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Extracting Boolean Rules from CA Patterns

Y.X.Yang S.A.Billings
Dept. of Automatic Control and System Engineering

Univ. of Sheffield, Mappin Street, Sheffield S1 3JD, UK

Abstract

A multi-objective GA algorithm is introduced to identify both the neighbour-
hood and the rule set in the form of a parsimonious Boolean expression for both
one- and two-dimensional cellular automata. Simulation results illustrate that the
new algorithm performs well even when the patterns are corrupted by static and
dynamic noise.

1 Introduction

Cellular Automata (CA) are mathematical models for complex natural systems containing
large numbers of simple identical components with local interactions. Since the pioneer-
ing work of John von Neumann during the 1950s [1], CA’s have been largely employed
as a modeling class in a wide range of applications. In physics, CA have been used to
model the non-linear diffusion equation [2] and as a filter to reduce noise effects on a high
energy discrete calorimeter [3]. CA have also been widely applied in image processing
and pattern recognition [4], in digital circuits [5], in robotics systems [6], and many other
fields.

However over the past two decades the focus on cellular automata has shifted from the
potential to approximate non-linear discrete and continuous dynamical systems to the
discovery of particular cellular automata with predefined properties [7] and the detailed
study of these properties.

Within this overall direction, Gutowitz [7a] distinguishes two lines of research, relating
to what he terms the forward problem and the inverse problem. The forward problem
is to determine the characteristics and evolutionary behavior of a given set of individ-
ual cellular automata rules. This has attracted most of the attention of current research
workers and many useful techniques have been developed. However the inverse problem of
determining the cellular automaton which satisfies general sets of prespecified constraints
has received relatively little attention. One of the most essential problems in this case
is the identification of the cellular automata, that is, how to learn the underlying rule
that governs the local behavior of cells from temporal slices of the global evolution of the
spatio-temporal pattern.

Cellular Automata in the classical sense are autonomous systems, that is, there are no
external inputs exerting an influence on the evolution. It is only possible to observe an
evolution of cellular automata and fix the global states or configurations. An identifi-
cation procedure can then be established based on using these fixed snapshots. In CA
identification it is assumed that a given spatio-temporal pattern Q has a dimension d
(d > 1) and can be described by a cellular automaton. To identify a cellular automaton
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is to obtain a minimal description of a cellular automaton A which simulates ) precisely
and the size of the neighbourhood must be as small as possible. It is therefore necessary
to specify not only the mapping but also the structure of the neighbourhood. Ideally
the identification technique should produce a concise expression of the CA rule. This
ensures that the model is parsimonious, can be readily interpreted and is important for
the hardware realization of the cellular automaton. Richards et al [8] proposed a method
for extracting cellular automata rules from given spatio-temporal patterns using a genetic
algorithm. Adamatskii [9] discussed the complexity of identification of cellular automata
and presented sequential and parallel algorithms for computing the local transition table.
However neither of these authors obtained a clear neighbourhood structure or parsimo-
nious rule expression (Boolean expression).

This paper is based on Boolean expressions for one-dimensional cellular automata and the
extension of these to the two-dimensional case. An evolutionary algorithm is proposed
using a multi-objective genetic algorithm to extract a precise local Boolean expression
of the CA rule from given spatio-temporal patterns blurred by noise. To accelerate the
convergence subpopulations will be incorporated in the search process.

The remainder of the paper is organized as follows. In Section 2, the definition, character-
istics and other relevant background information of a group of one- and two-dimensional
cellular automata are introduced. Section 3 reformulates the Boolean expression for one-
dimensional CA rules and extends these to the two-dimensional case. The GA search for
Boolean expressions of CA rules is then presented with an emphasis on the construction
of parsimonious forms of CA rules. Simulation results are contained in Section 4, and
Section 5 discusses the efficiency of the algorithm.

2 One-dimensional and Two-dimensional Cellular A u-
tomata

Cellular Automata (CA) are mathematical idealizations of physical systems in which space
and time are discrete and physical quantities take on a finite set of discrete values. A
cellular automaton is based on three parts: a discrete lattice, a neighbourhood and a
rule for local transition (or local rule/truth table). All cells are updated synchronically
according to a rule and the value assigned to a cell at a given time step depends only on
its neighbourhood.

Attention in this paper is restricted to cellular automata with cells that only take binary
values (elementary CA). Although this is the simplest possible case, it has been the focus
of most investigation due to the capability of generating complicated spatio-temporal
patterns of global behavior and capturing essential features of many complex phenomena.

2.1 Neighbourhoods

The neighbourhood of a cell is the set of all other cells capable of directly influencing
the evolution. The neighbourhood can be constructed from various combinations of cells
from different temporal and spatial scales. Some neighbourhoods, shown in Figure 1, are
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used often and have proper names.

J-1:t-1 Jre-1 F+1l;c-1
(a)
i+1,3:¢6-1 i+1,37-1;e-1 i+1,37:t-1 i+1,3+1;¢t-1
i,3=1;¢e-1 i,7,e-1 i,3+1;¢e-1 i,7-1;€-1 B o o i,j+1;ec-1
i-1,3:t-1 i-1,3-1;¢€-1 i-1,37:e-1 d-1,7+1;t-2
(b) (c)

Figure 1: Examples of most frequently used 1-D and 2-D neighbourhoods (a) the 1-D von

Neumann neighbourhood, (b) the 2-D von Neumann neighbourhood (c) the 2-D Moore
neighbourhood |

Denoting the 1-D cell at position j at time ¢ as cell(7;t) and the 2-D cell at position 7, ] at
time ¢ as cell(7, j; t), then the one-dimensional neighbourhood {cell(§j~1;t—1),cell(j;t —
1),cell(y + 1;t — 1)} (Figure 1 (a)) for cell(j;t) and the two-dimensional neighbourhood
{eell(d,j = 1;¢ — 1), cell(s, 53t — 1), cell(s, 7 + 1; — 1),cell(i—1,5;t—1),cell(i 4+ 1,55t —
1)} (Figure 1 (b)) for cell(i,j;t) are the von Neumann neighbourhoods, while the two-
dimensional neighbourhood {cell(i,7—1;t — 1), cell(i, j;t — 1), cell(i,5 + 1;¢ — 1),cell(i—
. l,j—l;t—l),ce!l(i—l,j;-t—l),cel!(i—l,j—i—l;t—l),cell(i—i—l,j—1;t—l),cell(i+1,j;t—
1),cell(i+1,7+1;¢— 1)} (Figure 1 (c)) for cell(i, j;t) defines the Moore neighbourhood.

2.2 Local rules

Local interaction rules are defined in terms of the influence that cells in the neighbourhood
of a cell have on the updated value to be placed in that cell. The rules are labeled by
assigning neighbourhoods in ascending numerical order and treating the listing of 0’s and
1’s which are obtained by specifying which neighbourhoods map to 0 and which to 1.
This defines the rule/truth table. The component form of a 3-site one-dimensional rule
R is shown as follows:

000 001 010 011 100 101 110 111
To T1 T2 T3 Ty Ts Tg rr
20 21 22 23 -2-! 25 -26 -27

where r;,i = 0,---,7 are the rule components taking only binary numbers and the
last row shows the coefficients associated with the corresponding components. There-
fore R = (rg.ry,72,73,74,75,76,77) and the numerical label D assigned to R is given by
D(R) = 233:51 rs2°, which is simply the sum of the coefficients associated with all non-zero
components.




2.3 Stochastic/probabilistic CA rules

Each cell value in all of the CA’s mentioned above is updated according to a fixed deter-
ministic rule. A particular pattern of noise (imperfection) can be added to an initially
deterministic rule in two ways. Static noise is introduced by flipping a certain number
of cell states according to a given probability after the CA evolution. Dynamic noise is
imposed upon CA patterns by specifying one or more (not all) of the components to be
1 with a probability p, and 0 with probability (1 — p) while the other components remain
fixed. These rules are called stochastic rules.or more commonly probabilistic rules. For
the CA rules corrupted by dynamic noise, a transition from one deterministic rule (p = 0)
to another (p = 1) would occur if the parameter p is altered from 0 to 1. A detailed study
and identification of probabilistic rules will be presented in Section 4.

3 Extracting Boolean rules using genetic algorithms

3.1 Boolean form of CA rules

In a more precise way, an elementary cellular automaton with N cells can be considered as
a fully discrete dynamical system whose evolution is governed by the iteration of a global
mapping F from time ¢ — 1 to time t:

F: {0,1}¥, = {0,1}¥

The homogeneity and the locality of cellular automata permit a compact description of
F in terms of a local transition function f,

f : {0} 1}?-1 —# {01 l}f
that maps the occupancies at time ¢t — 1 of a neighbourhood of size n around any cell to
the next state at time ¢ of that cell.
For a one-dimensional CA, this is denoted as

s(s;t) = F(N(5;t - 1))
where s(7;1) is the state of the cell at position j at time step ¢ and N(j;t — 1) represents

the states of the cells within the neighbourhood of cell 7 at time step ¢ — 1.
For a two-dimensional CA, this is denoted as

s(i,55t) = F(N(i, 55t — 1))

where s(z, 7;t) is the state of the cell at position (7,7) at time step ¢t and N(z,7;t — 1)
represents the states of the cells within the neighbourhood of cell (4, 7) at time step ¢t — 1.
Since in general f is equivalent to the component form of R and the rule/truth table of
length 2", where n is the size of the neighbourhood, f can also be viewed as a logical
function or Boolean function of n variables.

In [10], the Boolean form of all the 3-site 1-D CA rules with even number labels are listed
using NOT. AND and XOR operators. The Boolean form of Rule22, for instance, is

s(jit) = s(j—1;t—=1)XORs(y:t —=1)XORs(yj +1;t — 1)XOR
(s(j —1;t —=1)ANDs(5:t — 1)ANDs(j + 1;t — 1)) (1)
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Note that equation 1 is actually the XOR combination of all the terms connected by
AND. It is not easy to see how to identify equation 1 directly because it involves the
logical combination of terms. Linear in the parameter regression methods are therefore
inappropriate and alternative approaches have to be considered.

However it can be observed that every one-dimensional 3-site elementary cellular automa-

ton can be represented by a Boolean function with NOT, AND and XOR operators.
Furthermore, note that

NOT(a) =1XORa 0XORu=ua

Hence all the one-dimensional 3-site elementary cellular automata can be represented by
a Boolean function with only AND and XOR operators of the form

s(7;t) = aoXORa;s(j;t—1)XOR---XOR
ar(s(j —1;t —1)ANDs(j;t — 1)ANDs(5 + 1;t — 1)) (2)

where a; (i = 0,---,7) are binary numbers and a; = 1 indicates that the following term
is included in the Boolean function while a; = 0 indicates that the following term is not
included.

Note that the number of possible expressions in 2 is 2® = 256 which is exactly the number
of all 3-site one-dimensional rules. This implies that the representation in 2 is unique,
one set of {a;,7 =0,---,7} corresponds to one and only one CA rule.

This can be extended to multi-dimensional CA’s. For instance any two-dimensional CA
with a 5-site neighbourhood {cell(1—1,7;t—1), cell(s,j—1;t—1),cell(s, j;t—1), cell(s, 5+
1;¢ —1),cell(i+1,7;t — 1)} can be represented by a Boolean expression

s(i,4;t) = @XORays(i—1,5;t—1)XOR--- XOR
G31(S(i—l,j;t—1)AND---AND5(1£+Lj;t_l)) (3)

Extending this further, every CA with an n site neighbourhood {cell(z1;t—1), -, cell(zn; t—

1)} may be written as

glasnt)- = a.oXORals(:z:l;t— 1)XOR---XOR
an(s(z1;t —1)AND - ANDs(zn;t — 1)) (4)

where N = 2" — 1 and z; is the cell to be updated.

3.2 Selecting Boolean rules using a genetic algorithm

Expression 4 considerably simplifies the CA identification problem. Assume that the only
a priori knowledge is the dimension of the CA, which can be obtained from examining the
spatio-temporal patterns. Then the emerging difficulty lies in how to determine which
terms should be included in the Boolean expression and which should be discarded. The
problem is very similar to the term selection problem in structure detection for nonlinear
system identification. However in CA identification all the terms are combined by the
XOR operator and are therefore nonlinear in the parameters, whereas in nonlinear system
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identification all the items are combined by the ordinary addition operator and can often
be configured to be linear in the parameters. This difference induces increased difficulty
in CA term selection. GA’s [12] therefore appear to be a natural choice to search for
appropriate terms through the space of logical models constructed upon AND and XOR
operators due to the ability to globally optimize nonlinear and noncontinuous functions
through updating of a whole population of possible solutions at each iteration. The GA
search will be implemented as follows.

3.2.1 Definition and initialization of the population

In the current application the problem to be solved can be simplified to selecting certain
terms from a given term set consisting of all the possible combinations of states of cells
within the assumed neighbourhood. A chromosome will be defined as a 1 x N binary
vector ¢;, where N = 2" — 1 and n is the size of the largest possible neighbourhood
assumed {cell(zy;t — 1), --,cell(z,;t — 1)}. Each entry in the chromosome corresponds
to a term in the set:

ci(l) = Lci(2) = s(z1;t — 1),c(3) = s(zqg;t — 1),
,¢(N) = s(z1;t —1)AND --- ANDs(z,;t — 1)

where ¢;(j) = 1 indicates that the associated term has been selected and c¢;(j) = 0
otherwise. Define

itemf = [1,s(zy;t —1),--+,8(z1;t = 1)AND --- ANDs(zn;t — 1))
C = ey a3 -~ 1 8ml-

where m is the population size. The whole population C is initialized by assigning each
chromosome as a randomly generated binary vector with IV bits.

3.2.2 Fitness function

The fitness function is used to evaluate how well a certain rule structure performs in re-
generating the behavior of observed spatio-temporal evolution. Firstly an error function
is defined as Error(i) = ©757 |o(i, j) — 6(i, j)| where o(i, ) is the original measured state
at data point j for chromosome ¢ and 6(z,7) = c; XORItem f;, where

by
[@ a - a, | XOR b"’ = (&;ANDb;)XOR(az ANDb;)XOR - - - XOR(a, AN Db,)
bn
by
@, 0 a3 | XOR| by | = (et ANDb)XOR(az AN Dbs).
b




The fitness function

Fit(i) = MAX(ETTOT‘(‘i)) — Error(1)
iy MAX (Error(i)) — MIN(Error(i))

s then introduced to normalize the error function and act as the driving force to minimize
the error.

3.2.3 Reproduction, crossover and mutation

The reproduction process selects a new population by extracting individuals after several
repetitions of the old population. The selected population is then used for genetic opera-
tions in the breeding process. There are two classic genetic operators for producing new
chromosomes during the breeding process. Crossover produces new chromosomes which
have some segments of both parents’ genetic structure. Mutation is a random process
which alters one or more bits in a chromosome with a probability equal to the mutation
rate. For details see [13] and [14].

3.3 Multi-objective genetic algorithms

Searching for a Boolean expression to represent CA rules using the GA algorithm can
produce excellent results with 0 error (a fitness of 1). However it is not always true
that the identified neighbourhood correctly matches the true neighbourhood. The initial
assumed neighbourhood will almost always encompass more cells than are actually in the
neighbourhood. A one-dimensional 3-site rule Rule22, for instance, should be

s(f;t) = s(p—-Lit— 1)XORs(j;t — 1)XORs(j + 15t — 1)XOR
(s(j—l;t——l)ANDs(j;t—l)ANDs(j—i—l',tf—l)) (5)

while during the GA search the rules are often searched for over a larger neighbourhood.
For instance, if a CA rule s considered as operating on a 5-site neighbourhood {cell(7 —
B 1§,eell{] =158 — 1), cell(g;t — 1), cell(j + 1t — 1),cell(y +2;t — 1)} then a rule of
the form

s(7;t) = aOXORals(j_Q;t_I)XOR___XOR
a31(5(j—2;i~1)AND...ANDS(j+2;t_1)) 6

will be assumed and it is highly likely that the GA will select more than one expression
including 5 from 6 to match the patterns. The solution is therefore not necessarily unique
and this often leads to a false extension of the neighbourhood.

Note that a rule with a larger neighbourhood cannot be represented by a rule with a small
neighbourhood while a rule with a smaller neighbourhood can be expressed by a rule with
a larger neighbourhood. Therefore the true model is always the smallest model amongst
all the possible models chosen. This is the principle of parsinomy. Thus another search




goal is required to direct the GA evolution to a parsimonious logical model.

It is known that if there are two objectives to be optimized, it might be possible to find
a solution which is best with respect to the first objective and another solution which is
the best with respect to the second. The final result may therefore be a balance between
these two best solutions.

Alternatively, a multi-objective GA search method based on ranking according to the
concept of Pareto optimality would guarantee equal probability of reproduction to all non-
dominant chromosomes and consequently generate a solution nearest to the optimal. In
this problem, the two search objectives are to minimize the error function and to minimize
the number of terms in each chromosome with the same error. For the current population
with size m, each chromosome is ranked according to its error. The chromosome with
the least error occupies the first position , the chromosome with the second least error
occupies the second, etc. Chromosomes with the same error will share the same rank.

Thus,
I e 1 1 1 e m
Error(1) --- Error(i) Error(i+1) Error(i+2) --- FError(m)
with
Error(1) < --- < Error(i) = Error(i + 1) = Error(1 4+ 2) < --- < Error(m).
Define the structure function su(:) = }_; c;(7) and then resort the orders of chromosomes

sharing the same rank in proportion to the associated su(z) with the ranks of the rest
unchanged. Thus,

1 - i fad i1 . m
Error(1) .-+ Error(i) Error(i+1) Error(1+2) --- Error(m)
su(l) -+ su(7) su(i+1) su(t+2) -+ su(m)

with su(l) < --- < su(i) < su(t+1) = su(i+2) < --- < su(p). Consequently, the fitness
function is defined as

) = MAX (rank(i)) — rank(z)
MAX (rank(:)) — MIN(rank(z))

This ranking technique will result in a search with a preference towards the first objective
Error. The structure function su will not have any impact on the first few steps of the
search since all the chromosomes are likely to hold various ranks at that initial stage and
the fitness of each chromosome is determined exclusively by the error function Error.
Only after certain chromosomes have converged to a similar Error, is it possible to re-
arrange the ranking at that error according to the associated su. This search process will
always select individuals with the smallest structure within the span of the lowest error.
Hence chromosomes with a parsimonious logical expression and zero error will remain in
the latest population to produce the final solution.

3.4 Multi-objective GA with subpopulations

In a multi-objective fitness landscape, local optima offer the GA more than one opportu-
nity for evolution. Although populations are potentially able to search many local optima,
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a finite population tends to settle on a single good optimum, even if other equivalent op-
tima exist. This phenomenon is known as genetic drift and could cause the GA search to
become trapped at a local optima. A practical solution is to use a parallel implementation
of the iterative method where several subpopulations evolve independently at the same
time.

In the search for a parsimonious logical model, two subpopulations are initialized and
motivated to evolve separately under different governing objectives. One is to minimize
the error function Error, the other to minimize the structure function su. Together these
should produce new candidates for the main population through crossover and mutation.
The main population would then evolve synchronously with the subpopulations under an
objective jointly determined by the two objectives. Each candidate in the main popu-
lation is produced by genetic communication between subpopulations and is subject to
evaluation by the ranking technique.

The new multi-objective GA search process with two subpopulations can be summarized
as:

1. Initialize the subpopulations and the main population.

2. Evaluate the three populations according to Error, su and Error combined with
su respectively using the ranking technique.

3. Apply the sampling technique to the two subpopulations.
4. Employ crossover and mutation to the two subpopulations separately.

5. Employ crossover and mutation to the two subpopulations combinedly to produce
new candidates for the main population.

6. Repeat (ii) and insert new populations to the three old populations respectively.

7. If all chromosomes in the new main population converge to a single individual then
stop, otherwise return to (iii) and repeat.

4 Simulation analysis

4.1 The effects of noise
4.1.1 Static noise

In system identification noise is usually classified as either white noise with zero mean
or more commonly coloured noise. In cellular automata noise is a form of imperfection
which at a critical magnitude can induce an essential phase transition which can suddenly
change the behavior of the CA. Static noise can be added to a spatio-temporal pattern
by first evolving a deterministic CA rule and then randomly flipping a limited number of
binary values according to a specified probability p, where p = —;% and ¢; is the number
of cells to be flipped and g, is the total number of cells in the spatio-temporal pattern.
This will be referred to as static noise because it is added after the CA evolution. Figure



2 shows the original noise free pattern (p = 0) for the one-dimensional von Neumann
3-site Rule22 and the same pattern corrupted by noise with probabilities of switching of
p = 0.05, p = 0.1, and p = 0.2 respectively. All these were developed on a 200 x 200
lattice with time evolution from top to bottom and a periodic boundary condition. That
is the lattice is taken as a circle, so the first and last sites are identified as if they lay on
a circle of finite radius.

Figure 2: Noise free pattern and static noise contaminated patterns produced by 1-D
Rule22

4.1.2 Dynamic noise

Unlike static noise which is added to the CA patterns after the evolution, dynamic noise
is directly involved in the development of the CA patterns by specifying one or more (not
all) of the components of the rule be 1 with a probability p and 0 with probability (1 - p),
where p = 2 and w, is the number of the prespecified component to be filled in by 1 and
wy is the number of the prespecified component. The contaminated or stochastic CA may
exhibit a rule transition according to the noise probability. Figure 3 shows the transition
from a simple one-dimensional 3-site Rule184 to a complicated chaotic one-dimensional 3-
site Rule60 under the stochastic rule in Table 1. Note that in cases like this the maximum
noise density for the transition rule is 50 percent. For instance when p = 0.6, the rule
transition behaves more like Rule60 than Rulel84 and therefore the noise density for the
transition should be considered as 1 —p = 0.4 for Rule60 rather than 0.6 for Rulel84.

Table 1. Transition of truth table from Rulel84 to Rule60

Components 000 001 010 011 100 101 110 111
Rulel84 0o 0 0 1 1 1 0 1
Transitizon 0 0 »p 1 1 1 0 1-p
Rule60 0 0 1 1 1 1 0 0

where 0 < p < 1.
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Figure 3: Transition from Rulel84 (p = 0) to Rule60 (p = 1) with p varying to indicate
different noise densities

4.2 Identification of the Boolean expression of 1-D CA rules
with noise

4.2.1 Patterns corrupted by static noise

Assume the neighbourhood structure of a class of one-dimensional CA’s is defined by
{cell(j —2;t —1),cell(j —1;¢ — 1), cell(5;t — 1), cell(j+ 15t — 1), cell(j + 2;t — 1)}. Given
the spatio-temporal patterns in Figure 2 corrupted by various levels of static noise, the
GA identification technique of Section 3 was used to produce the results in Figure 4 and

5.

1. The noise free case p =0

]
T
3
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The dash line is the evolution of the number of items of the chromosome with the best fitness,
solid line is the evolution of the error of the chromosome with the best fitness.

Figure 4: Different GA evolutions of noise free Rule22 (a) Ordinary unmodified GA
evolution of noise free Rule22, (b) Multi-objective GA evolution with subpopulations of
noise free Rule22

2. The noisy cases p = 0.1 and p = 0.2
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The dash line is the evolution of the number of items of the chromosome with the best fitness,
the solid line is the evolution of the error of the chromosome with the best fitness.

Figure 5: Multi-objective GA evolution with subpopulations (a) static noise, level p = 0.1
(b) static noise, level p = 0.2

Figure 4 shows the results of identifying a Boolean rule from the pattern generated by
Rule22 without noise. Figure 4 (a) illustrates the convergence of the error and the number
of items in the Boolean expression obtained through an ordinary unmodified GA search.
The error converges to 0 after 62 generations but the number of items shows no sign of
decreasing further after settling at 10, which from inspection of equation 5 is obviously
a wrong result implying an incorrectly extended neighbourhood. The multi-objective
evolution in Figure 4 (b) produces a more promising result with the structure diminishing
after the error has settled to zero. Furthermore, in Figure 4 (b) the error convergence, the
error settles to zero after 20 generations, is considerably faster than in Figure 4 (a) where
the error converges to zero after 62 generations because subpopulations are incorporated
to accelerate the convergence. The Boolean rules produced by Figure 4 (a) and (b) after
120 generations are shown below.

The rule from Figure 4 (a) was

s(7;t) = s(j—1;t—1)XORs(j;t —1)XORs(5 + 1;t —1)XOR(s(j —1;t —1)AND
(

s(7+1;t —1))XOR(s(j — 1;t —1)ANDs(j;t —1)ANDs(7 + 2;t — 1)) XOR

(s(j —1;t—=1)ANDs(j + 1;t —1)ANDs(j —2;t — 1)) XOR(s(j — 1;t —1)AND

s(j + 1;t — 1)ANDs(j + 2t — 1))XOR(s(j — 1;t — 1)ANDs(j; ¢ — 1)AND
s(+1;t —1)ANDs(j — 2;t — 1)) XOR(s(j — 1;t —1)ANDs(j;t — 1)AND

(j— 2t —1)ANDs(j + 2t — 1))XOR(s(j — 1;t — 1)ANDs(j + 1;t — 1)AND
s(7—2;t —1)ANDs(j +2;t — 1))

S

and the rule from Figure 4 (b) was

s(4it) = s(j—1;t—1)XORs(j;t — 1)XORs(j + 1;t — 1)XOR(s(j — 1;t — 1)AND
s(jit —1)ANDs(j + 1;t — 1))




Although the result from Figure 4 (a) produces the same truth table as the result
from Figure 4 (b), the neighbourhood structure of the former is wrong since the iden-
tified Boolean rule covers the 5-site neighbourhood {cell(j — 2;t — 1),cell(y — 1;¢ —
1), cell(j5t—1),cell(3+1;t — 1), cell(5+2;t — 1)} while the actual neighbourhood should
be {cell(j—1;t—1),cell(j;t —1),cell(j+1;t —1)}. The reason lies in the unmodified GA
search which selects the rule with the minimum error without considering the structure
of the neighbourhood, the second objective. The result from Figure 4 (b) was obtained
using a GA search which took into account the second objective, and this produced a rule
structure exactly the same as listed in [10] with a correct neighbourhood and a parsimo-
nious Boolean expression.

Figures 5 shows the GA evolution obtained by searching for Rule22 with static noise
density p = 0.1 and p = 0.2 respectively. Although the error in both cases does not con-
verge to zero, due to the randomly flipping of some cell values, correct and parsimonious
Boolean expressions were still obtained as

s(7;t) = s(7—1;t—=1)XORs(j;t —1)XORs(j + 1;t — 1) XOR(s(3 — 1;t —1)AND
s(7;t—1)ANDs(5 + 1;t—1))

for both p = 0.1 and p = 0.2. These results suggest that the GA search is not sensitive
to static noise when the noise density is within a certain amplitude, in this case, p < 0.2.

4.2.2 Patterns corrupted by dynamic noise

While static noise is added to the CA patterns after the evolution, dynamic noise is imme-
diately involved in the development and tends to induce much more complicated behavior
changes. Ideally, an identification procedure should be designed to remain insensitive to
these disturbances and to recover the underlying rule. Figure 6 shows the results of a GA
search for the appropriate CA rule using data generated in the transition from Rulel84
to Rule60 as shown in Figure 3.

In Figure 6 (a) for p = 0 the search result produces a parsimonious Boolean expression of
Rulel84:

s(7;t) = s(j—1;¢—1)XOR(s(j —1;t —1)ANDs(j;t — 1))
XOR(s(j;t —1)ANDs(7 + 1;t —1)).

In Figure 6 (b) p = 0.1 the result is

s(5;t) = s(j—1;t—1)XOR(s(j — 1;t — 1)ANDs(j:t — 1)) XOR(s(5;t — 1)
ANDs(j + 1;t —1)XOR(s(j;t —1)ANDs(j;t = 1)ANDs(j + 1;t — 1))

which generates the rule components (0001110). Notice that the last bit in the rule
components (00011101) is incorrect. The reason for this appears to lie in the nature of
the rule itself. Rules which produce simple patterns of self-repetition or shifting imply
that a certain number of combinations of the states of the cells within the neighbourhood
will probably never appear in the existing data set. Hence the GA is unlikely to learn
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that particular behavior and most probably indiscriminately selects a rule from a range of
rules only satisfying other combinations. For Rulel84 even though the evolution is slightly
complicated and the data set sampled from the noise free pattern is rich enough to produce
the correct rule component (00011101), the combination of the states of the cells within
the neighbourhood (111) which corresponds to the last component appears infrequently
and the noise simplifies the data set by eliminating (111). Consequently the GA fails to
learn the behavior of (111) and hence produces a wrong result. A similar phenomena
applies to other simple 1-D rules such as Ruled46, Rulell6, Rule72 and Rulel72. The GA
search may repeatedly produce incorrect rules even after the ddta size has been enlarged.
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The dash line is the evolution of the number of items of the chromosome with the best fitness,
the solid line is the evolution of the error of the chromosome with the best fitness.

Figure 6: GA search of CA rules in transition induced by dynamic noise (a) GA evolution
of the rule transition from Rulel84 to Rule60 with dynamic noise p = 0 (b) GA evolution
of the rule transition from Rulel84 to Rule60 with dynamic noise p = 0.1 (¢) GA evolution
of the rule transition from Rulel84 to Rule60 with dynamic noise p = 0.65 (d) GA
evolution of the rule transition from Rulel84 to Rule60 with dynamic noise p = 0.8 (e)
GA evolution of the rule transition from Rulel34 to Rule60 with dynamic noise p =1

However for Figure 6 (d) p = 0.8 where the noise density is 1 — 0.8 = 0.2 for the rule
transition, the search result is

14




s(7;t) = s(1— Lt —1)XOR(s(j;t — 1),

which is correct and parsimonious even though the noise level is 10 percent higher than
in (b), where the noise level is 0.1 for the rule transition. This appears to be due to the
chaotic nature of Rule60 which is able to generate patterns complicated enough so that
even after the patterns are contaminated by a relatively high density of noise the data set
still contains sufficient information to correctly characterize the behavior. When p = 1,
Figure 6 (e), the result is simply a Boolean expression of Rule60

s(7;t) = s(j — 1;t — 1)XORs(j;t — 1).
Notice that for Figure 6 (c¢) p = 0.65, the GA search also converged to the correct result
s(j;t) = s(j — 1;¢t — 1) XOR(s(5;t — 1)

despite the high noise density of 35 percent.

4.3 Extracting Boolean rules from 2-D CA patterns

Figure 7 shows patterns formed by the evolution of a two-dimensional cellular automaton
with a 5-site von Neumann neighbourhood from a simple seed. The patterns are formed
on a 60 x 60 lattice with a periodic boundary. Each frame shows the two-dimensional
configuration generated by the evolution of the cellular automaton after the indicated
number of time steps. The seed consists of a single nonzero site as illustrated in Figure 7
(a). The growth of cellular automata from such initial conditions should provide models
- for a variety of physical and other phenomena. One example is crystal growth [11].

Figure 7: Evolution of a 2-D CA rule with 5-site von Neumann neighbourhood

4.3.1 Identification of a noise free 2-D CA

Assume the neighbourhood structure of the two-dimensional CA which produced the
spatio-temporal patterns in Figure 7 is {cell(z,7—1;t —1),cell(z,j;t — 1), cell(i, 7+ 1;t —
),cell(i—1,7 —1;t — 1),cell(i — 1,75t — 1),cell(i — 1,7 + 1;t — 1),cell(s + 1,5 — 1;t —
1),cell(i + 1,5;t — 1),cell(z + 1,7 + 1;¢t — 1)}, the Moore neighbourhood. The multi-
objective GA identification technique of Section 3 was then used to produce the results
illustrated in Figure 8 (a).
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The dash line is the evolution of the number of items of the chromosome with the best fitness,
the solid line is the evolution of the error of the chromosome with the best fitness.

Figure 8: (a) GA search of the Boolean rule for a noise free 2-D CA (b) GA evolution of
the rule transition from rulel to rule2 with p = 0.8

The search result after 800 generations contained 20 items in the Boolean expression of
the form

s(1,7;t) = s(i,7 —1;t —1)XORs(1,7;t — 1)XORs(4,j + 1;t — 1) XORs(z — 1,5;t — 1)
XOR(s(:+1,7;t —1)ANDs(i,7 +1;t — 1)) XOR(s(%,5 — 15t — 1)
ANDs(i,7;t — 1)) XOR(s(1,7 — 1;t — 1)ANDs(i,7 + 1;¢t — 1))
XOR(s(i,j — 1;t — 1)ANDs(i +1,7; — 1)) XOR(3(i, ;t — 1)
ANDs(i,7+1;t —1))XOR(s(i + 1,7;t — 1)ANDs(z,5 — 1;t — 1)
ANDs(i,j;t ))XOR( s(t+1,7;t—1)ANDs(1,7 — 1;¢ = 1)
ANDs(1,7+1;t—1))XOR(s(: + 1,5;t — 1)ANDs(z,5;t — 1)
ANDs(1,7+1;t —1))XOR(s(i +1,5;t — 1)ANDs(3,5;t — 1)
ANDs(i—1,7;t —1))XOR(s(: +1,7;t —=1)ANDs(s,5 + 1;t — 1)
ANDs(i —1,5;t— 1)) XOR(s(i,j — 1;t —1)ANDs(3,5;t — 1)
ANDs(i,7 +1;t —1))XOR(s(i,5;t —1)ANDs(i,5 + 1;t — 1)
ANDs(z —1,5;t —1))XOR(s(i + 1,7;t — 1)ANDs(i,5 — 1;t — 1)
ANDs(i,j;t —1))ANDs(i,7 + 1;t — 1)) XOR(s(z + 1,75t — 1)
ANDs(i,7—1;t —1)ANDs(1,j + 1;t — 1)ANDs(i — 1,75t — 1))
XOR(s(z + 1,7;t —1)ANDs(i,5;t = 1)ANDs(z,5 + 1;t — 1)
ANDs(i—1,5;t—1))XOR(s(i + 1,5;t — 1)ANDs(4,5 — 1;t — 1)
ANDs(i,5;t —1))ANDs(i,7 + 1;t —1)ANDs(i — 1,55t — 1))

It can be seen that this two-dimensional rule covers a 5-site von Neumann neighbourhood
{cell(i,j—1;t—=1),cell(i,j;t—1),cell(i,j+1;t = 1), cell(i—1,7;t —1), cell(i+1,5;t — 1)},
which has been extracted from the assumed 9-site Moore neighbourhood. The rule table
produced by the identified Boolean function is also correct. However as Figure 8 (a)
shows the convergence of the error is much slower than in the one-dimensional noise free
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case, 100 compared to 20 generations. This is because the growth of the size of the
neighbourhood will inevitably induce a considerable increase in the possible items which
can be included in the Boolean expression and therefore an increase in the number of bits
in each chromosome.

4.3.2 Identification of a 2-D CA corrupted by dynamic noise

To demonstrate the impact of noise on the GA search, data obtained from patterns in
Figure 9 was used for the identification. Figure 9 shows the spatio-temporal patterns
generated by the transition from a 2-D 5-site rulel, shown in Figure 7, to another 2-D
5-site rule2 when p = 0.8. For simplicity, the transition table in not illustrated in the
paper. In comparison with the patterns produced by the evolution of rulel in Figure 7
where p = 1, it can be observed that the dynamic noise has had substantial impact on
the growing patterns. The growth of patterns in Figure 9 is 100 percent faster than the
growth in Figure 7 due to the noise.

@ &) @)
t=50 t=60 =70

Figure 9: Transition from 2-D CA rulel to rule2 with p = 0.8

The search result is shown in Figure 8 (b). Although the data are contaminated by a
dynamic noise with density 1 — 0.8 = 0.2 for the rule transition and the error does not
converge to zero, the Boolean rule obtained is still the same as extracted in the noise free
case. This suggests that the GA search method is robust in the presence of dynamic noise
even for the two-dimensional case.

5 Conclusions

A solution to the inverse problem in cellular automata has been proposed using a multi-
objective evolutionary algorithm. Both one- and two-dimensional CA’s have been inves-
tigated and it has been shown that the CA rule, in the form of a parsimonious Boolean
expression, can be identified by carefully formulating the GA search procedure. The sim-
ulation results illustrate the efficiency of the new algorithm and demonstrate that the
correct neighbourhood and CA rule can be determined in the presence of both static and
dynamic noise.
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