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Global Exponential Tracking Control of a Mobile
Robot System via a PE Condition

Warren E. Dixon, Darren M. Dawso®enior Member, IEEB-umin Zhang, and Erkan Zergeroglu

Abstract—This paper presents the design of a differentiable,
kinematic control law that achieves global asymptotic tracking. In
addition, we also illustrate how the proposed kinematic controller
provides global exponential tracking provided the reference
trajectory satisfies a mild persistency of excitation (PE) condition.
We also illustrate how the proposed kinematic controller can be
slightly modified to provide for global asymptotic regulation of
both the position and orientation of the mobile robot. Finally,
we embed the differentiable kinematic controller inside of an
adaptive controller that fosters global asymptotic tracking despite
parametric uncertainty associated with the dynamic model. Ex-
perimental results are also provided to illustrate the performance
of the proposed adaptive tracking controller.

Index Terms—Exponential tracking, mobile robot, nonholo-
nomic, persistency of excitation, underactuated.

structure. Likewise, Canudas de Wital. [6] also constructed

a piecewise smooth controller to exponentially regulate a
WMR to a setpoint; unfortunately, due to the control structure,
the orientation of the WMR is not arbitrary. In [23], Samson
showcased several smooth, time-varying feedback controllers
that could be utilized to asymptotically regulate a WMR to
a desired setpoint. In addition to Samson’s research, several
smooth, time-varying controllers were also developed for
other classes of nonholonomic systems in [8], [22], and [26].
Recently, Samson [24] provided a global asymptotic control
solution for the setpoint regulation or the fixed reference-frame
path following problem for a general class of nonholonomic
systems. To enhance the transient performance Godagavn

al. [14] and McCloskeyet al. [21] constructed control laws
that locally p-exponentially (as well globally asymptotically)
stabilized classes of nonholonomic systems. In addition to
HE POSITION control problem of wheeled mobileproviding better transient performance, McClosletyal. [21]
robots (WMR’s) has been a heavily researched areéso illustrated how the dynamic model of a WMR could be
due to both the challenging theoretical nature of the probleincluded during the control design under the assumption of
(i.e., an underactuated nonlinear system under nonholonomi@ct model knowledge.
constraints) and its practical importance. In recent years,In addition to the setpoint regulation problem, several con-
control researchers have targeted the problems of 1) trackingjlers have also been proposed for the reference robot tracking
a time varying trajectory (which includes thmath-following problem (i.e., the desired time-varying linear/angular velocity is
problem as a subset [7]); 2) regulating the mobile robot tospecified). Specifically, in [18], Kanayan al. obtained local
desired position/orientation; and 3) incorporating the effecésymptotic tracking using a continuous feedback control law for
of the dynamic model during the control design to enhaneelinearized kinematic model. Using a continuous, linear con-
the overall performance and robustness of the closed-lowpl law for a linearized kinematic model similar to [18], Walsh
system. Researchers who have examined the above probleinal. [26] obtained a local exponential stability result. Moti-
often cite that the regulation problem cannot be solved wvated by the desire to obtain global tracking (versus the afore-
a smooth, time-invariant state feedback law due to the imentioned local results), Jiared al. [16] developed a global
plications of Brockett's condition [5]. In order to surmountasymptotic tracking controller; however, angular acceleration
this technical hurdle, researchers have proposed a varietymeasurements were required. In[17], Jiabgl.provided semi-
controllers to achieve setpoint regulation (see [21], [23], argdobal and global asymptotic tracking solutions for the general
the references therein for an in-depth review of the previoghained form system while eliminating the need for angular ac-
work) including: 1) discontinuous control laws; 2) piecewiseeleration measurements that was required in [16]. In [13], Es-
continuous control laws; 3) smooth time-varying control lawsobaret al. illustrated how the nonholonomic double integrator
or 4) hybrid control laws. Specifically, in [4], Bloclet al. control problem (e.g., Heisenberg flywheel) can be exponen-
achieved local setpoint regulation for several different types tiélly stabilized by a redesigned field oriented induction motor
nonholonomic systems using a piecewise continuous contoaintroller; however, the controller exhibited singularities. Moti-
vated by practical issues (i.e., parametric uncertainty in the dy-
Manuscript received June 1, 1999; revised October 31, 1999. This wd?@mic model), Dongt al. [12] exploited the kinematic control
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various controllers for the less stringent fixed reference-frame(#), v.(¢), andé(¢) € R* denote the linear position and orien-
path following problem. tation, respectively, of the center of mass (COM) of the WMR,

In this paper, we present a new, differentiable kinematic cosz(t), 4.(t) denote the Cartesian components of the linear ve-
trol law that achieves global asymptotic trackimgntrol. Inad- locity of the COM,6(¢) € R* denotes the angular velocity of
dition, we also illustrate how the proposed kinematic controlléhe COM, the matrix5(q) € R3*? is defined as follows:
provides forglobal exponential trackingrovided the reference

trajectory satisfies a mitdpersistency of excitation (PE) condi- cos 6 0
tion. Moreover, we illustrate how the proposed kinematic con- S(g)= |sinf 0 3)
troller can be slightly modified to yield global asymptotic reg- 0 1

ulation of both the position and orientation of the mobile robot. i . i
Finally, we illustrate how the integrator backstepping approaa’?d the velocity vectoo(f) € R° is defined as
can be used to embed the proposed differentiable kinematic con-
troller inside of an adaptive controller that fosters global asymp-
totic tracking despite parametric uncertainty associated with
dynamic model (i.e., mass, inertia, and friction coefficient
From a retrospective view of literature, it seems evident that the

p_roposed k?nematic control_le_zr is novel in the respect that: 1) prg- control Objective

vided certain mild PE conditions on the reference trajectory are ) ) .

satisfied, a global exponential tracking result is obtained; 2) a”S d€fined in previous work (e.g., see [16] and [18]), the ref-
global exponential tracking control scheme is crafted such tHE{ECe trajectory is generated via a reference robot which moves
only minor modifications to the control structure are require@cc0rding to the following dynamic trajectory:

to solve the global asymptotic regulation problem; and 3) to the

v=[v1 v)" =[u OF (4)

B v(t) € R! denoting the linear velocity of the COM of the

best of our knowledge, this paper represents the first result that Gr = 5(2:)0r ®)
illustrates how the excitation of the reference trajectory can Qg . o S() was defined in 3)
used to improve the transient tracking performance. )= e ) 6OF € % is the,

: . . g, (t
The paper is organized as follows. In Section Il, we presefiigireq time-varying position and orientation trajectory, and
the kinematic model of the WMR and then transform the modelj(t) = [vm(t) vma(t)]T € R is the reference time-varying
into a form which facilitates the subsequent control develo‘qhear and angular trajectory. With regard to (5), it is assumed

ment. In Section Ill, we present the kinematic.control ]gw,t at the signalv, () is constructed to produce the desired
closed-loop error system, and the corresponding stability a”FHbtion and thatv,.(¢), @n(¢), ¢.(£), and ¢,.(t) are bounded
ysis for the global asymptotic tracking controller. In Section Mor all time

we develop the global exponential tracking result. In Section 1, ¢4 gijitate the subsequent control synthesis and the corre-

V, we illustrate how simple modifications can be made to thg,,4ing stability proof, we define the following transforma-
proposed controller to obtain global asymptotic regulation. Ebn:

Section VI, we develop the dynamic model for the WMR, for-

mulate the adaptive dynamic control law, and then present the w —fcosf+2sinf —Hsinf—2cosf 0
closed-loop error system and corresponding stability analysig z; | = 0 0 1
for the global asymptotic tracking result. In Section VII, we | 22 cos 0 sin 6 0

illustrate the viability and effectiveness of the proposed adap-

z
tive tracking controller via experimental results. Concluding re- 7 (6)
marks are presented in Section VIII. 6
[l. KINEMATIC PROBLEM FORMULATION wherew(t) € R' andz(t) = [21(t) 2(t)]* € R?* are auxil-

) . . SN 1 .
A WMR Kinematic Model iary tracking error variables;(t), y(_t), 6(¢) € R are the dlf—_
ference between the actual Cartesian position and orientation of

The kinematic model for the so-called kinematic wheel undgie COM and the desired position and orientation of the COM
the nonholonomic constraint pure rolling andnonslippingis a5 follows:

given as follows [21]:
-i;:xc — Tpe g:yc_yrc 9:9_91‘- (7)
q=5(qv 1)

. After taking the time derivative of (6), using (1)—(5), and (7),
whereq(t), §(t) € R* are defined as we can rewrite the tracking error dynamics in terms of the new
- o variables defined in (6) as follows

q= [-77(: Ye 9] q= [-77(: Ye 9]
IThe structure of the proposed kinematic controller is spawned from the in- w= UTJTZ + Az
duction motor controller presented in [10]. 2= (8)
2The condition is mild in the sense that many reference trajectories satisfy the

condition (e.g., acircle trajectory, sinusoidal trajectory, etc. can be exponentially’Note that the structure of (8) is similar to the structure of the open-loop error
tracked). system given in [10].
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whereJ € 122 is an auxiliary skew-symmetric matrix definedthe auxiliary terms2; (¢) € Rt andQ(¢) € R* are defined as
as
0 -1
J = 9
) ©

and the auxiliary row vectad(z, v,., t) € R*? is defined as

Ql = k1w2 + k‘l (w2 — z(:fzd) — k‘g + k‘g (19)
and

QQ = klw + le (20)

sin (#1)

A= [—21}74 2%2} . (10) respectively, wheréy, ko, k3 € R! are positive, constant con-
trol gains, I> represents the standafdx 2 identity matrix,

The auxiliary variableu(t) = [u1(t) wu2(t)] € R? utilized B € R! is a positive constant, and(z, v,., t) was defined

in (8) is used to simplify the transformed dynamics and is e (10). Note that it is straightforward to show that the matrix

plicitly defined in terms of the WMR position and orientation/2 + 2w.J* used in (17) is always invertible providedt) re-

the WMR linear velocities, and the desired trajectory as followsains bounded.

z1

w=T"LYy_ [ Up2 J v="Tu+1I (11) B. Error System Development

. 0 -
Urt €08 To facilitate the closed-loop error system development for

where the auxiliary variables € £2*2 andIl € %2 are defined w(t), we substitute (15) for(t) defined in (8), add and sub-

as follows: tractul'Jz4 to the resulting expression, utilize (14), and exploit
o R the skew symmetry of defined in (9) to rewrite the dynamics
T [(a: sin 6 I 7 cos 6) (1)} (12) forw(t) given by (8), as follows:
and w=ulJi—ulJrg+ Az —ulJz (21)

where the fact thaf” = —.J has been utilized. Finally, after
substituting (16) for only the second occurrencegft) in (21),
substituting (17) foru.(t), utilizing the skew symmetry of
defined in (9), and the facts that J = I, andJT = —.J, we
IIl. KINEMATIC CONTROL DEVELOPMENT can obtain the final expression for the closed-loop error system
Our control objective is to design a controller for the trangs follows:

formed WMR kinematic model given by (8). To facilitate the - — _—
subsequent control development, we define an auxiliary errdp = —k1wzg za+Az+2wA(L+2w ] )™ Jz+u, J7. (22)

signal 2(t) € R? as the difference between the subsequent1ly . . . .
designed auxiliary signal(t) € %2 and the transformed vari- o facilitate the subsequent stability analysis, we substitute (17)
ablex(t), defined in (6), as follows: for u.(¢) into (18) to yield the following form for the dynamics

of Zd(t)
? = 2g — 2. (14)

- [vﬂ cos 0 + v,2(Z sin 8 — 7 cos 9)} . (13)

Ur2

ld

2 = (k1 (w2 — zgzd) — kQ) 2d

Qozg — (I +2 —LwAT. 2
A. Control Formulation oz = (b + 2w]) " w (23)

Based on the kinematic equations given in (8) and the subseTo determine the closed-loop error system #6r), we take
quent stability analysis, we design the auxiliary signg) as the time derivative of (14), and then substitute (18) and (8) for
follows: 2q4(t) andz(t), respectively, to obtain

U = Ug — k3z + U, (15) = (kl (w2 — zgzd) — kg) 2q + JQozq + %uc —u. (24)

where the auxiliary control terms, (t) € R* andu.(t) € ®*  After substituting (15) into (24) fou(t), and then substituting
are defined as (16) for ue(t) in the resulting expression, we can rewrite the
expression given by (24) as follows:

Uq = krwdzg + Q124 (16)
and — (kl (w2 — z:{zd) — kg) zq + J22y
— %uc —kywJzg — Qizg + k3z. (25)
te = —(Iy 4 2wJ) " (2wAT) 17)

After substituting (19) and (20) fdR;(¢) and€2;(¢) into (25),
respectively, the auxiliary signal,(t) is defined by the fol- respectively, and then using the fact thaf = —1I,, we can
lowing dynamic oscillator-like relationship: cancel common terms and rearrange the resulting expression to

obtain

24 = (kl (w2 - Zgzd) - k2) zq+ JQ2z2y + %U,C
B =25 (0)24(0) (18) 3= —kgi 4+ wd[Q2g + kywlzg] — Sue (26)
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where (14) has been utilized. Finally, we substitute (17) far(t) € L. [sincew(t), 24(t), 2(t), 2(t) € Lo, we know that
u.(t) to determine the final expression for the closed-loop errar(t), zq4(t), 2(¢), andz(¢) are uniformly continuous]. In order
system as follows: to illustrate that the Cartesian position and orientation signals
. defined in (1) are bounded, we calculate the inverse transforma-
Z = —ksz + (Iy + 2wJ) twAT +wJu, (27)  tion of (6) as follows:
Z1
z2 .
w

where we have used the fact that the bracketed term in (26) i$ &
equal tou,(t) defined in (16).

[O %(é sin 6 + 2 cos 6) 5 sin 6

gyl =10 —%(éCOSQ—QSin ) —3% cosd
. . ¢ 1 0 0
C. Stability Analysis (35)
Theorem 1: The kinematic controller given by (15)—(20) en- .

sures global asymptotic tracking in the sense that Sincez(t) € L, itis clear from (7) and (35) that(t), 6(¢)
R € L. Furthermore, from (7), (35), and the fact tha(t), z(t),

th_glo z(t), y(t), 6(t) =0 (28) 6(t) € L., we can conclude that(t), 4(¢), z.(t), y.(t) € L.

We can utilize (11), the assumption that the desired trajectory is
provided the reference trajectory is selected such that bounded, and the fact thégt), «(t), &(t), 4(t) € Loo, to sShow

thatu(t) € Loo; therefore, it follows from (1)—(4) thad(t),
z.(t), 9.(t) € L. Based on the boundedness of the aforemen-

Proof: To prove Theorem 1, we define the following non_tioned signals, we can take the time derivative of (18) and show
negative function denoted BY(w, 74, %, £) € R as follows: thatZ,(t) € L (see the Appendix for explicit details). Stan-

dard signal chasing arguments can now be used to show that all
V(t) = %w2 + %zfzd + %;T; (30) remaining signals are bounded.
From (14) and (34), it is easy to show thatt), 2(¢) € Lo;
After taking the time derivative of (30) and making the apprdience, sincey(t) andz(¢) are uniformly continuous, we can
priate substitutions from (22), (23), and (27), we obtain the folise (14) and a corollary to Barbalat’'s Lemma [25] to show that
lowing expression: lim—, 00 24(t), 2(t), 2(t) = 0. Next, sincezy(t) € Lo, we
. know thatz,(¢) is uniformly continuous. Since we know that
Vi=wlug JZ — kywzg za + Az + 20A(L +2wJ 7)™ 2] lim,_ . 24(t) = 0 andz4(t) is uniformly continuous, we can
+ 2y [(k1(w® — 23 2a) — k2)2a use the following equality:
+JQozg — (12 + 2wJ)_1wAT]

+ 7 [y — ks? + (I + 2w) " twAT] . (31) Jim,

tlim ||v,]| # 0. (29)

¢
/ i(zd(T))dT = lim #4(t) + Constant  (36)
0 d’/‘ t—oo

After utilizing the skew symmetry property of defined in (9), and Barbalat's Lemma [25] to conclude thiat,_, ., 24(t) = 0.
making use of the fact that” = —.J, and cancelling common Based on the fact thdim, .., z4(t), 2a(t) = 0, it is straight-

terms, we can upper bound (31) as follows: forward from (17) and (18) to see thhtn; .., wAL = 0.
. - . Finally, based on (10) and (29) we can conclude that
V < —kozgzqg — ksZ 2+ wAz lim, .., w(t) = 0. The global asymptotic result given in (28)
+ [wA(Lz + 2w ")~ (2wJ)] 2 can now be directly obtained from (35). O
— [wA(L 4+ 2wJ") ™) 2 (32)

IV. GLOBAL EXPONENTIAL TRACKING ANALYSIS

where (14) has been utilized. Next, after utilizing the fact that |, e previous section, we utilized a straightforward Lya-

s ) .
J* = —J, we can combine the bracketed terms in (32) as showfy, analysis and Barbalat's Lemma to prove global asymp-

below totic position/orientation tracking. Since we have established
V< - k2T 2y — k3T 5 4 wAz _that all signals in the cl_osed-loop system are bounded, we now
Ty-1(] T 33 illustrate how the nonlinear closed-loop error system formu-
—wA [(IQ +2w7) " (L + 2w )] z. (33) lated in the previous section can be represented as a linear time-

After noting that the bracketed term in (33) is equal to the ideN21yIng system as S'm"a“Y dqne for. closed—l'oop adaptive con-
tity matrix, we can cancel common terms to obtain the ﬁm;rlol systems (see [19]). This linear time-varying representation
upper bound fofV(t) as follows: allows us to develop a PE condition on the desired reference tra-

jectory that promulgates a global exponential tracking result.
V < —kortzg — ks 5. (34)
A. Error System Development
Based on (30) and (34), we can conclude té) € L;  To formulate the nonlinear closed-loop error development
thus,w(t), za(t), Z(f) € Loo. Sincew(t), zq(t), #(t) € Loor  given in the previous section as a linear time-varying system,

we can utilize (10), (14)=(20), (22), (27), and the fact that thge first define the states of the system, denoted:@#y € %2,
reference trajectory is assumed to be bounded to conclude Hh&fo|ows:

AE), 2(), ut), ug(£), ue(t), (1), a(8), 2a(t), w(t), 3(t) €
Loo. Sincezy(t), 2(t) € Lo, we can utilize (14) to show that z=[pf w]” (37)
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where the auxiliary signal(¢) € R®* is defined as

5T ]T

p=[2] z (38)

andw(t), zq(t), andz(t) were defined in (6). In addition, we
rewrite the closed-loop dynamics fax(¢),, into a more conve-

133

and the submatriD € R**4 is defined as

Vkaly 02y }
D= : 49
[ O2x2 Vsl (49)

Remark 1: In the subsequent exponential stability proof, we
will utilize the fact that (34) can be rewritten as

nient form by substituting (16) for only the second occurrence

of u, () in (21) and then utilizing (14), the skew symmetry of

J defined in (9), and the fact that! .7 = I, to yield

w=ulJi— kw2t zg + Alzg — 2) —ul J(zq — 7). (39)
Based on (39) and the definition pft) given in (38), we can
now obtain a convenient expression for the dynamias(@]j as

follows:

W= Blp (40)
whereB; (t) € R* is defined as
_ T _ T
B, = kiwzy +A—u;J (41)

wl'J —A+ul'J

In order to express the closed-loop error systentfoy in a

form that facilitates the linear system representation, we substi-

tute (17) into (26) to obtain the following expression:

z = (wJQ — k1w? 1) zg + ((Ta +2wJ) TP AT Yw — kzz. (42)

V< —2TC"Cx (50)
hence, (50) provides the maotivation for the structure of the ma-
trix C defined in (48). The subsequent stability analysis also
utilizes the fact that all the signals in the time-varying system
given by (46) are bounded as illustrated by Theorem 1; further-
more, the stability analysis requires th(t) defined in (45)

be differentiable. Based on the proof of Theorem 1, it is straight-
forward to show thaB,(t) exists and is a bounded matrix.

B. Stability Analysis

Before we state the exponential stability result, we present
two lemmas that are used during the proof of the main result.
Lemma 1: If the reference angular velocity.»(¢) defined in
(5) is selected according to the following expression:

146,
/ (o) > &,
1

[i.e., if the reference angular velocity is selected to be persis-
tently exciting (PE)] then the observability grammian for the

(51)

It is now a straightforward matter to take the time derivative giystem given in (46), defined as

(388) and make appropriate substitutions from (23) and (42) to

express the closed-loop error systemg#6r) as follows:

p = Agp + Baw (43)

where the auxiliary termslo(t) € R*** and Ba(t) € R* are
defined as

(k‘l (w2 — zgzd) — kQ) Iy + Js
w]Ql — k1w2_[2

022

Ao = [ ksl

| @
and

By = [— ((Iy + 2wJ)=t A7) }

((Ls + 2w.1) L AT) (45)

respectively0,.x,. represents the x m zero matrix, andl,

represents thx 2 identity matrix. The final linear time-varying constructk (¢)

t+6
Wit t+6) = / T (7, t)YOTCO(r, t) dr (52)

satisfies the following inequality:

W(t, t+6) = vI; (53)

for all t > 0, whereé, 1, &, v € R! are positive constants,
(T, t) € R>*5 denotes the state transition matrix for (46),
represents the x n identity matrix, and” was defined in (48).
Proof: To prove Lemma 1, we note that a closed-form
expression for the state transition matrix of (46) is difficult to
find; thus, we employ the fact that the péid; (¢), C) of (46)
is uniformly observable (UOIf and only ifthe pair(A;(t) —
K(t)C, C)is UO (see [15] for an explicit proof) whei§(¢) €
R5*5 is treated as a design matrix. To facilitate the analysis, we
to be a continuous, bounded matrix as follows:

representation is obtained by taking the time derivative of (37)

and then utilizing (40) and (43) to obtain

T IAl.Z‘

y=Czx (46)

where the matrix4; (t) € ®°*5 is defined as

B;
0

Ao

|

the matrixC € R%*3 is defined as

C’:[ D 04><1}

48
Oix4 O (48)

[ AoD™t 041
K= [BlTDl 0 | (54)
Based on the definition ak'(¢) given in (54), we have
A - KC= [0“4 B“’} ; (55)
Oixa O

hence, the state transition matrix for the pdid(¢) —
K(t)C, C), denoted byb, (7, t) € R>*5, can be calculated as
follows:

/tT By(0) da] '
1

1

o, (56)

O1x4
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Given the following definition for the observability grammian Vi, t) <0&(64)

for the pair(A;(t) — K(t)C, C)

and
t+62
Wit t+6 :/ T (r, YCTC®(r, t)dr (57 45
i 2) t i(r.?) (7 ) &7 Vig(x, t, 7), 7)dr < —v.V(z, t) fort > 0 (65)
we can substitute (48) and (56) into (57) to calculate (58) (shownt

at the bottom of the page), whefe € R is a positive constant. where,, v, 7., § € R! are positive constants ardz, ¢, 7)
To facilitate further analysis, we note thatare the solution of the system that startgaatt). If (63)—(65)

ftt+61 BT (0)B;(c) do can be rewritten as follows: hold globally, then the system is globally exponentially stable
s in the sense that
' T
/t B; (0)Ba(o) do l(8)]] < o exp(—fot) (66)
t+6; : 2 -,
—9 / 1 <_2U sin(z1) + 4 ) for some positive constants,, 3o € R*.
— oEY) rl WUp2 .
¢ (1 + 4w?) 21 Proof: See [19, Theorem 4.5]. O
sin(z;) 2 Remark 2: Note that since (66) is an exponential envelope
+ <4 1 LA 21;,,2) ) do—] (59) originating atcry which need not be proportional fe:(0)||, the
1 result does not adhere to the standard definition of global expo-

After some algebraic manipulation, we note that (59) can antial _stg_bi:ity (sde_g the discussion in [“19] and [23]); however,
simplified as follows: or any initial conditionz(¢) exponentially converges to zero.

Theorem 2: The position and orientation tracking errors de-
fined in (7) are globally exponentially stable in the sense that

Z(8)], 151, 16(t)] < exp(=fit) (67)

t+6, 1 -
5 fsin(z) 9
=38 U + vy | do. . .
/t (14 4w?) < < z1 ) ) for some positive scalar constants and/3; provided that the
(60) reference angular velocity satisfies (51).
Proof. To prove Theorem 2, we define the nonnegative
Next, sincew(t), z(t), v,(t) € L., we can select positive con-functionVa(z) € R! as follows:
&
stants¢i, 1 € R such thatf, ™" BI(0)Ba(o)do can be .
lower bounded as follows: Va(z, t) = 32w (68)

t+6 146, . .
T 9 wherez(¢) was defined in (37). Based on (30), (34), (37), (38),
/t By (0)Ba(0) do 2 & /t vpdo zm - (61) (48), (49), (68), and the proof for Theorem 1, the time derivative

where the assumption given in (51) was utilized. Given the de(%]f (68) can be expressed as follows:

inition for W (¢, t + &) in (58), the fact thaB»(t) and B(t) Ve, ) < —aTCTCx (69)
are bounded, and the fact thﬁf’é‘ BT (0)By(0) do satisfies

(61), we can apply [19, Lemma 13.4] to (58) to show that themhereC was defined in (48). After integrating (69), we obtain
exists some positive constant € R such that the following expression:

461
/t BY(5)By(0) do

Wit t+ 62) > vols; (62)

t+6
/ Va(d(a, 7, ), 7) dr
hence, the paifA;(¢t) — K(¢)C, C) is UO. Since the pair t s
(41 (t) — K(1)C, €) is UO, then the paif4;(#), C) is UO < o l / BT (r, )CTCD(r, £ dr| = (70a)
(see [15, Lemma 4.8.1] for an explicit proof); hence, by the t
definition of uniform observability (see [2]), the result given in

(53) can now be directly obtained. O where we have use the fact thdte, 7, t) € R°, which denotes
Lemma2: LetV(z, t) € R* be acontinuously differentiable the solution to the linear system defined in (46) that starts at
function such that (z, t), can be expressed as follows: [3]
Yallzl* < V(w, £) < wllzll? (63) ¢z, 7, t) = (7, t)z(t) (71)
DTD DTD/ By(o) do
t

455
Wl(t, t+ (52) = / - r - dr (58)
¢ / BY(0)doDTD / BY (o) dO’DTD/ Bs(o)do
t t

t
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and®(r, t) € R°*® denotes the state transition matrix for (46)asymptotic tracking result becomes an exponential tracking re-
After noting that the bracketed termin (70a) is equdlt¢, t+ sult; hence, many different types of geometric trajectories can
8), defined in (52), we can utilize (53), (68), Lemma 1, and (5Be exponentially tracked after some finite time (e.g., lines).
to show that

V. SETPOINT EXTENSION

t+6 .
/ Vagp(z, 7, t), ) dr < =2vVa(z, t).  (72) Many of the previously proposed tracking controllers do not
¢ reduce to the regulation problem because of technical restric-
From (68), (69), and (72), it is clear that the conditions given itions placed on the reference trajectory similar to that given in

Lemma 2 are globally satisfied; hence, (29). In this section, we illustrate how the kinematic tracking
controller proposed in the previous section can be slightly mod-
[[2()]| € a2 exp(—pFat) (73) ified to ensure global asymptotic position and orientation reg-

ulation [i.e., ke given in (18) and (19) is set equal to zero].

wherea, andj, € R' are positive constants. The global exposince this new control objective is now targeted at the regula-
nential result given in (67) can now be directly obtained fromon problem, the desired position and orientation vector, de-
(14), (35), (37), and (38). O noted byg, = [#, # 6-]7 € R* and originally defined

Remark 3: We note that with the achievement of exponentiah (5), is now assumed to be an arbitrary desired constant vector.
position/orientation tracking as seen in (67), a certain degreemdsed on the fact that is now defined as a constant vector, it is
robustness is acquired for the proposed tracking controller. TR@taightforward to see that.(¢), given in (5), and consequently
is, exponentially stable systems inherently have the ability 19z, v,., t) andu.(t) defined in (10) and (17), respectively, are
tolerate a greater degree of uncertainty in the form of unknoww set to zero for the regulation control problem. As a result of
parameters, external disturbances, unmodeled dynamics, et¢hasnew control objective, we also note that the auxiliary vari-

compared to an asymptotically stable system. For a more @gylew(t) originally defined in (11), is now defined as follows:
tailed discussion on the theorems and analysis concerning the

robustness of exponentially stable systems, see [27] and the ref- u=T tv v="Tu (79)
erences therein. i ) )

Remark 4: Some examples of persistently exciting referencinere the matrix” was defined in (12).
trajectories include: 1y,2 # 0; 2) lim; oo vp2 = ¢ # O . .
(e.g., a circle trajectory can be exponentially tracked); and '%) Stability Analysis
vye = sin(t). In addition, we note that sindan, .., z(f) =0  Theorem 3:The kinematic controller given by (15), (16),
(see Theorem 1), then there exists some time, denoteg, by(18)—(20) withk, = 0, ensures global asymptotic regulation

such that in the sense that
thus where the position and orientation setpoint errors were defined
' in (7).
sin(z) _ 2 Proof: To prove Theorem 3, we take the time derivative of
2 > T V>t (75) the nonnegative function given in (30), and then substitute (22),
) (27), and (18) in the resulting expression (whetez, v,., t),
Based on (60) and (75), we can rewrite (61) as follows: u.(t), andk, are all equal to zero for the regulation problem)
5 and follow the proof of Theorem 1 to obtain the following ex-
/ B (0)By(0) do pression
t -
9\2 ft+o ) ) V=w [u,:,FJi — klwzfzd] + szngd
Z G <;> /t (v +vrp) dor Vit >ty (76) + k123 (w? — 23 20)za + F [wlu, — k3Z].  (81)
hence, if the reference condition given in (51) is modified a&fter utilizing the skew symmetry property ofdefined in (9),
given below making use of the fact thaIT‘ = —J, and then cancelling
res common terms, we can expregsgt) of (81) as follows:
o 2 .
/t ||on-(o)||* do > & Vt>t, (77) V= —k1||zd||4 _ k3||§||2 (82)
(i.e., if either the linear or angular reference velocity is selectedBased on the same arguments as given for the proof of The-
to be PE), then orem 1, we can show that all signals remain bounded during
closed-loop operation, and thiétn; ., z4(t), 2(¢), 2(¢t) = 0.
|Z(8)], [5(8)], |0(t)] < cur exp(—pit), vVt >t, (78) Since (30)isapositive, radially unbounded function with a neg-

ative semi-definite time derivative as shown in (82), we can also
The inequality given in (78) indicates that if (77) is satisfiedzonclude thatim; .., V(w, 24, 2, t) = ¢; wherec; € R is
then there is some time during the transient after which tleconstant. Furthermore, sinien; ... z4(t), 2(t) = 0, itis
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straightforward from (30) thatm, ., w? = c; wherec, € R* Now, note that from (88), we have that
is a nonnegative constant. 1
In order to facilitate further analysis, we define the following vo(To) > I . (94)
nonnegative functiomo(zy, t) € R* as follows: v_(()) + 4k 1o
0
_ 1, T _ 8 ..
Yo = 3%4 #d vo(0) = 3 (83) ' In addition, we note that

where 3 was defined in (18). Based on (83) and the fact t
that limy ., z4(t) = O, it is straightforward to see that vo(t) = vo(To) + / to(o) dor (95)

lim;—, .. vo(t) = 0; hence, for alk; > 0, we have that o
which can be lower bounded as follows:

Uo(t) < €1 Yt > Tol(El) (84)
Uo(t) Z Uo(To) (96)
wheree, 1,1 (1) € R! are positive constants. After taking the
time derivative ofuo(t) given in (83), we have as aresult of (93). Based on (94) and (96), we can conclude that
Vo = —4k1vg + 2k1wvo (85) vo(t) > 1; (97)
—— + 4k 1,
where (18) and the skew symmetry property/adefined in (9) vo(0) o

have been used. After dividing (85) Imfﬁ and then integrating however, (97) is a contradiction to the fact that,_.. vo(f) =

the resulting equation, we have 0. Since the assumption thitn, .., w?(t) = ¢z > 0 leads
1 1 t b 9ok w? (o) to a contradiction, we can conclude that, .., w?(t) = 0;
T dkydo — do.  (86) hence lim; . w(t) = 0. Finally, sincelim;_, ., z4(t), 2(¢),
vo(t)  w(0) o o vo(o) ; S
w(t) = 0, the global asymptotic result given in (80) can now be
Based on the fact that directly obtained from (35). O

b 2kiw?(o)
————do >0 (87) VI. DYNAMIC EXTENSION
0 vo(o)

Practical issues (e.g., robustness to uncertainty in the dynamic

we can rearrange (86) to obtain a lower boundigit) as fol- model) provide motivation to include the dynamic model as part

lows of the overall control problem. As a result of this motivation, we
volt) > 1 ) (88) describe the dynamic model of the WMR and then demonstrate
R + Akt how the integrator backstepping technique can be utilized to de-
vo(0) velop a tracking controller that is based on the composite kine-

Now, we use (84), (88), the structure of (85), and th@atic/dynamic model. Specifically, in the following section, we
fact thé\tlim, vo(t), ~ 0to prove by contradiction that Présent an adaptive controller that achieves global asymptotic
lim,_, o, wQ(i) = 0. To facilitate the proof by contradiction, Wetracking control despite parametric uncertainty in the dynamic

assume thalim, ., w%(t) = ¢, > 0; hence, for alk, > 0, Model.

we have that A. WMR Dynamic Model

|w? — ca| < €9 Vit > T,a(ez) (89) The dynamic model for the kinematic wheel can be expressed

. in the following form:
wheree,, T,2(e2) € R are positive constants. If we select

g1 = (¢2/8) andes = (c2/2), then from (84), (88), and (89), Mo+ F(v) = Br (98)
we have that

where
0<wo< %’ Vit > Top (%2) (90)  o(t)e N2 time derivative ofu(t) defined in (4);
M e ®2*2  constant inertia matrix;
and F(v) e R2  friction effects;
2 5 3c2 2 7(t) € R? torque input vector;
5 <w <4 Vi>Ton (_) : 1) Be®2X2  inputmatrix that governs torque transmission.
Furth i e € Rl To facilitate the subsequent control design, we premultiply
urthermore, if we seledty € 3* as (98) byZ7 defined in (12), and substitute (11) and (12)4¢t)
C C 1 1 I i
T, = max (T01 (§2) Too (52)) (92) to obtain the following convenient dynamic model
_ Mu+V,u+N=D 99
then from (85), (90), and (91), we can conclude thgt) is vt Vmut 4 (99)
nonnegative as shown below where
Go(t) > — dkyvg (08—2) + 2k (%) v M =TTMT,V,, = TTMT,
>Lkicvg >0 V> T (93) B=T"B,N=T" (F(Tu +1I) + MH) . (100)
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The dynamic equation of (99) exhibits the following propertiego quantify the performance of the adaptation algorithm, we
[20] which will be employed during the subsequent control delefine the parameter estimation error signal, denotezél(b)/e
velopment and stability analysis. P, as follows:

Property 1: The transformed inertia matrix/ is symmetric, - R
positive definite, and satisfies the following inequalities: V=1-1. (109)

2 < THhr < 2 2 2
malE]l” < &8 ME < malz, wllE] veeR (101) C. Error System Development

where - To facilitate the closed-loop error system development for
my known positive constant; w(t), we inject the desired kinematic control inpu(¢) into
ma(z, w) € known, positive bounding function which isthe open-loop dynamics ef(#) given by (8) by adding and sub-

Rt assumed to be bounded provided its argyracting the term. J » to the right-side of (8) and utilizing (106)

ments are bounded; to obtain the following expression:

Il standard Euclidean norm.

Property 2: A skew-symmetric relationship exists between w=n"Jz—ulJz+ Az (110)
the transformed inertia matrix and the auxiliary mafriy, as o ) .
follows: After substituting (104) forug(t), adding and subtracting

. ul'Jz4 to the resulting expression, utilizing (14), and ex-
FEM-V,)(=0 VieRr? (102) ploiting the skew symmetry of defined in (9), we can rewrite

L the dynamics forw(t) as follows:
whereM represents the time derivative of the transformed in-
ertia matrix. w=ntJz+ ufJi — uszd + Az — uZJz. (111)

Property 3: The robot dynamics givenin (99) can be linearl

parameterized as follows: %y utilizing the same operations illustrated in the kinematic

control development, we can obtain the final expression for the

Y0 =Miu+V,utN (103) closed-loop error system far(t) as follows:
where ¥ € %P contains the unknown constant mechan- W =n"Jz+ug JE - kiwzg 7
ical parameters (i.e., inertia, mass, and friction effects) and + Az + 2wA(Iy + 2wJ ) 2. (112)

Y, (1, u, t) € R*>*P is the known regression matrix.
To determine the closed-loop error system #¢t), we take
B. Control Formulation the time derivative of (14), substitute (18) fég(¢), and then

Based on the desire to incorporate the dynamic model in thigPstitute (8) for:(#) to obtain
control design, our new control objective is to design an adaptive
tracking controller for the transformed WMR model given by L
(99). To this end, we reformulate the kinematic controller given + T2z + 5uc + 1 — ug (113)
in (15) as a desired signal as follows:

Z= (kl (w2 — zgzd) — kg) 2d

where (106) was utilized and the desired kinematic control
g = Uy — k32 + U (104) signal u,(t) was injected by adding and subtracting(t) to
the right-side of (113). Based on the expression given in (113),
whereu,(t) € R? denotes the desired kinematic control signalve can obtain the final expression for the closed-loop error
Furthermore, based on the transformed dynamic model givendystem forz(t) as shown below
(99) and the subsequent stability analysis, we design the control

torque inputr(¢) as follows: 2= wlug — kaz + (I + 2wl ) 'wAT + 9 (114)
! (Y& K+ Jow + ;) (105) by following the same procedure as described in the kinematic
control development.

whereK, € ®2*2 is a positive definite, diagonal control gain N order to develop the closed-loop error systemvf), we
matrix andn(t) € %2 is a tracking error signal defined as fol-take the time derivative of (106), premultiply the resulting ex-

lOWsS: pression by the transformed inertia matrix, and substitute for
%(t) from (99) to obtain the following expression:

N =Ug — U (106) _ _ _

X Mn=-V,n+Y9— Br (115)

¥(t) € R? denotes the parameter estimaté odind is calculated _

on-line via the f0||owing dynamic update law: where Vmud was added and subtracted to the right'side of
. (115) and (108) was utilized. After substituting (105) into
H = ry?y (107) (115), we obtain the following expression for the closed-loop

) ) ) error system:
and the regression matri (w4, ug, u, t) € R**? is defined

as follows: Miy=-V,n+Y0—Ky—Jow—2 (116)

Y9 =Miy+Vaug+ N. (108) where (109) was utilized.
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D. Stability Analysis placement of all existing computational hardware/software with
Theorem 4: The controller given by (16)—(20), (104), (105)’8. Pentium 133 MHz PC; and 3) the replacement of the battery

and (107) ensures global asymptotic tracking in the sense th§gnk with an external power supply. Permanent magnet DC mo-
tors provide steering and drive actuation through a 106: 1 and a

lim Z(t), y(t), 8(t) =0 (117) 96:1 gear coupling, respectively. A Pentium 133 MHz PC op-
_ oo _ _ erating under QNX (a real-time micro-kernel based operating
provided the reference trajectory is selected so that system) hosts the control algorithm that was written in “C,” and

implemented using Qmotor 2.0 [9] (an in-house graphical user
interface). Data acquisition and control implementation were
Proof: To prove Theorem 4, we define the following nonperformed at a frequency of 2.0 kHz using the Quanser MultiQ

: . = 3 I/O board. In order to measure the tracking error given in (7)
negative function denoted w, za4, Z, 0, ¥, t) € Nt asfol- , . .
g B (w. za, 2.1 ) we need to determine.(¢), y.(¢) and the orientation of the

tlim ||| # 0. (118)

lows:
WMR. To this end, we obtained the positions of the steering and
Va(t) = 3w? + $20 2y + 5277 drive motors via Hewlett Packard (HEDS-9000) encoders with
+ 3Ty + 297719 (119) a resolution of 0.35 deg/line, and then calculated the linear and
2 2 .

angular velocity measurements via a filtered backward differ-
After taking the time derivative of (119) and making the apprence algorithm. Using the angular position measurement and the
priate substitutions from (23), (107), (112), (114), and (116jpear and angular velocity measurements, we then utilized the

and utilizing the fact tha# = —9, we obtain the following ex- elationship given in (1) to determine(t) andy.(t). A trape-

pression: zoidal integration routine was then applied to (1) to obtaift)
. andy.(t) . For simplicity, the electrical dynamics of the system
Vi=w [nTJz +ulgz - klwzfzd] were ignored. That is, we assumed that the computed torque is
+w [Az + 20wA(L + 2w 7)1 TZ] statically related to the voltage input of the permanent magnet
DC motors by a constant.
+ 2 [(ky (w? — 22 20) — Ep) 2d] Y
+ 2y [JQza — (I2 4 2w]) " twA"] B. Experimental Results
+ 2 [—kgZ + (I + 2w]) " wAT] The dynamics for the modified K2A WMR are given as fol-
+ 2 [wlug + 7] + 10" Mn — 97 [Y7] lows:
T [Y& —Jrw— 5 — Ko — an} . (120) ER R R
To ? 72

After utilizing (102) and canceling common terms, we can use 0 . r 0 (1)
the same procedure as presented in the proof of Theorem 1 to = [m" } [Ul} + [ o1 } [Sgn U1 }

obtain the final expression fdrf;(t) as follows: 0 L] o 0 Fo] [sgn(ve)
Fdl 0 U1
Vo = ki llzall* — ka#l 20 — ks3T5 — " Kan.  (121) +{o EJ[W} (122)
Based on (119) and (121), we can conclude W&t) € £L.; where
thus, w(t), z4(t), 2(t), n(t), ¥(t) € Loo. Sincew(t), za(t), m, = 165 kg mass of the robot;
2(t), n(t), ¥(t) € Lo, we can utilize (107), and the same argu- I, = 4.643 kg:m2 inertia of the robot;
ments given in the proof for Theorem 1 to conclude thét), 7, = 0.010 m radius of the wheels;
2(t), ua(t), ua(t), uc(t), Qu(t), Q2(t), 2a(t), w(t), Z(t), 9(t), L, =0.667m length of the axis between the wheels;

9(t) € Loo. Based on the boundedness of the closed-loop sig-fs1, Fs2, Fu1, Fa2  dynamic and static friction elements.

nals, we can conclude that,(t) € L..; hence, we can uti- The desired reference linear and angular velocity were selected
lize (105) and (108) to show that¢) € L... Standard signal as
chasing arguments can now be used to show that all remaining
signals remain bounded during closed-loop operation. Finally,

the global asymptotic result given in (117) can now be directpggpectively, (see Fig. 1 for the resulting reference time-varying
obtained using the same procedure as given in the proof of Tesrtesian position and orientation).

v =0.2(M/s)  w.p = 0.4 sin(0.5¢) (rad/s) (123)

orem 1. - The Cartesian positions and the orientation were initialized

to zero, and the auxiliary signal(t) was initialized as follows:
VII. EXPERIMENTAL VERIFICATION

— T
A. Experimental Configuration zq(0) = [0.01 0.01]". (124)

The adaptive tracking controller given by (16)—(20), (104 he feedback gains were adjusted to reduce the position/orien-
(105), and (107) was implemented on a modified K2A WMRation tracking error with the adaptation gains set to zero and all
manufactured by Cybermotion, Inc. The robot modifications iref the initial adaptive estimates set to zero. After some tuning,
clude: 1) the replacement of the pulse-width modulated amplie noted that the position/orientation tracking error response
fiers with a dual channel Techron linear amplifier; 2) the rezould not be significantly improved by further adjustments of
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Fig. 1. Desired Cartesian position and orientation trajectory.

the feedback gains. We then adjusted the adaptation gains -
allow the parameter estimation to reduce the position/orientz
tion tracking error. After the tuning process was completed °
the final adaptation and feedback gain values were recorded
shown below

[mm]

-4

ki =57, ke=2, ky=37

40 0 -
Ka = {0 1250}
I =diag{30, 0.05, 300, 50, 300, 10}.  (125)

The position/orientation tracking error of the COM of the
WMR, the adaptive estimates, and the associated control torq 12} - = = = = -
inputs are shown in Figs. 2, 3, 4, and 5, respectively. (Note th_ Time [sec]

control torque inputs plotted in Fig. 5 represent the torques(b)
applied after the gearing mechanism.) Based on Figs. 2 ”
3, it is clear that the steady-state position/orientation trackméJ

error is bounded as follows:

Position tracking error: (a) and (b)y.

. namic effects, we developed an adaptive controller that fosters
|#| <0.10cm [y| <0.22cm [f] <1.13deg  (126) global asymptotic tracking despite parametric uncertainty in the
mobile robot dynamic model. It should also be noted that in ad-
dition to the WMR problem, the kinematic portion of the pro-
posed controller can be applied to other nonholonomic systems

In this paper, we have presented a differentiable, kinemagsee [4] for examples). In addition, since the desired trajectory
control law for mobile robots. The proposed kinematic corean be generated on-line (e.g., the desired trajectory could be
troller is novel in that 1) global exponential tracking was obealculated based on sonar data, vision-based data, etc.), the pro-
tained provided certain PE conditions on the reference trajectquysed controller could be used in many applications (e.g., ob-
are satisfied and 2) a scheme was developed which solves steele avoidance, exploration of uncertain environments, etc.).
global exponential tracking problem and the global asymptotic Experimental verification has been provided via a modified
regulation problem (provided a simple modification to the cork2A WMR manufactured by Cybermotion, Inc. to illustrate
troller is made). Furthermore, the proposed kinematic controliére effectiveness of the proposed controller. In order to cal-
is fundamentally different from the controller presented in [Ldulate the Cartesian position/orientation, we relied solely on
in the respect that 1) the proposed kinematic control structyresition measurements from the steering and drive motor en-
does not require high gain feedback (i.e., we have eliminatedders; hence, we believe that if certain practical issues could
the need to divide by a signal that exponentially approachestaaddressed (i.e., the motor encoders should be mounted before
arbitrarily small constant) and 2) we do not force the oscillatéhe WMR gearing mechanism, low resolution encoders (0.35
to track an exponentially decaying signal; hence, different analeg/line) should not be utilized, elimination of the numerical in-
ysis techniques are required. To illustrate that the proposed kitegration/differentiation error induced during the calculation of
matic controller can be easily extended to include uncertain djre Cartesian position/orientation, etc.), then the tracking error

VIIl. CONCLUSION
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9 ! @), L. ) Far, (©Fex, Then, substituting for the time derivative of (19) and grouping

common terms yields
could be further decreased. Future research will address these

issues by using visual feedback.
Zqg =2k (ww — zgéd) 24 + (kl (w2 — z:{zd) — kg) 24

APPENDIX + JQ22q — 2kiwd 2E 3424
In order to show that,(t) is bounded we take the time deriva- ~ + ((k1 + Q1) Jza + dkiw? Jzg — (L2 + 2w] ) "1 AT ) i
tive of (23) and then substitute for the time derivative of (20)and ~ — (I, + 2w.J) lw
(10) to obtain the following expression: . sin(zy) . 21 cos(z1) — sin(z1)
[ —2vp1 — 2vp121 5
. . . . 1 21
Zq =2k (ww - z:‘fzd) 24 + (kl (w2 - z:‘fzd) - kg) 24 200
. . 2
+J |:(k'1 + Q) w+ le:| Zq + JQazy _ Zww dw dw” =11 ¢
a1t e | A (128)

dt
— (I +2w)) tw
l_%’rl sin{z1) 011 z1 cos(z1) —sin(z) ]

- [i(f2 + 2wJ)1} wAY — (I + 2wJ) tw AT
After applying L'Hospital’s rule to the terms contained in (128),
which are given below

Z1 Z%
202 sin(z1) 71 cos(z1) — sin(z)

(127) zZ1 Z%

(129)
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we note that [21] R. McCloskey and R. Murray, “Exponential stabilization of driftless

nonlinear control systems using homogeneous feedb#eEE Trans.
Automat. Contr.vol. 42, pp. 614-628, May 1997.

. Sin(zl) [22] J. Pomet, “Explicit design of time-varying stabilizing control laws for a
lim ————= =1 class of controllable systems without drif§yst. Contr. Lett.vol. 18,
=0 2 no. 2, pp. 147-158, 1992.
. z1 cos(z) —sin(z) [23] C. Samson, “Velocity and torque feedback control of a nonholonomic
ZhI_T}O 2 =0. (130) cart,” in Proc. Int. Workshop Adaptive and Nonlinear Control: Issues in
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