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Randomized Neural Networks for
Learning Stochastic Dependences

Vivek S. Borkar, Senior Member, IEEEand Piyush Gupta

Abstract—We consider the problem of learning the dependence flavor and allows us to use neural network techniques in a
of one random variable on another, from a finite string of convenient manner.
|ndependently_ |d_ent|cally distributed (i.i.d.) copies of the_ pair. The key step is to invoke a standard result of probability
The problem is first converted to that of learning a function of th hich all t itan — (X h
the latter random variable and an independent random variable eory which allows us 10 wrile, = I ko 992 w e_re{gk}
uniformly distributed on the unit interval. However, this cannot ~ are independent random variables uniformly distributed over
be achieved using the usual function learning techniques because[0, 1] and independent ofX} }, and f a suitable (measurable)
the samples of the uniformly distributed random variables are  map. The problem of learning the conditional law}af given
not available. We propose a novel loss function, the minimizer X, is then equivalent to that of learning the functign

of which results in an approximation to the needed function. . .
Through successive approximation results (suggested by the pro-  BUt there is a catch here, viz., that the samples{&f}

posed loss function), a suitable class of functions represented byare not available. We WOV_k around this by choosing our error
combination feedforward neural networks is selected as the class measure so that the learning does not regigkg. Yet another

to learn from. These results are also extended for countable as problem is that “measurable maf’ is far too general a
well as continuous state-space Markov chains. The effectivenesssearch domain to be computationally amenable. One therefore
of the proposed method is indicated through simulation studies. - L . . . h
restricts a priori the class of candidagts, or the “architecture
for learning, keeping in mind the error measure being used.
|. INTRODUCTION The remainder of this section makes these ideas precise.
HIS paper considers the following basic problem and To motivate our choice of the function class, consider the

its variants. Given a finite string(Xs,Y%),1 < k < evolution of (X' £) as a three step process:
n} of copies of the random-variable paift,Y), we want 1) take the familyf(-,y) indexed byy € [0, 1];
to learn the dependence af, on X;. The conventional 2) evaluatef(X,y) for y € [0, 1];
procedure would be to seek a functibrso as to minimize an  3) pick one of them,f(X,{), according to a uniform
appropriately defined error betweghand the estimaté(X). distribution on 0, 1.
A common choice is the well-knowmean square errogiven  With this picture in mind, consider as a first approximation
by E[||Y — h(X)||?]. For this error criterion, the best estimatgeplacement of the uncountable family-,y), v € [0,1], by
is given by the conditional meah(X) = E[Y | X]. Our a finite family f;,1 < ¢ < N. Correspondingly, we replace
problem then reduces to learning thi&) based on observed f(.X, &) by its approximation
samples.

Having done so, suppose we also want to know the best
estimate ofg(Y) given X for a prescribed functiory(-).
Having estimatedh(X) = E[Y | X], a natural candidate
would be g(h(X)) = g(E[Y | X]). But this need not equal where{4;} is a partition of[0, 1]. (As we argue later in the
the true "best estimateE[g(Y) | X]. Thus the “functional Appendix, the choice ofV can be based upon how many
learning” approach sketched above runs into trouble whésverages” of(Y,X) and ¢, X) we wish to match.) The
one wants to learn more than one function (e.g., the first fdamily {f;} can be picked from a suitable function space,
conditional moments) o¥" given X. say the space of continuous functions, and chosen so that

Ideally, what one would really need to know is the conthey are “well spread” in this space. This makes a case
ditional law of Y given X. This, of course, is a classicalfor choosing them from a parameterized family known to
statistical problem and various techniques for its resolutiohave good approximation properties. We choose the family of
both parametric and nonparametric, are available. Our aim héedforward neural networks, justified by the approximation
is to present an alternative that retains the “functional learningfieorems of [1] and [8], among others. We [&tdenote the

parameter vector parameterizing the feedforward neural net
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else (such as “features”) motivated by the application in mind. more detailed mathematical motivation for our formulation
In any case, these are assumed to be prescribed a priori. Ehgiven in the Appendix. We conclude this section with a brief
“matching” can then be defined in terms of minimizing theomparison with some representative works related to ours.
“error” Most of the earlier approaches assume that the true con-
. _ ditional distribution comes from a known countable family
Ln(f, f) of distributions [9], [14]. For example, DeSanté al. [9]
n 2 consider the problem of learning the conditional distribution
== Z Z am - | gm(Y2) — Z i g (5 (X1)) from a countable class of distributions, so as to minimize the
—1m=1 J=1 entropyof the observed data. In the approach taken here, we
(1) do not make any such assumptions. In [14], on the other hand,
the f;’s are interpreted as different algorithms and the output
wherea; = P(& € A;),1 < j < N. Note that the second is a weighted sum of them where the weights are learned from

term in the difference above is n@;n(f/k) as intended, but data. This is the “weighted average” formalism described and
its conditional expectation giverX;. This is because the contrasted with our approach in an earlier paragraph.
former depends og;, explicitly and is therefore not available. Another approach which is closely related to the issues
Furthermore, this replacement is justified by an “asymptot@gidressed here, is the generalized probably approximately
equivalence” (i.e., as — oo) between the two, described incorrect (PAC) model of learning from examples [12]. In this
the Appendix. Parametefs.,,, } are a priori weights. Without model, the learning system is required to decide on an action,
any loss of generality, these may be taken to be positive wBRY ax, after observing the inpuk’;. Depending oms; and
S, am = 1. actual outputyy, there is a “loss’l(as, Y ) and the objective
The advantage of the above criterion is that it no longé® to find a decision rule (i.e., a function which mags.
involves {&} or {A4;} explicitly, only the probabilitieg{«;}. 10 ax) so as to minimize the time-averaged empirical loss.
The learning problem then amounts to minimizing this errdrhe idea, illustrated by examples, is to make the system learn
criterion simultaneously ovefa;}, {3;}. To ensure that various features of the conditional distribution, by choosing an
different 3;’s do not converge to the same value leading to appropriate loss function. The formulation a priori is strong
degenerate representation, we may introduce lateral inhibiti@Rough to subsume the most general problem, viz., that of
among them. We did not, however, find this necessary in dgarning conditional distributions. One simply lets the domain
simulation studies. It seems to suffice to initialize thgs Of {ax} to be the space of probability measures on the
randomly. domain of {3} and leta; denote the estimated conditional
It is important to note that in the summation in the squa@stribution of ;. given X;. The accent of [12], however, is
brackets of (1), thev;’s appear as multipliers af,, and not On the general learning theoretic issues of the abstract model,
of f;(Xx)'s. Thus they can truly be viewed as probabilitiegvhereas our aim is to propose a specific learning scheme with
with which we randomize between thg’s. This is to be theoretical and empirical support.
distinguished from a mere “weighted average of feedforward Another related strand of work is the estimation of condi-
nets” which would be the case if we replaced the expressiontianal distributions based on density mixtures [13]. Here the
square brackets t%l(zj La; fi(X1)). This is the difference conditional mean is estimated from the class of weighted sums
between “conditional expectation of a function” and “functio®f a prescribed family of functions such as Gaussian (more
of conditional expectation” that we alluded to in the beginninglenerally, radial basis functions). Our approach differs both
With this interpretation in mind, we refer to this architecturé our choice of thef;’s and our choice of the loss function
as randomized neural networks (RNN's). which goes for “conditional expectation of function” rather
The foregoing discussion also underscores the key difféhan visa versa, as already argued.
ence between RNN’'s and standard multilayer perceptronsYet another development with apparent similarity is the
Note that the architecture of RNN appears as though it wechniques of “bagging” and “arcing” [7] wherein one retrains
just a mu|ti|aye|’ perceptron with a linear |ayer at the Outplﬂhe same architecture several times with data resampled with
If we treat it as such and use the usual training methods f@placement (the two differ in the choice of sampling distri-
the same, we would not be justified in using the weighkutions) and then takes a weighted average. The concluding
of the linear layer as probability weights as done above. igmments of the preceding paragraph also apply here.
particular, an estimate df(Y"), say, can be justifiably taken Finally, we note that function learning with a single feed-
to be Y, a;h(f£;(X)), which is not the case with a standardorward neural network can be viewed as a special case of
muIt|Iayer perceptron This difference has come about becal®¥N corresponding taV = 1.
of our error criterion and our stochastic realization theoretic
formulation. To repeat, RNN’s try to learn an approximation
to conditional law, not a particular conditional average as a
multilayer perceptron would. In this section we describe the learning algorithm for the
The next section describes the training algorithm for theroposed RNN architecture. The various steps involved in the
RNN, followed by numerical experiments for the indeper@lgorithm are as follows:
dently identically distributed (i.i.d.) case sketched above, ass given7, = {(X1,Y1),...,(Xn,Ys)}, the set of training
well as the Markov case in Sections Ill and IV, respectively. samples;

IIl. LEARNING ALGORITHM
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« computef, € F such thatf, = argminj Ln(f, f), wheredO,.(k)/dw,,r = 1,...,N, can be computed using
where L,.(f, ) is given by (1); the backpropagation algorithm. In the actual implementation of
 output f,. the algorithm, the weights are updated after every input—output

The above algorithm requires that the functifris chosen Par seen, as done in usual practice. _
to be a global minimum Oﬁn(f, ), which is usually difficult In the next feyv sections we give the simulation results for
to achieve. Thus we can use a variant of the above algoritfif{f @bove algorithm for a number of problems.
which performs local search to finfl. As described in (8l), N
each f € F can be interpreted as the output of a linear IIl. SIMULATIONS FOR THE i.i.d. CASE
unit whose inputs are the outputs &f neural nets, and We first give the simulations for the i.i.d. case. The simula-
the linear unit weighs theth input by ;. We can train tions for the discrete state-space Markov chains are given in
the aforementioned neural nets using the backpropagat@lv. We discuss the extension to the continuous state-space
algorithm [16] so as to minimize the loss function (1). Markov chains in 8V.

More specifically, since eacfy,j = 1,...,V, is specified  As motivated in §I and discussed in detail in the Appendix,
by a set of weights of a neural nef,can be parameterizedwe consider the following modified loss function:
by these sets of weights ang’s. Therefore, we can perform LT
search in the weight space to find the minimifesf L,.(f, /) ’

in 7. We can use the gradient descent approach to accomplish | » M M+1
the goal in two steps. In the first step,’s are updated as = D am | 8 (Va) = D - Gm(£5(X))
“ k=1m=1 j=1
oL,
aj = aj - - (5)

day
) ] ’ Note that, in the above, we consider just= M +1 f;'s to
where 7 is the learning rate parameter. In the second stggtch A7 conditional moment functiong,,,1 < m < M,
the weights in the/N' neural nets are updated using th@ven though, theoretically, we are required to takKe =

backpropagation algorithm, i.e., for all weighis, M -0 +1 f;'s to matchM - O functionsg, (y) - hi(z),1 <
ol 1 < 0,1 <m < M (derived in 36). The simulation results
Wys 1= Wps — 1] - aw" indicate that we are justified in doing so.

. . We consider six synthetic problems. For all the problems, we
where the gradients are computed by backpropagating the efiave used two-layer feedforward neural nets with sigmoidal

term as illustrated below. Let hidden units and linear output unit to leafn 1 < j < M41.
N The neural networks are trained using the backpropagation
Ny = Zaj < Gm ([ (Xk)). algorithm so as to minimize the loss functidr(f, f), given
j=1 in (5) (see 8l for other details). As in usual practice, we

use themomentunterm to update the weights. The training

is stopped when the incremental change in the average loss

. _ 1 function (averaged oveh input—output pair) goes below a

Ln(f. f) = n Z Z - (Gm(Ye) = Negw)®. (2) pre-specified threshold. We give the results in terms of a table
k=1m=1 which includes the following entries:

Differentiating (2) with respect te;, we get « #lter, the number of iterations taken for training. One

iteration stands for the number of input—output pairs over

which the loss function is averaged;

Then, corresponding to (36), we have

n M

oL, i oL, ONy,»

Ay ot ONgm  Oaj e L,, the error (value of the loss functioﬁ(f, f)) at the
LM start of training for the given moment functiokg, };
S Z Z 2 am - (Nieom — Gm(Y2)) - G (f3( X)) * TL,, the error at the start of training for the test moment
™ =1 m=1 functions {G,,, }. (Our choice of moments for test func-
3) tions is in conformity with the long statistical tradition

of using moments as key “features” of a probability
distribution. As observed in the introduction, alternative
choices are possible);

» Ly, the error at the end of training for the given functions

oL, OL,  ONpn, 00.(k) {gm}: N |
Z N "90,.(k) owr, TLy, the error at the end of training for the test functions

Let w}, be the weight between neural uni(sand ¢, and
O.(k) = f-(Xx) be the output of theth neural net, then
by the chain rule of differentiation, we have

m=1 {Grn}
1M _ The error for test functions is computed using the loss function
= gz Z 2-am - (Nigm = Gm(Ya)) - o (5) with {g,} being replaced by the given test moments
k=lm=1 {G,»}. We include this error so as to indicate that the learned
9Gm  00.(k)

. : (4) function f approximates well the averages of functions other
90, (k) Ouwi, than the ones used for training,, }.
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Fig. 1. The desired and the learned moments of the target function of (8)i (&) = v, (b) g=(v) = v*, (c) G1(y) = ¥, and (d)G2(y) = v*.

In view of Theorem 1, we speciffX;, Y7 ) for the problems TABLE |
by giving thef such thaty;, = f(Xk, &) The first problem OUTPUT OF THEALGORITHM FOR VARIOUS TARGETFUNCTIONS IN THEI.i.d. CASE
we consider is for the target function

S.No. | Target #lier Initial Iinal Initial test | Iinal test
function | -ations | Error, L, = Krror. Ly | Error, T'L, | Frror, T'L;

flz,2) =sin(x - (£ +0.5- 2)) (6)
where z is uniformly distributed over0,1] (recall thatz € ! (o) 375 ) 0185 .22 0135 JAle-2
~ . 5 2 (1) 92 0.343 2.10-2 0.318 2.750-2
[0, 1]). We match twag,,,(y) functions, namely andy*, with 3 (8) 418 | 0150 | Lde? 0.110 3.230-2
a; = 0.6 anday = 0.4. The test functions7,,(y) are taken 1 (9) 332 0.178 1.1e-2 6.20-2 9.600-3
3 4 i _ _ 5 (10) 197 | 0.108 1163 1.40-2 9.040-4
asy” andy*, with a; = 0.6 andas = 0.4. Each of the three o ) o1 0,39 P o 0500

neural nets has two hidden nodes. The number of input—output
pairs over which the loss function is averagad,s taken to
be 200.

Table | gives the performance of the algorithm for the abowvanly performs well on the training functions, but also well-
chosen parameters. Fig. 1 gives the plots Bfd;,(Y) | X] approximates the averages of the test functions. In the next
vis z” for both the training functionsg,,(y), and the test three problems, we take = (x1,z2) € R?, with each
functions, G,,,(y). As the plots indicate, the algorithm notcomponent ofr being uniformly distributed ovefo, 1]. The
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parameters are taken as in the above problem except that each TABLE I
neural net now has five hidden units. The target functions are ~ OUTPUT OF THEALGORITHM FOR THE MARKOV CHAIN CASE
f(.’IZ', Z) = COS(’]I' T T2 Z) (7) S.No. | Transition #lter Initial Final Initial test | Final test
Probabilities | -ations | Error, L, | Error. Ly | Error. TL, | Ervor, TLy
f(x,z):\/(x%-l-x%—Q-xl-xg-z) (8)
f(@,2) = (z1-2)™. 9 1 (13) 983 | 9602 | LThe-2 | 2802 1.00-2
2 (14) 192 0.19 4.6¢-3 0.13 6.4c-4
The performance of the algorithm is summarized in Table I. 3 El-i) 116 fAe-2 | 2.200-3 8.0c-3 8.7c-1
. . _ 1 (16) 198 7.5¢-2 5.90¢-1 1.8¢-2 6.7c-1
3F|naIIy, in the last two problems we takze; (21, 22,23) € 5 (15) e ales | 35604 (303 9 %5
R°. Each component of has uniform density ovep, 1]. The

parameters are assigned the same values as above. The target

functions are That is, the interval [0,1] is divided int&V subintervals, and

flz,z) = 1 (10) each subinterval stands for one state of the Markov chain.
1+ exp(—||z|| - 2) Table Il gives the performance of the algorithm for
flz,2) = V/||z||? + 22 (11) the above chosen parameters. Fig. 2 gives the plots of

_ _ _ “Elgm(Xr4+1) | Xi] vis 2" for both the training functions,
Again, Table | gives the performance of the algorithm for thg (,/), and the test functions,,.(y). As the plots indicate,

above target functions. the algorithm not only performs well on the training functions
{gm}, but also well-approximates the averages of the test
IV. SIMULATIONS FOR THE MARKOV CHAIN CASE functions {G.,(y)}.

In this section we present the simulation results for the EXample 2:Let the transition probabilities be

discrete state-space Markov chains. As in the i.i.d. case, we

consider the loss function haviny/ + 1 £,.’s to match M/ o exp(— M) o
conditional-moment functiongg,,}, as againstd - O + 1 v(i, j) = (Z k)z , 1<i, j<N. (14)
f.n's derived in §B; that is, the loss function is taken as St exp(— )

L(f, JF) Here we takeV = 20 ando; = 50/¢. The parameters are the

1M M+1 2 same as in the previous example except that the number of
“n > D am <9m(Xk+1) X 'gm(fl(Xk))> hidden nodes in each neural nets is two. The performance of
k=1m=1 =1 the algorithm is summarized in Table II.
12) Example 3: The next example corresponds to Bernoulli-
Laplace diffusion moddML1, ch. 15]. The transition probabil-

In the following, we consider five problems. The first four
lties are given by

problems are for when the state space of the Markov chain is
finite, and the last problem is for infinite-but-countable state

. 2
space. In all the problems, we have used two-layer feedforward v(ii—1) = < ¢ )
neural networks with sigmoidal hidden nodes and linear output
nodes, for learningy,,,, f,,,1 < m < M + 1. o —i\? (15)
Example 1: This example is th& RU-stack modefor page u(i i+ 1) = < )
referencing behavior of progranj&7, ch. 7]. For( N +1)-state 2.i. (N —i)
model, the transition matrm;(L 7),0 <i,57 < N, is defined v(i, 1) = — 0<i<N.
as follows: Let0 < b; < 1, Y20 b; = 1, and B; = ZJ —obj
then Here we takeN = 10. The parameters are assigned the
v(i,0)=0;, 0<i<N same values as in the previous example. Table Il summarizes
w(i,i) =B, 1<i<N the performance of_ the algorithm for this _Markov chain.
o ) (13) Example 4:In this example, we consider thEhrenfest
v(ti+1) =1-Biy, 0<i<N-1 diffusion model The Markov chain hagN + 1) states, and
v(i,j) =0, otherwise. the transition probabilities are
Here we takeN = 10 and olii+1)=1— —
po_ 20+ _— (16)
TN+ (N+2) vt i-1) =4, 0<i< N

As in the i.i.d. case, we match twp,(y) functions, namely, Here we takeN = 50. The parameters are taken as in the
y and ¢2, with a; = 0.6 and a, = 0.4. The test functions previous examples. The output of the algorithm is given in
Gn(y) are taken ag?® andy* with a; = 0.6 anda, = 0.4. Table II.

Finally, each of the three neural subnets has six hidden nodes:xample 5: Finally, we consider the M/G/1 Queuing sys-
and the inputs and the outputs of the neural nets lie in [0,1&m, i.e., a single-server queuing system whose arrival process



474 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 4, AUGUST 1999

0.8 T T T 0.8 T T T

@) (b)

0.7
0.6 : : : ; ; ; : : :
06f
7/
7
0.5F ]
7/
05F 1 /
/
7/
0.4f ,
% 041 //
= o /
> —
0] 03
mo3f @
iy
ool 02F
01k
L L L L 0 1 1 1
06 07 08 09 1 0 07 08 09 1

(d)

Fig. 2. The desired and the learned moments for the Markov chain with transition probabilities given in (13)(yp)= v, (b) G2(v) = v2, (c)

Gi(y) = ¢, and (d)Ga(y) = y".

is Poisson with the average arrival rateThe service times are Let Y; denote the number of arrivals during the service time
independent and identically distributed with some unknowef the kth customer, then
but fixed distribution. LetN(¢) denote the number of cus- XL Xp—14Y, fXy>0
tomers in the system (those in the queue plus any in service) at kbl = Yit1, if X;=0.
time ¢. Since, in genera N (), > 0} need not be a Markov And the transition probabilities of the Markov chajitk;,} are
chain, we consider the proce$s(y,k = 0,1,2,...}, where given by
Xy is the number of customers in the system at the time of ,. . . )
' e o(i,§) = P(Xy1 = j | Xy, = 0)

departure of théth customer. Now X} } can be shown to be . . .

. . oo PYypi=4—i+1), ifi#£0, j>i-1
a Markov chain. Furthermore, it can be shown that the limiting —d PVips = ) fi0 >0
distribution of the number of customerg(t) observed at an N 0 FHL=J) othe_rwi;se )=
arbitrary point in time is identical to the number of customers ’ ' (18)

observed at times of departures of customers [19, ch. 5], i.e,, o N
Since the service times are assumed to be i.i.d., then so are
(17) {Y.}. Let n be the limiting probability measure faP. We

lim P[N(t) =n] = lim P[X} =n]. , . . C
k—o0 are then interested in learning an approximationpago as

t—oo
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to match a given set of momentg,,,(-),m = 1,..., M} of TABLE Il

the steady-state average number of customers in the system, OUTPUT OF THEALGORITHM FOR VARIOUS TARGET FUNCTIONS
which by (17) is IN THE CONTINUOUS STATE—SPACE MARKOV CHAIN CASE

th—%go E[grn(N(t))] = ]}BEO E[grn(Xk)] S.No. 'l‘arg(‘,‘l function #lter initial I"inal Initial test | Iinal test

(. 2) -ations | Frror, L, @ Error, Ly | Krror, T, | Faror, Ty
=D 9m(i) - 0(5)
J

(21) 17 0.30 . 13e2 G.3e-2

SRS

1
2 2/3- Vat 4 2 115 6.2¢-2  8.8c-3 1.7¢-3 3.1e-d
. L. . 3 sinfw - - 2) 124 9502 1 2.1de-2 7.9e-2 2.8e-2
= Z gm(7) - Z v(i, 7) - n(d) U el w-g)) 155 | 7302 DAed | Lie? 6.80-1
J i B] (22) 178 0.11 2.40-2 1.80-2 1.5¢0-2

. . . . . _ As indicated above, we specify the transition probability
erlbereu[!s’btheHoccupa;Eon me;sureff(Tlp,n_), ';[E-’ uf(w) —  distribution of {X,} for the problems by giving the’ such
n(i) - v(i, 7). Hence the problem falls in the rameworkthathH = f(Xx,&x). The first problem we consider is for

analyzed in §B. .
. . . the target function
In the following, we consider the service process to be 9

hyperexponential with two components, i.e.Zifdenotes the flz,2z) =sin(r - (£ +0.5- 2)) (21)

service-time random variable, then . . o . .
wherez is uniformly distributed ovef0, 1]. As in the discrete

PT<t]=8-1-ec™)+(1-p8)-(1—e*"). (19) case, we match twg,(y) functions: namely,y and 32,

with a; = 0.6 and a; = 0.4. The test functionsF,,(y)

He_re we take(i =03, 4y = .6 gnd b2 :_1.5. The average gre taken as/® and y*, with a; = 0.6 and ay = 0.4.
arrival rate isA = 1.0. We consider the first and the secongtach of the three neural nets has two hidden nodes. Table III
moments ot for matching, i.e.g1 =y andg: = y*; while  gives the performance of the algorithm for the above chosen

: _ .3 _ .4 H . .
the test moment functions af@, = y° andG, = ¢*. Finally, parameters. It also summarizes the results for various other
each of the three neural subnets in the learning structure 't‘éﬁfget functions.

six hidden nodes. The performance of the algorithm is givengina|ly, we discuss an example from queuing theory. Con-
in Table II. sider a GI/G/1 queue. Létv,, } be the sequence of inter-arrival

times to the queue, and I€t,,} be the sequence of service
V. EXTENSION TO CONTINUOUS STATE SPACE times. The time spent in the system by théh customer,

In this section we discuss the simulation results for trféenoted byX;, satisfies the following recurrence relation:
continuous state-space Markov chains. The problem formu- . — (X + 0n1 — Cgt T {omg1 < X}
lation remains the same as in the discrete case except that
now X;'s take values in a closed bounded sub&eof ®; +onpl{onss > Xol (22)
that is, given a finite stringXx,1 < k < m}, we desire  Here we take both the service procdss,} and the arrival
to learn the transition probability distribution — v(z,dy). process{«,} to be hyperexponential (19). The parameters for
A result similar to Theorem 3 can be obtained so to convely, 1 are: 3 = .7, yuy = 6.0 and jp = 3.0; and for {«,,}
the problem of learning to that of learning an appropriateare: 3 = .6, ;; = 4.0 and i, = 2.0. The performance of the
function, i.e., it can be shown that there exist a measuralijorithm is given in Table IIl.
function f : C x [0,1] — C, such that

Xps1 = f(Xn, &), k>1 VI. CONCLUSION
. ) . o We have considered the problem of learning the stochastic
whereg,, are i.i.d. random variables, uniformly distributed ovefependence of one random variable on another, from a finite
[0, 1] (for details see [3]). As in the discrete case, we MiniMizgying of copies of the pair. The problem formulation has been

the following loss function: adapted from [4]. We have improved upon some of the results
Lt T of [4], by suggesting an alternate loss function when the given
(f,. 1) . . s : . .
5 string consists of i.i.d. copies of the random-variable pair. We
n M M+1 .
_1 Z Z Gon(Xis1) — Z G X8)) have also extended the results for the case when the given
T @m | Gm Akt £ O G\ JUAk string is a Markov chain over a countable state space, as well

as for when the state space is continuous. We have given
simulation results to indicate that our approach performs well
so as to match/ conditional momentgg,, } of X, given ©on standard problems.
X.. A result similar to Theorem 4 can be proved by identical Some possible extensions we hope to pursue in the future
arguments, which can justify using such a loss function. are as follows.

In the following, we consider five problems. We use feed- « Choosing{f,} from a mixed family of Neural Network
forward neural networks with sigmoidal hidden nodes and architectures (e.g., some could be based on sigmoids, oth-
linear output nodes, for learning,,, fm,1 < m < M + 1. ers on radial basis functions). This may capture different

(20)
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features of the data better. One can also consider differextcept in law. Hence we can compdre;, Yz), (X, Yk) only
training algorithms for differentf;’s as in [14]. in law, i.e., if i is the law of(Xl,f/l), we can compare, ji

* The RNN architecture may provide a useful parameters elements of(Cs)(=the space of probability measures on
zation forModel Reference Adaptive Contai nonlinear '3 with the topology of weak convergence). A standard metric
stochastic systems. on P(C3) is the Prohorov metrip defined by [6, ch. 2]

APPENDIX p(p1, p2) =inf{e > 0| NlEA) < p2(A9) + 6,
MATHEMATICAL FORMALISM p2(A) < p1(A°) +e, for all Borel A C C3}

Here we give a detailed mathematical motivation for oyfhereac — {z€C;|IyeAsuchthat| z—y| <c}.pis
formulation of the problem of learning stochastic dependenceg,yever, not computationally tractable, and hence an alternate

equivalent metricp is used, where
. . : ) /gn dpy — / Gn dpio
tributed pairs of random variables taking valuegiin= C; x el
C,, whereC; ¢ R andC, C R¢ are closed bounded subsets.

Let 4, v,n denote the laws of X1,Y1), X1, Y:, respectively. Where {gn} C C(Cs) (the space of all real-valued contin-
Then we can writeu(dz, dy) as uous functions onC’s) is a bounded countableonvergence

determiningclass [6, ch. 2], i.e., it satisfies

A. The i.i.d. Case

Let (Xx,Y%),k > 1 be independent and identically dis- o, p2) = Zg—n (25)

p(de, dy) = v(d) - oz, dy) (23)
" . i iy, s dp, Vi n in P(C3).

wherez — v(z, dy) is the regular conditional law df; given /g Hn = /g a P =t = i in P(C5)

X4, definedwr-a.s. uniquely [6, ch. 3]. Now the problem is ) ) _

to learn the conditional lawe — v(z, dy). To this end, the Correspondingly, the loss functiah(f, /) can be taken as

problem is first converted into another equivalent problem via N 5

the following theorem [2], [4, Theorem 1]. £y — . / ; _/ ; ) 26
Theorem 1: Given an i.i.d. sequenceXy,Y:), & > 1, as Ls 9 ;a < gy gi i (26)

above on some probability space, there exist a measurable

function f : C; x [0,1] — C» and a sequence of i.i.d. randomwhere a; > O,Ef;l a; = 1. (26) differs from (25) in the

variables{¢;} defined on a possibly augmented probabilitjollowing: It has only a finite number of terms in the sum

space such that eacfi is uniformly distributed over0,1], (to make the loss function computationally tractable), it has

{&, Xk, k > 1} are independent and more generalveights{a, }, and finally, the modulus has been

replaced by its square (to make it differentiable with respect

to certaindesign parameterto be defined later).

A natural approximation foru and /i is given by the

Hence the problem is reduced to that of learning the function

7 in (24) empirical measureg.,, and ji,,, respectively, defined by
Let Fas be the set of measurable functiof$ x [0,1] — 1 &
C,, and F C Fu; a prescribed subset thereof that will pn(A) = — Z H(X,,,Y,) € A}
serve as thdwypothesis spactor the learning algorithm, i.e., "=l
the approximation off, denotedf, is sought fromF. Let ) 1 & N
L: F x Fy — R be a loss function, i.eL(f, f) has the fin(A) = n Z (X, Yin) € A}
m=1

interpretation as the loss associated with decidinghen the

target function isf. Then, the problem is to choose a functiofor 4 Borel in C5. Thus the empirical loss is now defined as
f € F that minimizesL(f, f).

We next discuss our choices of the loss functibff, f) X 2
and the hypothesis spack. Ln(f. 1) = Zai | </ i djtn — /gi d“ﬂ) : 27)
1) Choice of Loss FunctionThis subsection gives some =1
preliminary motivation for the choice of loss function. We shall successively modify the above loss function further

~ If we had a control on the random variablg, } featuring  after the choice ofF is made in the next subsection.
in (24), we could learnf by minimizing the mean-square 2) Choice of Hypothesis Spac&he choice of the hypoth-
difference betweent}, and f(Xy,{x), where f € F is the esis spacefF, is based on the following observation. Given

current approximation of. But {{x} are not known except the loss function (26), we need only to find sorfsuch that
for their distribution. Thus the next best thing to do is to -

generate{é’k} that mimic {£x} in law, i.e., {é‘k} are i.i.d.  Elg(Xy, (X1, &) = Elg:.( X1, f(X1,6))], 1<i<N
uniformly distributed or0, 1] such that{ék,Xk, k>1}isan (28)
independent family. One may then compdié, } with {Y;},

Vi = f(Xy, &(K)), k > 1, for a proposedf. This comparison where f(-,-) is as in (24). The next theorem [4, Theorem 3]
cannot be made sample path-wise{&g}, {¢;} are unrelated gives one sucly.
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Theorem 2: There exists a partitiod A;,..., Ayy1} Of Un empirical measure for the input
[0, 1] into intervals (some of them possibly empty) and mea- process, defined by
surable functionsf,..., fxv4+1 : C1 — Cs such thatf : n
Cy x [0,1] — C; defined by va(A) = 1 > I{X,, € A}, A Borel in Cy.
- N+1 n m=1
Ha,z) = z_; Hz e Ai} - filz) (29) Note that (30) does not require the knowledge {@f.}.
= Equation (30) was the loss function used in [4]. We shall
satisfies (28). modify it further.

Proof [4]: SinceC; x Cs is compact, so if?(C) x Cs) by If in (28) {g;} are taken to be functions of only the second
Prohorov’s theorem [6, ch. 2]. L&D, = {1 € P(Cy x C3) | variable, then only the law of} is learned and not the joint
w is of the form(23)}. Then @, C P(C; x C5) is closed law of (X,Y%). But, suppose we are givef/ functions,
(hence compact) and convex. By Lemma 2.2 of [3], extrenig, ..., g : Co — R (Cunderscores the fact that the domain
points of @, are precisely those for which z — v(x,dy) as of g,,’s is Cs, distinct from that ofg;’'s, which wasCs), and

in (23) is a Dirac measure far-a.s.z. Now consider we are required to match their conditional expectations, i.e.
Q=Q,n {ﬁ‘ /gi di = Elg/(X1. 1), 1< i < N}. Elgm(f(X1,60) | X1] = Elgm(f(X1,61)) | X1,
r-as, 1<m<M (31

By a result of [10] (see also [18]), the extreme points@®f \hich can be equivalently written as
can be expressed as a convex combination of at mvost1

extreme points ofp,. That is, they correspond to € @,  E[h(X1) - gm(f(X1,€0)] = E[Pi(X1) - g (F(X1,€D))],

of the form 1=1,2,...; 1<m<M (32)
N+1 )
fi(dz, dy) = a; - [V(dz) - 87,0 (dy) where {h;} C C(C}) is a bounded countable convergence
jz::l o s ()] determining class (i.e.f hidv, — [hdv,Vl = v, —
N1 v in P(C})). Again, for computational tractability, we desire
_ ' to match (32) for only finitely manyy, i.e.,
=w(dx)- | D> a6 ) (dy)
=t Elh(X1) - gm(f(X1,61))] = Ell(X1) - gm(f(X1,€0))],

for somea; € [0,1] with 3=, a; = 1, f; : C1 — Oy 1<1<0; 1<m< M. (33)
measurable and. = the §-function (for mathematicians, a o o
“Dirac measure”) atz for = € C,. Now partition [0, 1] into Now, by Theorem 2, there existsfawhich satisfies (33) and

Ar,..., Ay with the length of4; = a;,1 < j < N +1, Ccan be expressed as

and definef as in (29). The claim follows. O M.O+1
Thus the search of can now be restricted to those of the flz, 2) = Z Hz e A} - filz). (34)
form (29). Correspondingly, we can modify the empirical loss el

function L(f, f) (via a simple “conditioning”) as . . , .
The ideal loss function corresponding to (31) in our setup

N N+1 2 would be
Ln(f?f)zzaz (/deﬂn Zaj/gzofj dl/)

i=1 Z am/ </ Gm(f(x,2))dz
N 1 n m=1
:Zai' <—Zgi(Xk,Yk) 1 ?
=" \niz - / G Fl ) dz) (d).
0
n N+1 2
_z Z Z a; - gi( X, f5(X1) (30) Letjin(dx,dy) = vn(dz)-v,(x, dy). Theny, is the “empirical
[t conditional law” ofY}, given X;. Now one approximation of
the above loss function is
where
° cor.np'osition of functioqs; Z an, / < / G ()0(z, dy)
o= [Oél,...,Oé]\T+1] satisfiesw; € [0, 1],1 <i <N+, el
and Yy o = 1 2
fi:CL— Cy measurable withf; : C; — C) x Cy - /gm(y)@n(x, dy)) Vn(d). (35)

defined correspondingly bf?j(az) =

(z, f;(x)) (i.e., f;(x) has two com- This is a better choice for the loss function than (30) because
ponents the first being € C;, and whenever (35) is zero, then so is (30), but the converse, in
the secondf;(z) € Cs); general, is not true. However, this loss function requires the
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knowledge ofu(x,-), which was the goal we started with.from the set of measurable maps frafy to C,. We can
Hence we consider the following loss function instead: restrict our attention to continuoy$, as continuous functions
are dense i ?-spaces fol < p < oo, and by Lusin’s theorem

Ln(f. 1) ) [15], given any measurable function afi;, there exists a
1M N+1 continuous function which agrees with the given function
= SN am e | Gm(Ya) = > @igm(£5(Xr)) outside a set of arbitrarily small positive measure.
k=1m=1 j=1 We can now use some parameterized family of continuous

(36) functions to learnf;’s. In particular, we can consider the

) . family of continuous functions that can be formulated as a
where N = M - O (notation chosen so that we can give @pecific type of feedforward neural network: The class of two-
unified exposition for (30) and (36) in the following). Equationayer networks with an unrestricted number of sigmoidal units
(36) is minimized in the limit (i.e., a8 — oc), by exactly the i, the first layer and a linear unit in the second layer. Hence
same set of solutions that minimizes (35). That can be seengs |earning structure consists b+ 1 two-layer feedforward
follows: (36) can be rewritten as (by adding and subtractingstyorks, stacked in parallel and receiving common inputs,
J Gm(y)v(z, dy) within the square, and then expanding thgnq a linear unit in the last layer whosé+ 1 inputs are the
square appropriately) outputs of the aforementioned nets, and whose corresponding

Jin(f, ) weights area;,1 < j < N + 1.

= % DD am <<9m(Yk) - /gm(y)v(w,dy)) B. Markov Chain Case

) In this section, we generalize the results of the previous

N+l section for Markov chains. It is worth noting that the case
+ /Qm(y)v(% dy) — > a;gm(fi(Xx)) of Markov chains is not fundamentally different from the i.i.d.
j=l1 case insofar as we are still being presented gais Y ) with

-V B P the task of finding the probabilistic dependence of the second

+2( 3m(Ya) — | Gm(y)v(z, dy) component on the first, except for the additional feature:
Nt1 Y = Xr+1. There is, however, a subtle difference. The

% i, dy) — g (Fi( X . expectation in the expected error criterion in i.i.d. case was
/g (v, dy) ; 39m (£3(X0)) with respect to a distribution explicitly given as the joint law

(37) of the pair, now it is with respect to the stationary distribution

of the process defined only implicitly through the dynamics.
In (37), the first term in the summand is independent of tH¢evertheless, beyond this technical issue, the two problems
parametersy; and f;,1 < j < N + 1. The last term goes to are really the same, but the Markov chain case has the added
0 asn — oo, as follows: attraction of linking this theory to the “system identification”

WM problem of electrical engineers of which it is the simplest

1 . . specimen.
R n ; g::l . <gm(Yk) /gm(y)v(x’ dy)) Let { X} } be a stationary Markov chain on a countable state
spaceS. We assume, without loss of generality, that the states
are labeled aq1,2,3,...}. Let v = ((v(4,4)))i jes be the
transition probability matrix for{X;}, i.e., the probability
P(Xp1 =7 | Xi =4) =v(4,j). If n € P(S) is an invariant

N+1

[omte.ds) = 3 ajan(s;0)

B M Bl - Ela 01 x probability measure under, we associate with the paie, 7)
= z_:lam- (Gm(Y) = E1gm(Y) | X]) an “occupation measurgi € P(S x S) defined by
St (i,9) = (@) 05, 7), .G €S (38)
_ _ t,7) = t)-v1,7), (2% .
E[gn(Y) | X] =~ ajgm(f5(X)) G d) = ! !
=1
" ! The set of all occupation measures, with prescriedvill
= apm - [E|E[(§m(Y) = Egm(Y) | X]) | X] be denoted by We are interested in learning the transition
= probability matrixv. For this purpose, we first convert the
N4t problem into that of learning an appropriate function via the

Theorem 3 [3]: Given a S-valued Markov chain{X;},
there exists a measurable functigh: S x [0,1] — S and
a sequence of i.i.d. random variabl¢g,} such that each
The only remaining middle term in (37) corresponds exactfy is uniformly distributed over0, 1], {&, Xz, k > 1} are
to (35) (after using (34) in the latter). Hence the claim followdndependent and

Now 1., is minimized over the choice of from among
(N +1)-dimensional probability vectors, as well as oygt } X1 = (X, &), k>1 (39)

N Elgnm(v) | X] - Z G (F3(X)) following result (analogous to Theorem 1).
j=1

=0
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Remark 1: Since the state spac is countable, we can length of A,, = «,,, and definef as in (42). The claim
obtain an explicit representation éf;1; in terms of X, and follows. O
&, (the latter being as given in the statement of the theorem) As in the i.i.d. case, we learfi,,, a,,, 1 <m < N +1 by
minimizing the following loss function:

00 i—1 %
X1 =2 I8 0(Xn,d) <& <Y v(Xnyg) ¢ - . A ST
i=1 | =0 =0 L(f.))=) EZQ!(M,MH)
=1 k=1

where[ is the indicator function and(-,0) = 0. n N4l 2
As before, we would like to learn the functigh But as the 1 Z Z - G Xns (X)) | . (44)
samples corresponding foare not available, we instead learn n

_ k=1m=1
an approximation off, denotedf, by matching’N moment

functionsg; : Sx S — R,1 <1< N, i.e. If instead of matching the joint momen{g;(-,-)}, we desire
B to match the conditional momengs,(Y),m =1,..., M, i.e.
JjES JjES

or, equivalently, to learn an approximation pf denoted;i, n-as; 1<m<M (45)
such that _ o

ZZ i) (i) ZZQ o) A d) or, its approximation

gi\t,7)- 7)== i\, 7) - % 7),
ies jes ics jes DY @) @) - nli, §) =YD (@) - @) - ),

1<I<N. (41) €S jes €S jeSs
1<1<0; 1<I<SM.
We next derive a result analogous to Theorem 2 to show that
there exists ai € (G which satisfies (41) and can be written Then, as argued in the i.i.d. case, the corresponding loss
as a convex combination of at madt+ 1 conditionalDirac  function is
measures. (See also [5], for some related results.) N _
Theorem 4: There exists a partitiod Ay,..., Ayy1} of Ln(f, )

[0, 1] into intervals (some of them possibly empty) and measur- 1M N+l 2
able functionsfi, ..., fn41 : S — S such thatf : Sx[0,1] — = D a| a(Xei1) = Y am - Gl fin(Xn)
S defined by k=1 I=1 m=1
(46)
N+41
Fli.2) =) Kz €An} fnli) (42) where N = M - O,

m=1 As before, we consider a parameterized family of functions

satisfies (40). to learn f,,, from. Here, neural networks, in general, may not

Proof: As before, let(@ be the set of all occupation be the best choice as the functions are maps over a countable
measureg, with prescribed; (38). Then, by Lemma 2.2 of [3], sPace. But, if the chain is on an integer lattice (i.e., on a
extreme points of? are precisely those for whichi — v (4, j) Subset ofZ¢ for somed > 1) whereby it can be embedded in
as in (38) is a Dirac measure fgra.s.i. Now let a Euclidean space, and the functions to be learned have some

“nice” properties, e.g.|f(:) — f()| < K -|i — j|,Vi,j € 5,
- o o for some K < oo, then we can indeed use neural networks
G={red| ZZQI(ZJ) - fi(e, 7) in conjunction with an appropriate quantizer, to learn the

iS5 JCS functions f,,’s. In such a case, a learning algorithm similar
to one for the i.i.d. case, can be used to train the neural nets
= E[g(Xp, Xpq1), 1 STS N . so as to minimize the loss functiah,(f, f).
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