set of all occupation measures, with prescribed, will
be denoted by . We are interested in learning the transition
probability matrix . For this purpose, we first convert the
problem into that of learning an appropriate function via the
following result (analogous to Theorem 1).

Theorem 3 [3]: Given a -valued Markov chain ,
there exists a measurable function and
a sequence of i.i.d. random variables such that each

is uniformly distributed over , are
independent and

(39)

BORKAR AND GUPTA: RANDOMIZED NEURAL NETWORKS 479

Remark 1: Since the state space is countable, we can
obtain an explicit representation of in terms of and

(the latter being as given in the statement of the theorem)

where is the indicator function and .
As before, we would like to learn the function. But as the

samples corresponding toare not available, we instead learn
an approximation of , denoted , by matching moment
functions , i.e.

(40)

or, equivalently, to learn an approximation of, denoted ,
such that

(41)

We next derive a result analogous to Theorem 2 to show that
there exists a which satisfies (41) and can be written
as a convex combination of at most conditionalDirac
measures. (See also [5], for some related results.)

Theorem 4: There exists a partition of
into intervals (some of them possibly empty) and measur-

able functions such that
defined by

(42)

satisfies (40).
Proof: As before, let be the set of all occupation

measures with prescribed (38). Then, by Lemma 2.2 of [3],
extreme points of are precisely those for which
as in (38) is a Dirac measure for-a.s. . Now let

Then, by Dubins’ Theorem [10] (see also [18]), the extreme
points of can be expressed as a convex combination of at
most extreme points of . That is, they correspond to

of the form

(43)

for some with , and .
Now partition into intervals with the

length of , and define as in (42). The claim
follows.

As in the i.i.d. case, we learn by
minimizing the following loss function:

(44)

If instead of matching the joint moments , we desire
to match the conditional moments , i.e.

-a.s. (45)

or, its approximation

Then, as argued in the i.i.d. case, the corresponding loss
function is

(46)

where .
As before, we consider a parameterized family of functions

to learn from. Here, neural networks, in general, may not
be the best choice as the functions are maps over a countable
space. But, if the chain is on an integer lattice (i.e., on a
subset of for some) whereby it can be embedded in
a Euclidean space, and the functions to be learned have some
“nice” properties, e.g., ,
for some , then we can indeed use neural networks
in conjunction with an appropriate quantizer, to learn the
functions ’s. In such a case, a learning algorithm similar
to one for the i.i.d. case, can be used to train the neural nets
so as to minimize the loss function .

REFERENCES

[1] A. Barron, “Neural net approximation,” inProc. 7th Yale Workshop
Adaptive Learning Systems, New Haven, CT, 1992, pp. 69–72.

[2] R. Blumenthal and H. Corson, “On continuous collections of measures,”
Ann. Inst. Fourier, Grenoble, France, vol. 20, no. 2, pp. 193–199, 1970.

[3] V. Borkar, “White noise representation in stochastic realization theory,”
SIAM J. Contr. Optim., vol. 31, no. 3, pp. 1093–1102, 1993.

[4] V. Borkar, K. Rajaraman, and P. Sastry, “Learning stochastic de-
pendences by matching empirical averages,” in3rd Symp. Intelligent
Systems, Bangalore, India, Dec. 1993.

[5] V. Borkar, “Ergodic control of Markov chains with constraints—The
general case,”SIAM J. Contr. Optim., vol. 32, no. 1, pp. 176–186, 1994.

[6] V. Borkar, Probability Theory: An Advanced Course. New York:
Springer-Verlag, 1995.

[7] L. Breiman, “Bias, variance and arcing classifiers,” Tech. Rep. 460,
Dept. Statistics, Univ. California, Berkeley, 1996.

480 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 4, AUGUST 1999

[8] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Math. Contr., Signals, Syst., vol. 2, pp. 303–314, 1989.

[9] A. DeSantis, G. Markowsky, and M. Wegman, “Learning probabilistic
prediction functions,” inProc. 1988 Workshop Computational Learning
Theory. San Mateo, CA: Morgan Kaufmann, 1988.

[10] L. Dubins, “On extreme points of convex sets,”J. Math. Anal. Applicat.,
vol. 5, pp. 237–244, 1962.

[11] W. Feller, An Introduction to Probability and Its Applications, 3rd ed.
New York: Wiley, vol. 1, 1972.

[12] D. Haussler, “Decision theoretic generalizations of the PAC model for
neural net and learning applications,”Inf. Comput., vol. 100, pp. 78–150,
1992.

[13] R. Jacobs and M. Jordan, “A competitive modular connectionist archi-
tecture,” in Advances in Neural Information Processing Systems 3, R.
Lippman, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan
Kaufmann, 1991, pp. 767–773.

[14] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
Tech. Rep. UCSC-CRL-91-28, Univ. California, Santa Cruz, 1992.

[15] W. Rudin, Real and Complex Analysis. New York: McGraw-Hill,
1966.

[16] D. Rumelhart and J. McClelland,Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, vol. 1: Foundations.
Cambridge, MA: MIT Press, 1986.

[17] K. Trivedi, Probability and Statistics with Reliability, Queuing and Com-
puter Science Applications. New Delhi, India: Prentice-Hall, 1988.

[18] H. Witsenhausen, “Some aspects of convexity useful in information
theory,” IEEE Trans. Inform. Theory, vol. IT-26, pp. 265–271, 1980.

[19] R. Wolff, Stochastic Modeling and the Theory of Queues. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

Vivek S. Borkar (SM’95) was born in Mumbai,
India, in 1954. He received the B.Tech. degree in
electrical engineering from the Indian Institute of
Technology, Mumbai, in 1976, the M.S. degree in
systems and control from Case Western Reserve
University, Cleveland, OH, in 1977, and the Ph.D.
degree in electrical engineering and computer sci-
ence from the University of California, Berkeley, in
1980.

After spending a year at Technische Hogeschool
Twente, The Netherlands, he joined T.I.F.R. Centre,

Bangalore, India, in 1981. He moved to the Indian Institute of Science,
Bangalore, in 1989, where he is currently an Associate Professor with the
Department of Computer Science.

Dr. Borkar was a cowinner of IEEE Control Systems Society’s Best
Transactions Paper Award, the S. S. Bhatnagar Award for Engineering and
Technology awarded by the Council of Scientific and Industrial Research,
Government of India, and the Homi Bhabha Fellowship in 1994–1995. He
is a member of American Mathematical Society, life member of the Indian
Society for Probability and Statistics, and a Fellow of the Indian Academy of
Sciences and the Indian National Science Academy.

Piyush Gupta received the B.Tech. degree in electrical engineering from
the Indian Institute of Technology, Bombay, in 1993, and the M.S. degree
in computer science and automation from the Indian Institute of Science,
Bangalore, in 1996. He is currently pursuing the Ph.D. degree in the De-
partment of Electrical and Computer Engineering, University of Illinois,
Urbana-Champaign.

From 1993 to 1994, he was a Design Engineer at the Center for De-
velopment of Telematics, Bangalore. His current research interests are in
wireless communication networks, queuing theory, and learning and intelligent
systems.

