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Global Exponential Tracking Control of a Mobile
Robot System via a PE Condition

Warren E. Dixon, Darren M. Dawson, Senior Member, IEEE, Fumin Zhang, and Erkan Zergeroglu

Abstract—This paper presents the design of a differentiable,
kinematic control law that achieves global asymptotic tracking. In
addition, we also illustrate how the proposed kinematic controller
provides global exponential tracking provided the reference
trajectory satisfies a mild persistency of excitation (PE) condition.
We also illustrate how the proposed kinematic controller can be
slightly modified to provide for global asymptotic regulation of
both the position and orientation of the mobile robot. Finally,
we embed the differentiable kinematic controller inside of an
adaptive controller that fosters global asymptotic tracking despite
parametric uncertainty associated with the dynamic model. Ex-
perimental results are also provided to illustrate the performance
of the proposed adaptive tracking controller.

Index Terms—Exponential tracking, mobile robot, nonholo-
nomic, persistency of excitation, underactuated.

I. INTRODUCTION

T HE POSITION control problem of wheeled mobile
robots (WMR’s) has been a heavily researched area

due to both the challenging theoretical nature of the problem
(i.e., an underactuated nonlinear system under nonholonomic
constraints) and its practical importance. In recent years,
control researchers have targeted the problems of 1) tracking
a time varying trajectory (which includes thepath-following
problem as a subset [7]); 2) regulating the mobile robot to a
desired position/orientation; and 3) incorporating the effects
of the dynamic model during the control design to enhance
the overall performance and robustness of the closed-loop
system. Researchers who have examined the above problems
often cite that the regulation problem cannot be solved via
a smooth, time-invariant state feedback law due to the im-
plications of Brockett’s condition [5]. In order to surmount
this technical hurdle, researchers have proposed a variety of
controllers to achieve setpoint regulation (see [21], [23], and
the references therein for an in-depth review of the previous
work) including: 1) discontinuous control laws; 2) piecewise
continuous control laws; 3) smooth time-varying control laws;
or 4) hybrid control laws. Specifically, in [4], Blochet al.
achieved local setpoint regulation for several different types of
nonholonomic systems using a piecewise continuous control
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structure. Likewise, Canudas de Witet al. [6] also constructed
a piecewise smooth controller to exponentially regulate a
WMR to a setpoint; unfortunately, due to the control structure,
the orientation of the WMR is not arbitrary. In [23], Samson
showcased several smooth, time-varying feedback controllers
that could be utilized to asymptotically regulate a WMR to
a desired setpoint. In addition to Samson’s research, several
smooth, time-varying controllers were also developed for
other classes of nonholonomic systems in [8], [22], and [26].
Recently, Samson [24] provided a global asymptotic control
solution for the setpoint regulation or the fixed reference-frame
path following problem for a general class of nonholonomic
systems. To enhance the transient performance Godhavnet
al. [14] and McCloskeyet al. [21] constructed control laws
that locally -exponentially (as well globally asymptotically)
stabilized classes of nonholonomic systems. In addition to
providing better transient performance, McCloskeyet al. [21]
also illustrated how the dynamic model of a WMR could be
included during the control design under the assumption of
exact model knowledge.

In addition to the setpoint regulation problem, several con-
trollers have also been proposed for the reference robot tracking
problem (i.e., the desired time-varying linear/angular velocity is
specified). Specifically, in [18], Kanayamaet al.obtained local
asymptotic tracking using a continuous feedback control law for
a linearized kinematic model. Using a continuous, linear con-
trol law for a linearized kinematic model similar to [18], Walsh
et al. [26] obtained a local exponential stability result. Moti-
vated by the desire to obtain global tracking (versus the afore-
mentioned local results), Jianget al. [16] developed a global
asymptotic tracking controller; however, angular acceleration
measurements were required. In [17], Jianget al.provided semi-
global and global asymptotic tracking solutions for the general
chained form system while eliminating the need for angular ac-
celeration measurements that was required in [16]. In [13], Es-
cobaret al. illustrated how the nonholonomic double integrator
control problem (e.g., Heisenberg flywheel) can be exponen-
tially stabilized by a redesigned field oriented induction motor
controller; however, the controller exhibited singularities. Moti-
vated by practical issues (i.e., parametric uncertainty in the dy-
namic model), Donget al. [12] exploited the kinematic control
structure proposed in [24] to construct a global adaptive asymp-
totic tracking control law for a class of nonholonomic systems.
In [11], Dixon et al.presented a robust controller for the WMR
that achieved global uniformly ultimately bounded tracking and
regulation while rejecting parameter uncertainty and bounded
disturbances in the dynamic model. We also note that several re-
searchers (see [1], [7], and the references within) have proposed
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various controllers for the less stringent fixed reference-frame
path following problem.

In this paper, we present a new, differentiable kinematic con-
trol law that achieves global asymptotic tracking1 control. In ad-
dition, we also illustrate how the proposed kinematic controller
provides forglobal exponential trackingprovided the reference
trajectory satisfies a mild2 persistency of excitation (PE) condi-
tion. Moreover, we illustrate how the proposed kinematic con-
troller can be slightly modified to yield global asymptotic reg-
ulation of both the position and orientation of the mobile robot.
Finally, we illustrate how the integrator backstepping approach
can be used to embed the proposed differentiable kinematic con-
troller inside of an adaptive controller that fosters global asymp-
totic tracking despite parametric uncertainty associated with the
dynamic model (i.e., mass, inertia, and friction coefficients).
From a retrospective view of literature, it seems evident that the
proposed kinematic controller is novel in the respect that: 1) pro-
vided certain mild PE conditions on the reference trajectory are
satisfied, a global exponential tracking result is obtained; 2) a
global exponential tracking control scheme is crafted such that
only minor modifications to the control structure are required
to solve the global asymptotic regulation problem; and 3) to the
best of our knowledge, this paper represents the first result that
illustrates how the excitation of the reference trajectory can be
used to improve the transient tracking performance.

The paper is organized as follows. In Section II, we present
the kinematic model of the WMR and then transform the model
into a form which facilitates the subsequent control develop-
ment. In Section III, we present the kinematic control law, the
closed-loop error system, and the corresponding stability anal-
ysis for the global asymptotic tracking controller. In Section IV,
we develop the global exponential tracking result. In Section
V, we illustrate how simple modifications can be made to the
proposed controller to obtain global asymptotic regulation. In
Section VI, we develop the dynamic model for the WMR, for-
mulate the adaptive dynamic control law, and then present the
closed-loop error system and corresponding stability analysis
for the global asymptotic tracking result. In Section VII, we
illustrate the viability and effectiveness of the proposed adap-
tive tracking controller via experimental results. Concluding re-
marks are presented in Section VIII.

II. K INEMATIC PROBLEM FORMULATION

A. WMR Kinematic Model

The kinematic model for the so-called kinematic wheel under
the nonholonomic constraint ofpure rolling andnonslippingis
given as follows [21]:

(1)

where , are defined as

(2)

1The structure of the proposed kinematic controller is spawned from the in-
duction motor controller presented in [10].

2The condition is mild in the sense that many reference trajectories satisfy the
condition (e.g., a circle trajectory, sinusoidal trajectory, etc. can be exponentially
tracked).

, , and denote the linear position and orien-
tation, respectively, of the center of mass (COM) of the WMR,

, denote the Cartesian components of the linear ve-
locity of the COM, denotes the angular velocity of
the COM, the matrix is defined as follows:

(3)

and the velocity vector is defined as

(4)

with denoting the linear velocity of the COM of the
WMR.

B. Control Objective

As defined in previous work (e.g., see [16] and [18]), the ref-
erence trajectory is generated via a reference robot which moves
according to the following dynamic trajectory:

(5)

where was defined in (3),
is the

desired time-varying position and orientation trajectory, and
is the reference time-varying

linear and angular trajectory. With regard to (5), it is assumed
that the signal is constructed to produce the desired
motion and that , , , and are bounded
for all time.

To facilitate the subsequent control synthesis and the corre-
sponding stability proof, we define the following transforma-
tion:

(6)

where and are auxil-
iary tracking error variables, , , are the dif-
ference between the actual Cartesian position and orientation of
the COM and the desired position and orientation of the COM
as follows:

(7)

After taking the time derivative of (6), using (1)–(5), and (7),
we can rewrite the tracking error dynamics in terms of the new
variables defined in (6) as follows3

(8)

3Note that the structure of (8) is similar to the structure of the open-loop error
system given in [10].
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where is an auxiliary skew-symmetric matrix defined
as

(9)

and the auxiliary row vector is defined as

(10)

The auxiliary variable utilized
in (8) is used to simplify the transformed dynamics and is ex-
plicitly defined in terms of the WMR position and orientation,
the WMR linear velocities, and the desired trajectory as follows:

(11)

where the auxiliary variables and are defined
as follows:

(12)

and

(13)

III. K INEMATIC CONTROL DEVELOPMENT

Our control objective is to design a controller for the trans-
formed WMR kinematic model given by (8). To facilitate the
subsequent control development, we define an auxiliary error
signal as the difference between the subsequently
designed auxiliary signal and the transformed vari-
able , defined in (6), as follows:

(14)

A. Control Formulation

Based on the kinematic equations given in (8) and the subse-
quent stability analysis, we design the auxiliary signal as
follows:

(15)

where the auxiliary control terms and
are defined as

(16)

and

(17)

respectively, the auxiliary signal is defined by the fol-
lowing dynamic oscillator-like relationship:

(18)

the auxiliary terms and are defined as

(19)

and

(20)

respectively, where , , are positive, constant con-
trol gains, represents the standard identity matrix,

is a positive constant, and was defined
in (10). Note that it is straightforward to show that the matrix

used in (17) is always invertible provided re-
mains bounded.

B. Error System Development

To facilitate the closed-loop error system development for
, we substitute (15) for defined in (8), add and sub-

tract to the resulting expression, utilize (14), and exploit
the skew symmetry of defined in (9) to rewrite the dynamics
for given by (8), as follows:

(21)

where the fact that has been utilized. Finally, after
substituting (16) for only the second occurrence of in (21),
substituting (17) for , utilizing the skew symmetry of
defined in (9), and the facts that and , we
can obtain the final expression for the closed-loop error system
as follows:

(22)

To facilitate the subsequent stability analysis, we substitute (17)
for into (18) to yield the following form for the dynamics
of

(23)

To determine the closed-loop error system for , we take
the time derivative of (14), and then substitute (18) and (8) for

and , respectively, to obtain

(24)

After substituting (15) into (24) for , and then substituting
(16) for in the resulting expression, we can rewrite the
expression given by (24) as follows:

(25)

After substituting (19) and (20) for and into (25),
respectively, and then using the fact that , we can
cancel common terms and rearrange the resulting expression to
obtain

(26)
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where (14) has been utilized. Finally, we substitute (17) for
to determine the final expression for the closed-loop error

system as follows:

(27)

where we have used the fact that the bracketed term in (26) is
equal to defined in (16).

C. Stability Analysis

Theorem 1: The kinematic controller given by (15)–(20) en-
sures global asymptotic tracking in the sense that

(28)

provided the reference trajectory is selected such that

(29)

Proof: To prove Theorem 1, we define the following non-
negative function denoted by as follows:

(30)

After taking the time derivative of (30) and making the appro-
priate substitutions from (22), (23), and (27), we obtain the fol-
lowing expression:

(31)

After utilizing the skew symmetry property of defined in (9),
making use of the fact that , and cancelling common
terms, we can upper bound (31) as follows:

(32)

where (14) has been utilized. Next, after utilizing the fact that
, we can combine the bracketed terms in (32) as shown

below

(33)

After noting that the bracketed term in (33) is equal to the iden-
tity matrix, we can cancel common terms to obtain the final
upper bound for as follows:

(34)

Based on (30) and (34), we can conclude that ;
thus, , , . Since , , ,
we can utilize (10), (14)–(20), (22), (27), and the fact that the
reference trajectory is assumed to be bounded to conclude that

, , , , , , , , ,
. Since , , we can utilize (14) to show that

[since , , , , we know that
, , , and are uniformly continuous]. In order

to illustrate that the Cartesian position and orientation signals
defined in (1) are bounded, we calculate the inverse transforma-
tion of (6) as follows:

(35)

Since , it is clear from (7) and (35) that ,
. Furthermore, from (7), (35), and the fact that , ,

, we can conclude that , , , .
We can utilize (11), the assumption that the desired trajectory is
bounded, and the fact that , , , , to show
that ; therefore, it follows from (1)–(4) that ,

, . Based on the boundedness of the aforemen-
tioned signals, we can take the time derivative of (18) and show
that (see the Appendix for explicit details). Stan-
dard signal chasing arguments can now be used to show that all
remaining signals are bounded.

From (14) and (34), it is easy to show that , ;
hence, since and are uniformly continuous, we can
use (14) and a corollary to Barbalat’s Lemma [25] to show that

, , . Next, since , we
know that is uniformly continuous. Since we know that

and is uniformly continuous, we can
use the following equality:

Constant (36)

and Barbalat’s Lemma [25] to conclude that .
Based on the fact that , it is straight-
forward from (17) and (18) to see that .
Finally, based on (10) and (29) we can conclude that

The global asymptotic result given in (28)
can now be directly obtained from (35).

IV. GLOBAL EXPONENTIAL TRACKING ANALYSIS

In the previous section, we utilized a straightforward Lya-
punov analysis and Barbalat’s Lemma to prove global asymp-
totic position/orientation tracking. Since we have established
that all signals in the closed-loop system are bounded, we now
illustrate how the nonlinear closed-loop error system formu-
lated in the previous section can be represented as a linear time-
varying system as similarly done for closed-loop adaptive con-
trol systems (see [19]). This linear time-varying representation
allows us to develop a PE condition on the desired reference tra-
jectory that promulgates a global exponential tracking result.

A. Error System Development

To formulate the nonlinear closed-loop error development
given in the previous section as a linear time-varying system,
we first define the states of the system, denoted by ,
as follows:

(37)
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where the auxiliary signal is defined as

(38)

and , , and were defined in (6). In addition, we
rewrite the closed-loop dynamics for , into a more conve-
nient form by substituting (16) for only the second occurrence
of in (21) and then utilizing (14), the skew symmetry of

defined in (9), and the fact that to yield

(39)

Based on (39) and the definition of given in (38), we can
now obtain a convenient expression for the dynamics of as
follows:

(40)

where is defined as

(41)

In order to express the closed-loop error system for in a
form that facilitates the linear system representation, we substi-
tute (17) into (26) to obtain the following expression:

(42)

It is now a straightforward matter to take the time derivative of
(38) and make appropriate substitutions from (23) and (42) to
express the closed-loop error system for as follows:

(43)

where the auxiliary terms and are
defined as

(44)

and

(45)

respectively, represents the zero matrix, and
represents the identity matrix. The final linear time-varying
representation is obtained by taking the time derivative of (37)
and then utilizing (40) and (43) to obtain

(46)

where the matrix is defined as

(47)

the matrix is defined as

(48)

and the submatrix is defined as

(49)

Remark 1: In the subsequent exponential stability proof, we
will utilize the fact that (34) can be rewritten as

(50)

hence, (50) provides the motivation for the structure of the ma-
trix defined in (48). The subsequent stability analysis also
utilizes the fact that all the signals in the time-varying system
given by (46) are bounded as illustrated by Theorem 1; further-
more, the stability analysis requires that defined in (45)
be differentiable. Based on the proof of Theorem 1, it is straight-
forward to show that exists and is a bounded matrix.

B. Stability Analysis

Before we state the exponential stability result, we present
two lemmas that are used during the proof of the main result.

Lemma 1: If the reference angular velocity defined in
(5) is selected according to the following expression:

(51)

[i.e., if the reference angular velocity is selected to be persis-
tently exciting (PE)] then the observability grammian for the
system given in (46), defined as

(52)

satisfies the following inequality:

(53)

for all , where are positive constants,
denotes the state transition matrix for (46),

represents the identity matrix, and was defined in (48).
Proof: To prove Lemma 1, we note that a closed-form

expression for the state transition matrix of (46) is difficult to
find; thus, we employ the fact that the pair of (46)
is uniformly observable (UO)if and only if the pair

is UO (see [15] for an explicit proof) where
is treated as a design matrix. To facilitate the analysis, we

construct to be a continuous, bounded matrix as follows:

(54)

Based on the definition of given in (54), we have

(55)

hence, the state transition matrix for the pair
, denoted by , can be calculated as

follows:

(56)
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Given the following definition for the observability grammian
for the pair

(57)

we can substitute (48) and (56) into (57) to calculate (58) (shown
at the bottom of the page), where is a positive constant.

To facilitate further analysis, we note that
can be rewritten as follows:

(59)

After some algebraic manipulation, we note that (59) can be
simplified as follows:

(60)

Next, since , , , we can select positive con-
stants , such that can be
lower bounded as follows:

(61)

where the assumption given in (51) was utilized. Given the def-
inition for in (58), the fact that and
are bounded, and the fact that satisfies
(61), we can apply [19, Lemma 13.4] to (58) to show that there
exists some positive constant such that

(62)

hence, the pair is UO. Since the pair
is UO, then the pair is UO

(see [15, Lemma 4.8.1] for an explicit proof); hence, by the
definition of uniform observability (see [2]), the result given in
(53) can now be directly obtained.

Lemma 2: Let be a continuously differentiable
function such that

(63)

(64)

and

for (65)

where , , , are positive constants and
are the solution of the system that starts at . If (63)–(65)
hold globally, then the system is globally exponentially stable
in the sense that

(66)

for some positive constants , .
Proof: See [19, Theorem 4.5].

Remark 2: Note that since (66) is an exponential envelope
originating at which need not be proportional to , the
result does not adhere to the standard definition of global expo-
nential stability (see the discussion in [19] and [23]); however,
for any initial condition, exponentially converges to zero.

Theorem 2: The position and orientation tracking errors de-
fined in (7) are globally exponentially stable in the sense that

(67)

for some positive scalar constants and provided that the
reference angular velocity satisfies (51).

Proof: To prove Theorem 2, we define the nonnegative
function as follows:

(68)

where was defined in (37). Based on (30), (34), (37), (38),
(48), (49), (68), and the proof for Theorem 1, the time derivative
of (68) can be expressed as follows:

(69)

where was defined in (48). After integrating (69), we obtain
the following expression:

(70a)

where we have use the fact that , which denotes
the solution to the linear system defined in (46) that starts at

, can be expressed as follows: [3]

(71)

(58)
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and denotes the state transition matrix for (46).
After noting that the bracketed term in (70a) is equal to

, defined in (52), we can utilize (53), (68), Lemma 1, and (51)
to show that

(72)

From (68), (69), and (72), it is clear that the conditions given in
Lemma 2 are globally satisfied; hence,

(73)

where and are positive constants. The global expo-
nential result given in (67) can now be directly obtained from
(14), (35), (37), and (38).

Remark 3: We note that with the achievement of exponential
position/orientation tracking as seen in (67), a certain degree of
robustness is acquired for the proposed tracking controller. That
is, exponentially stable systems inherently have the ability to
tolerate a greater degree of uncertainty in the form of unknown
parameters, external disturbances, unmodeled dynamics, etc. as
compared to an asymptotically stable system. For a more de-
tailed discussion on the theorems and analysis concerning the
robustness of exponentially stable systems, see [27] and the ref-
erences therein.

Remark 4: Some examples of persistently exciting reference
trajectories include: 1) ; 2)
(e.g., a circle trajectory can be exponentially tracked); and 3)

. In addition, we note that since
(see Theorem 1), then there exists some time, denoted by,
such that

(74)

thus,

(75)

Based on (60) and (75), we can rewrite (61) as follows:

(76)

hence, if the reference condition given in (51) is modified as
given below

(77)

(i.e., if either the linear or angular reference velocity is selected
to be PE), then

(78)

The inequality given in (78) indicates that if (77) is satisfied,
then there is some time during the transient after which the

asymptotic tracking result becomes an exponential tracking re-
sult; hence, many different types of geometric trajectories can
be exponentially tracked after some finite time (e.g., lines).

V. SETPOINT EXTENSION

Many of the previously proposed tracking controllers do not
reduce to the regulation problem because of technical restric-
tions placed on the reference trajectory similar to that given in
(29). In this section, we illustrate how the kinematic tracking
controller proposed in the previous section can be slightly mod-
ified to ensure global asymptotic position and orientation reg-
ulation [i.e., given in (18) and (19) is set equal to zero].
Since this new control objective is now targeted at the regula-
tion problem, the desired position and orientation vector, de-
noted by and originally defined
in (5), is now assumed to be an arbitrary desired constant vector.
Based on the fact that is now defined as a constant vector, it is
straightforward to see that , given in (5), and consequently

and defined in (10) and (17), respectively, are
now set to zero for the regulation control problem. As a result of
the new control objective, we also note that the auxiliary vari-
able originally defined in (11), is now defined as follows:

(79)

where the matrix was defined in (12).

A. Stability Analysis

Theorem 3: The kinematic controller given by (15), (16),
(18)–(20) with , ensures global asymptotic regulation
in the sense that

(80)

where the position and orientation setpoint errors were defined
in (7).

Proof: To prove Theorem 3, we take the time derivative of
the nonnegative function given in (30), and then substitute (22),
(27), and (18) in the resulting expression (where ,

, and are all equal to zero for the regulation problem)
and follow the proof of Theorem 1 to obtain the following ex-
pression

(81)

After utilizing the skew symmetry property of defined in (9),
making use of the fact that , and then cancelling
common terms, we can express of (81) as follows:

(82)

Based on the same arguments as given for the proof of The-
orem 1, we can show that all signals remain bounded during
closed-loop operation, and that , ,
Since (30) is a positive, radially unbounded function with a neg-
ative semi-definite time derivative as shown in (82), we can also
conclude that where is
a constant. Furthermore, since , , it is
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straightforward from (30) that where
is a nonnegative constant.

In order to facilitate further analysis, we define the following
nonnegative function as follows:

(83)

where was defined in (18). Based on (83) and the fact
that , it is straightforward to see that

; hence, for all , we have that

(84)

where , are positive constants. After taking the
time derivative of given in (83), we have

(85)

where (18) and the skew symmetry property ofdefined in (9)
have been used. After dividing (85) by and then integrating
the resulting equation, we have

(86)

Based on the fact that

(87)

we can rearrange (86) to obtain a lower bound for as fol-
lows

(88)

Now, we use (84), (88), the structure of (85), and the
fact that to prove by contradiction that

. To facilitate the proof by contradiction, we
assume that ; hence, for all ,
we have that

(89)

where , are positive constants. If we select
and , then from (84), (88), and (89),

we have that

(90)

and

(91)

Furthermore, if we select as

(92)

then from (85), (90), and (91), we can conclude that is
nonnegative as shown below

(93)

Now, note that from (88), we have that

(94)

In addition, we note that

(95)

which can be lower bounded as follows:

(96)

as a result of (93). Based on (94) and (96), we can conclude that

(97)

however, (97) is a contradiction to the fact that
. Since the assumption that leads

to a contradiction, we can conclude that
hence, . Finally, since , ,

, the global asymptotic result given in (80) can now be
directly obtained from (35).

VI. DYNAMIC EXTENSION

Practical issues (e.g., robustness to uncertainty in the dynamic
model) provide motivation to include the dynamic model as part
of the overall control problem. As a result of this motivation, we
describe the dynamic model of the WMR and then demonstrate
how the integrator backstepping technique can be utilized to de-
velop a tracking controller that is based on the composite kine-
matic/dynamic model. Specifically, in the following section, we
present an adaptive controller that achieves global asymptotic
tracking control despite parametric uncertainty in the dynamic
model.

A. WMR Dynamic Model

The dynamic model for the kinematic wheel can be expressed
in the following form:

(98)

where
time derivative of defined in (4);
constant inertia matrix;
friction effects;
torque input vector;
input matrix that governs torque transmission.

To facilitate the subsequent control design, we premultiply
(98) by defined in (12), and substitute (11) and (12) for
to obtain the following convenient dynamic model

(99)

where

(100)
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The dynamic equation of (99) exhibits the following properties
[20] which will be employed during the subsequent control de-
velopment and stability analysis.

Property 1: The transformed inertia matrix is symmetric,
positive definite, and satisfies the following inequalities:

(101)

where
known positive constant;
known, positive bounding function which is
assumed to be bounded provided its argu-
ments are bounded;
standard Euclidean norm.

Property 2: A skew-symmetric relationship exists between
the transformed inertia matrix and the auxiliary matrix as
follows:

(102)

where represents the time derivative of the transformed in-
ertia matrix.

Property 3: The robot dynamics given in (99) can be linearly
parameterized as follows:

(103)

where contains the unknown constant mechan-
ical parameters (i.e., inertia, mass, and friction effects) and

is the known regression matrix.

B. Control Formulation

Based on the desire to incorporate the dynamic model in the
control design, our new control objective is to design an adaptive
tracking controller for the transformed WMR model given by
(99). To this end, we reformulate the kinematic controller given
in (15) as a desired signal as follows:

(104)

where denotes the desired kinematic control signal.
Furthermore, based on the transformed dynamic model given by
(99) and the subsequent stability analysis, we design the control
torque input as follows:

(105)

where is a positive definite, diagonal control gain
matrix and is a tracking error signal defined as fol-
lows:

(106)

denotes the parameter estimate of, and is calculated
on-line via the following dynamic update law:

(107)

and the regression matrix is defined
as follows:

(108)

To quantify the performance of the adaptation algorithm, we
define the parameter estimation error signal, denoted by

, as follows:

(109)

C. Error System Development

To facilitate the closed-loop error system development for
, we inject the desired kinematic control input into

the open-loop dynamics of given by (8) by adding and sub-
tracting the term to the right-side of (8) and utilizing (106)
to obtain the following expression:

(110)

After substituting (104) for , adding and subtracting
to the resulting expression, utilizing (14), and ex-

ploiting the skew symmetry of defined in (9), we can rewrite
the dynamics for as follows:

(111)

By utilizing the same operations illustrated in the kinematic
control development, we can obtain the final expression for the
closed-loop error system for as follows:

(112)

To determine the closed-loop error system for , we take
the time derivative of (14), substitute (18) for , and then
substitute (8) for to obtain

(113)

where (106) was utilized and the desired kinematic control
signal was injected by adding and subtracting to
the right-side of (113). Based on the expression given in (113),
we can obtain the final expression for the closed-loop error
system for as shown below

(114)

by following the same procedure as described in the kinematic
control development.

In order to develop the closed-loop error system for , we
take the time derivative of (106), premultiply the resulting ex-
pression by the transformed inertia matrix, and substitute for

from (99) to obtain the following expression:

(115)

where was added and subtracted to the right-side of
(115) and (108) was utilized. After substituting (105) into
(115), we obtain the following expression for the closed-loop
error system:

(116)

where (109) was utilized.
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D. Stability Analysis

Theorem 4: The controller given by (16)–(20), (104), (105),
and (107) ensures global asymptotic tracking in the sense that

(117)

provided the reference trajectory is selected so that

(118)

Proof: To prove Theorem 4, we define the following non-
negative function denoted by as fol-
lows:

(119)

After taking the time derivative of (119) and making the appro-
priate substitutions from (23), (107), (112), (114), and (116),

and utilizing the fact that , we obtain the following ex-
pression:

(120)

After utilizing (102) and canceling common terms, we can use
the same procedure as presented in the proof of Theorem 1 to
obtain the final expression for as follows:

(121)

Based on (119) and (121), we can conclude that ;
thus, , , , , . Since , ,

, , , we can utilize (107), and the same argu-
ments given in the proof for Theorem 1 to conclude that ,

, , , , , , , , , ,

. Based on the boundedness of the closed-loop sig-
nals, we can conclude that ; hence, we can uti-
lize (105) and (108) to show that . Standard signal
chasing arguments can now be used to show that all remaining
signals remain bounded during closed-loop operation. Finally,
the global asymptotic result given in (117) can now be directly
obtained using the same procedure as given in the proof of The-
orem 1.

VII. EXPERIMENTAL VERIFICATION

A. Experimental Configuration

The adaptive tracking controller given by (16)–(20), (104),
(105), and (107) was implemented on a modified K2A WMR
manufactured by Cybermotion, Inc. The robot modifications in-
clude: 1) the replacement of the pulse-width modulated ampli-
fiers with a dual channel Techron linear amplifier; 2) the re-

placement of all existing computational hardware/software with
a Pentium 133 MHz PC; and 3) the replacement of the battery
bank with an external power supply. Permanent magnet DC mo-
tors provide steering and drive actuation through a 106 : 1 and a
96 : 1 gear coupling, respectively. A Pentium 133 MHz PC op-
erating under QNX (a real-time micro-kernel based operating
system) hosts the control algorithm that was written in “C,” and
implemented using Qmotor 2.0 [9] (an in-house graphical user
interface). Data acquisition and control implementation were
performed at a frequency of 2.0 kHz using the Quanser MultiQ
I/O board. In order to measure the tracking error given in (7)
we need to determine , and the orientation of the
WMR. To this end, we obtained the positions of the steering and
drive motors via Hewlett Packard (HEDS-9000) encoders with
a resolution of 0.35 deg/line, and then calculated the linear and
angular velocity measurements via a filtered backward differ-
ence algorithm. Using the angular position measurement and the
linear and angular velocity measurements, we then utilized the
relationship given in (1) to determine and . A trape-
zoidal integration routine was then applied to (1) to obtain
and . For simplicity, the electrical dynamics of the system
were ignored. That is, we assumed that the computed torque is
statically related to the voltage input of the permanent magnet
DC motors by a constant.

B. Experimental Results

The dynamics for the modified K2A WMR are given as fol-
lows:

(122)

where
kg mass of the robot;
kg m2 inertia of the robot;
m radius of the wheels;
m length of the axis between the wheels;

, , , dynamic and static friction elements.
The desired reference linear and angular velocity were selected
as

(m/s) (rad/s) (123)

respectively, (see Fig. 1 for the resulting reference time-varying
Cartesian position and orientation).

The Cartesian positions and the orientation were initialized
to zero, and the auxiliary signal was initialized as follows:

(124)

The feedback gains were adjusted to reduce the position/orien-
tation tracking error with the adaptation gains set to zero and all
of the initial adaptive estimates set to zero. After some tuning,
we noted that the position/orientation tracking error response
could not be significantly improved by further adjustments of



DIXON et al.: GLOBAL EXPONENTIAL TRACKING CONTROL OF A MOBILE ROBOT SYSTEM 139

Fig. 1. Desired Cartesian position and orientation trajectory.

the feedback gains. We then adjusted the adaptation gains to
allow the parameter estimation to reduce the position/orienta-
tion tracking error. After the tuning process was completed,
the final adaptation and feedback gain values were recorded as
shown below

diag (125)

The position/orientation tracking error of the COM of the
WMR, the adaptive estimates, and the associated control torque
inputs are shown in Figs. 2, 3, 4, and 5, respectively. (Note the
control torque inputs plotted in Fig. 5 represent the torques
applied after the gearing mechanism.) Based on Figs. 2 and
3, it is clear that the steady-state position/orientation tracking
error is bounded as follows:

cm cm deg (126)

VIII. C ONCLUSION

In this paper, we have presented a differentiable, kinematic
control law for mobile robots. The proposed kinematic con-
troller is novel in that 1) global exponential tracking was ob-
tained provided certain PE conditions on the reference trajectory
are satisfied and 2) a scheme was developed which solves the
global exponential tracking problem and the global asymptotic
regulation problem (provided a simple modification to the con-
troller is made). Furthermore, the proposed kinematic controller
is fundamentally different from the controller presented in [11]
in the respect that 1) the proposed kinematic control structure
does not require high gain feedback (i.e., we have eliminated
the need to divide by a signal that exponentially approaches an
arbitrarily small constant) and 2) we do not force the oscillator
to track an exponentially decaying signal; hence, different anal-
ysis techniques are required. To illustrate that the proposed kine-
matic controller can be easily extended to include uncertain dy-

(a)

(b)

Fig. 2. Position tracking error: (a)~x and (b)~y.

namic effects, we developed an adaptive controller that fosters
global asymptotic tracking despite parametric uncertainty in the
mobile robot dynamic model. It should also be noted that in ad-
dition to the WMR problem, the kinematic portion of the pro-
posed controller can be applied to other nonholonomic systems
(see [4] for examples). In addition, since the desired trajectory
can be generated on-line (e.g., the desired trajectory could be
calculated based on sonar data, vision-based data, etc.), the pro-
posed controller could be used in many applications (e.g., ob-
stacle avoidance, exploration of uncertain environments, etc.).

Experimental verification has been provided via a modified
K2A WMR manufactured by Cybermotion, Inc. to illustrate
the effectiveness of the proposed controller. In order to cal-
culate the Cartesian position/orientation, we relied solely on
position measurements from the steering and drive motor en-
coders; hence, we believe that if certain practical issues could
be addressed (i.e., the motor encoders should be mounted before
the WMR gearing mechanism, low resolution encoders (0.35
deg/line) should not be utilized, elimination of the numerical in-
tegration/differentiation error induced during the calculation of
the Cartesian position/orientation, etc.), then the tracking error
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Fig. 3. Orientation tracking error~�.

Fig. 4. Parameter estimates: (a)m , I , (b)F ; F , and (c)F ; F .

could be further decreased. Future research will address these
issues by using visual feedback.

APPENDIX

In order to show that is bounded we take the time deriva-
tive of (23) and then substitute for the time derivative of (20) and
(10) to obtain the following expression:

(127)

(a)

(b)

Fig. 5. Control torque input: (a) steering motor and (b) drive motor.

Then, substituting for the time derivative of (19) and grouping
common terms yields

(128)

After applying L’Hospital’s rule to the terms contained in (128),
which are given below

(129)
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we note that

(130)

Finally, we can use (130) and the fact that , , ,
, , , , , to prove that

.
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