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Input Features’ Impact on Fuzzy Decision Processes

Rosaria Silipo Member, IEEEand Michael R. BertholdViember, IEEE

Abstract—Many real-world applications have very high di- Other examples of big size databases are also available in the
mensionality and require very complex decision borders. In this automatic speech recognition research field. The OGI Corpus
case, the number of fuzzy rules can proliferate, and the easy [3] ysed in this study, for example, consists of responses to
el of fzey Mol can plogtesiel dsappeat v prompts Spoken over commercial elephone fines by speakers

; i i f English, Farsi (Persian), French, German, Hindi, Japanese
of the effectiveness of the input features on the decision process. In© ' ' ; J A h -h J
this paper, we present a method that quantifies the discriminative Korean, Mandarin Chinese, Spanish, Tamil, and Viethamese. It
power of the input features in a fuzzy model. The separability contains a total of 1927 calls: an average of 175 calls per lan-
among all the rules of the fuzzy model produces a measure of the guage. Current systems for automatic speech recognition de-
information available in the system. Such measure of information rjve petween 150-250 input features from the original signal

is calculated to characterize the system before and after each 5 gystems are being developed with an even higher number
input feature is used for classification. The resulting information -
of input features [4].

gain quantifies the discriminative power of that input feature. . . L . .
The comparison among the information gains of the different ~ Despite the efforts in this direction, the collection of more

input features can yield better insights into the selected fuzzy signals from different sources or the extraction of more input
classification strategy, even for very high-dimensional cases, and features does not always grant a better performance of further
can lead to a possible reduction of the input space dimension. gnalysis procedures. If the newly introduced variables do not
Several artificial and real-world data analysis scenarios are .5ny aqditional information, the system’s performance cannot
reported as examples in order to illustrate the characteristics and . . .

improve. Moreover, the analysis procedure itself becomes more

potentialities of the proposed method. . L , .
complicated, and insights about the system’s underlying struc-
Index Terms—Discriminitive power, feature importance, fuzzy tyre hecome more difficult to achieve.

models, information gain. The interpretability of the decision process represents a key
topic in modern data analysis scenarios and corresponds to the

|. INTRODUCTION transparency of the model built to implement a given task. For

» . example, if, in a given context, a data analysis technique does
A. Interpretability of Decision Process not show as good performance as other methods but offers a

N THE last several years, it has become increasingfgore informative representation of the underlying phenomenon

common to collect and store large amounts of data frogmd/or a clearer interpretation of the decision process, such a
different sources, as described in [1, Ch. 1]. As a consequeri&shnique may represent a better decision support tool for the
databases with higher dimension and bigger size have bégr than a technique that offers numerically superior perfor-
obtained. In this paper, we deal with two typical research aregance but is harder to interpret. -
where big high-dimensional databases have been developedin important part of the interpretation of a decision process
the analysis of medical signals and the automatic spedi@$ in the assessment of the influence of its input features on
recognition problem. the final decision, that is, on the assessment of how much the

The recording of electrocardiographic (ECG) signals, fdmplemt_anted model relies on a given input feature to perform
example, moved to 24-hr and 12-lead just a few years ago. IR¢ desired task. _ _ _
the same time, the number of features extracted from each EC@/Uch work has been done in the area of discovering feature
record increased as well [2]. These days, the current tendeHBportance, mainly under the umbrella of feature selection. The
in medical databases is to collect heterogeneous data frBiASt commonly used methods stem from the area of proba-
many physiological sources and for long time periods. A Ve,tg)llsnc decision trees, particularly ID3 [5] and its continuous
typical example for this new kind of data is the Apnea-ECGXte”S'O” C4.5 [6]. Following the theory of entropy maximiza-
Database, which is downloadable from the PhysioNet wdign in probabilistic decision trees, some merit measures have
site (http://www.physionet.org/). This database consists Bfen defined onthe basis of a statistical model of the system [1,
70 records. Each record is typically 8 hr long and contairteh- 31, [7]. The estimation of the involved probabilities, how-

simultaneously recorded ECG and respiration signals. ever, requires a precise definition of the input parameters and
a clear identification of the output classes. In many real-world
applications, an inaccurate description of the input parameters
and doubtful members of the output classes unavoidably alter
2Pk event frequencies used for probability estimation. In addi-
R. Silipo is with the International Computer Science Institute (ICSIion, the estimation of a probabilistic model may be computa-
Berkeley, CA 94704-1198 USA (e-mail: rosaria@icsi.berkeley.edu). tionally expensive for high-dimensional input spaces.
M. R. Berthold is with the Berkeley Initiative in Soft Computing ; ;
(BISC), University of California, Berkeley, CA 94720 USA (e-mail:. Recentlyf .many data anaIySIS t.eChmqueS make use of the ?asy
berthold@cs.berkeley.edu). interpretability and low computational expenses of fuzzy logic,

3. such as fuzzy rules induction, fuzzy decision trees, etc. [1, Ch.
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8]. The concept of fuzzy sets was introduced in [8] with the pumput feature, according to the analyzed fuzzy model. Unlike
pose of a more efficient, although less detailed, description thie greedy behavior of the probabilistic decision tree algorithms,
real-world events, by allowing an appropriate amount of uncahis method investigates the cuts on each input feature—not one
tainty into the data description. A number of simple and conafter the other but all together in parallel—which enables it to
putationally inexpensive methods are now available to automdiird also nonbinary splits.
cally construct a model from a set of training examples [9]-[11]. Theoretically, both positive and negative information gains
For example, a fuzzy extension to ID3, which requires predare possible. In the first case, the input feature has a positive im-
fined granulation on all input features, was proposed in [12]. pact on the decision process. In the second case, the input feature
If the particular problem does not require very complex decivorsens the system’s performance. In practice, if a sufficient
sion borders among the output classes, fuzzy models produa@@ount of data is available, the classification method should
reasonable amount of fuzzy rules that offer sufficiently reliablearn to neglect the unreliable input features. Thus, only positive
performances and, for a low-dimensional input space, are ret-zero information gains can be obtained. Because of machine
atively easy to interpret. Many real-world applications preseptecision errors and of the imperfections of the learning proce-
very high-dimensional input spaces and require very compldyre, some negative close-to-zero information gains might arise.
decision borders. Because of that, the number of fuzzy rulBscause of their low absolute values, in the following analysis,
can proliferate, and the easy interpretability of fuzzy models care will ignore negative information gains and report them to
progressively disappear. In this case, the introduction of an aero.
tomatic description of some of the characteristics of the fuzzy Due to the low computational expenses derived from the use

model would improve its interpretability to the user. of fuzzy models, the proposed information gain generates a
simple and efficient algorithm to measure the contribution of
B. Input Features’ Impact on Fuzzy Models each input feature to the discrimination among output classes

One important characteristic that describes the implementédhe considered fuzzy model. This allows better insights into
fuzzy model consists of the impact of the input features dhe fuzzy classification strategy, especially for very high-di-
the final decision process. The goal of this work is to defin@ensional input spaces and, consequently, a possible reduction
a strategy to automatically quantify the influence of the inp@f the input dimension.
features on the fuzzy model. Such influence could be measured he structure of the paper is the following. After describing
by estimating and comparing the information contained in tfiée need of interpretable decision processes in Section I-A, we
fuzzy model before and after using that input feature for tHustrate the goal of the paper and the general idea of the method
analysis. In information theory, the information associated wifA Section I-B. In Section II, we define how to measure the in-
a given event is measured by means of its entropy. Dealing wigimation contained in the fuzzy model. Then, in Section Ill, we
fuzzy models, the concept of fuzzy entropy [9]-[14] could bese this measure of information to characterize the system be-
used for the same purpose. fore and after a given input feature is used for classification. The

Based on fuzzy set theory, fuzzy entropy has been defing&sulting information gain is described in Section I1I-B. In Sec-
to measure the degree of fuzziness/uncertainty of the mo#ien IV, some artificial data are analyzed to show the potentiality
in fitting the desired input/output mapping with respect to thef the proposed method. Finally, in Section V, three real-world
training examples [9]-[11], [13], [14]. Such a measure of infol@pplications are investigated. The first one (Section V-A) uses
mation can be computationally expensive and time consumitig IRIS database, which represents a common platform for the
if very large data sets are used. Moreover, it would characterg¢éaluation of machine learning algorithms. The second appli-
the input features in terms of the faithfulness of the model to ti§ation deals with the automatic detection of prosodic stress in
training examples and would fail to give a description of thefPpoken American English (Section V-B) and tries to rank the
discriminative power in separating the output classes. most commonly used input features in terms of impact on the de-

The method proposed in this paper investigates only thEsion process. The lastreal-world application (Section V-C) in-
fuzzy model, which is, in general, a mere summary of théestigates whether removing ECG measures with low informa-
training examples. Indeed, if the training set contains a suffion gains improves the performance of a fuzzy system trained
cient number of examples—that is, if the resulting fuzzy mod® discriminate among different kinds of arrhythmic beats. Sec-
is sufficiently general and accurate—an analgsisterioriof ~ tion VI concludes the paper.
the fuzzy model’s characteristics will reflect information about
the input space. In addition, by concentrating only on the fuzzy Il. FuzzY INFORMATION MEASURES
model, the corresponding analysis will be computationally . .
easier and faster. Fuzzy models represent a particular version of rule sets,

Thus, the information available in the fuzzy model is deriven€re some uncertainty ofuzzinessis allowed, so that
solely on the basis of its fuzzy rules. The original fuzzy model & 9iven input pattern#, which is composed of features
splitinto a certain number of fuzzy submodels, according to te: = **» %, ***» Zn, belongs up to a given degremg¢mber-
linguistic values of the given input feature, and the average ipRiP degrepto a certain output class; (1 < ¢ < m) [8]. Thus,
formation contained in these fuzzy submodels is compared witte set of rules implementing this kind of input/output mapping
the information in the original fuzzy model. The resulting inforconsists of a set of membership functiong, () € [0, 1]
mation gain quantifies the information extracted from the mod#lat associate input patteito output class”; by means of
after using this input feature for the analysis and characterizeembership degreec, ().
its discriminative power inside the model. The input dimension Given a numberm of output classe€’; and ans-dimensional
with highest information gain defines the most discriminativeput space, numerous algorithms exist, which derive a set of
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Fig. 1. (a) Example of a two-class fuzzy model on a 2-D input space. (b) and (c) Submodels generated by cutting the original fuzzy model in (a) along input
feature (b)z2 and (c)x; .

Ng fuzzy rules{R;}, k =1, -- -, Ng, mapping the:-dimen- the impact of membership functiqry, () on the final decision
sional input into then-dimensional output space. In particularprocess without taking into account the training examples from
we used the fuzzy clustering algorithm proposed in [18]. Thighich p., (¥) originates.
algorithm adapts existing fuzzy rules to new input patterns andin order to quantify the information contained in the whole
introduces new rules when necessary. The algorithm is guaragt of fuzzy rules Ry}, all average membership degrees from
teed to converge, and an upper bound on the number of the ggje- different membership functions should be considered at
erated rules can also be introduced [18]. In Fig. 1(a), an exampie same time. The goal of this section is to associate different
is reported with a 2-D input spade, =}, two output classes configurations of average membership degrees to fuzzy models
C1, andC; and with trapezoids as membership functions.  with different informative contents. In particular, some math-
ematical operator could be applied W(C;) to distinguish
A. AverageMembership Degree between fuzzy models with only membership functions of one

Membership functionic. () quantifies the degree of mem-¢lass (no information) from fuzzy models with membership

bership of input pattersi to output clas€’;.. The quantityy’ (C;) functions of a high number of output classes (high information).

in (1) represents tl‘m/erage degree mﬁembershilmf input pat- In information theory, a number of fUnCtionS, such as the en-
ternsz to output clas€’; over the whole domai) C R™. tropy or the Gini function, have been established in the past to

play this role in a probabilistic context [7], [15]. However, they

= dE cannot be applied straightforward to the average membership
/DLR”“CZ' () dz degreeV (C;) because of the requirement that the object vari-
V(G = o (1) able sums up ter1 across then output classe§’;. Unlike for
/DcRn dz. probability, this is not necessarily true for the average member-

ship degree¥ (C;), due to the nonnormalized nature of fuzzy

Considering normalized membership functions, a high&gets.
average membership degree to cl&gs V(C;) indicates a A solution to this problem consists of using thedative av-
more uniformly distributed class over the input space. Aeragemembership degrdeee (2)]v(C;) to output clas”; in-
output class represented by a membership function that takésad of the average membership dedré€’;) [16]:
value +1 everywhere on the input domain has average mem-
bership degree-1. A membership function with average value V(C)
V(C;) = 0 indicates an output class that is never related with v(C) = ———. (2)
any pattern of the input domaiP. This average membership ZV(CJ)

=1

degreeV(C;) [see (1)] represents a first rough description of



The variablev(C;), with ¢ = 1, ---, m, now sums up to  If the usual trapezoids are adopted as membership functions,
+1 across the output classes, and the traditional informatitme average membership degree to each fuzzy sufisdte-
functions can be applied. comes particularly simple to calculate [17], as shown in (8),

In general, anumbep; > 1 of membership functions is nec-whereh? is the trapezoid height, ar{d?, gi, . d:?) are the co-
essary to represent each output clds€Each one of these mem-ordinate vectors of its vertices in thedimensional input space.
bership functions is related to an output regith and, there- . .
fore, will be indicated ag{. (Z). Thus, the average membership ~ V(C{) =V (@}, b}, &, 4;))

degree to clas€’; corresponds to the average membership de-

gree to the union of the corresponding output regi6fis % H(dji —aj;) + H(cji — b)) | he

The average membership degree to the union and the inter- j=1 j=1
section of fuzzy sets derives straightforward from the usual = _ (8)
min/max-definitions of intersection and union of fuzzy sets /DcRn dz

[17]. In particular, the average membership degree to the union
of two fuzzy set<C" andC? can be derived as the sum of the _
average membership degrees to the two fuzzy sets alone, taldag-uzzy Information Measures

into account their intersection only once [see (3) and (4)]. As we have already described in the previous subsection, we
could take the quantity(C;) as the basic unit to quantify the
/ perncs (Z) d¥ information available in a fuzzy model. The quantyC; ) rep-
V(CINGs) = DCR» resents the average membership degree of the input patterns to
/ dz output class”; relatively to all the other output classes and is
DCR™ calculated as in (2) according to the fuzzy rules used to model
/ min,. , {uE(f), lfc-(f)} Az the input/output mapping. With respect toqprobabilistic model,
_ Jpcre ’ ! ! 3) _the use of the relatlve_ average membershlp_degféle) takes
/ dz into account the possible occurrence of multiple classes for any
DCRT input patternt, and its calculation is generally easier than the
L estimation of a probability function.
/ __ Hcorucy (%) dz As in the traditional information theory, the goal is to produce
V(Cru ) ==P<Re an information measure [1, Ch. 3], that is
/Dcﬂn d 1) at its maximum if all the output classes are equally pos-

sible in average on the input spabeC R, i.e.,v(C;) =

/ max,, s { g (L), pg, (L)} dz (1/m) fori =1, ---, m, m being the number of output
— JIDCR? classes;
/ dz 2) at its minimum if only one output clags; exists, i. €. in
] DcCR» casev(C;) # 0 andu(C;) = 0 for j # 4;
=V(C))+V(C7) = V(O nCY). (4)  3) a symmetric function of its arguments because the domi-

—

fth bership f - 4 () d nance of one class over the others in terms of relative av-
If the two membership functiona. (%) and u¢, (%) do not erage membership degree must produce the same amount
overlap, thatisy z: min,. s{pg. (%), ug, (¥)} = 0, the expres-

| | ; of information, independently of which the favorite class
sions in (3) and (4) become is.
- o In order to produce a measure of the global informafigfi)
V(C’l ney) =0 ) ®) of the fuzzy model with output spaeg = {C1, ---, C,,,}, the
V(CTuCy) =V(C]) + V(). (6) traditional functions employed in information theory—as the
entropy function/ i (C) [see (9)] and the Gini functiof; (C)

This result can be extended to a numtigrof membership see (10)] [1, Ch. 3], [7]—can be applied to the relative average
functions by expressing the average membership degreerﬁ@mbership degreegC;) of the output classes as
their union as the sum of their average membership degrees

and taking care of including their intersection only once. m
11(C) ==Y v(C;) logy(v(Ch)) ©

=1

Q;
re=y <L:J C) 6(C) =1~ 3" (u(Co)? (10)
[ i @)} i
DCR™

=1

and the following conditions still hold.

/ Az 1) If, in the considered fuzzy model, all output classes have
DCRn similar relative average degree of membership, then the

Qi Qi information function is at its maximum.
=Y vehH - > v(cinct)|. (1) 2) Ifonlyone class exists, then the uncertainty is at its min-
g=1 h=g+1 imum and so is the information function.



3) The dominance of one class over the othefs’f) > él , C,

v(Cy), § # ©) produces the same amount of information, ;
independent of which one is the favorite class. That is, the 1+ ;
defined information functions of variablg C;) [see (9) He ; He
and (10)] are symmetric. 0 1 i 2
In both cases, the entropy and Gini functidif€”) represent x* X

the information intrinsically available in the fuzzy model. The _ _ _ _

classification process aims to extract such information for thé: 'g. 2. Fuzzy representation of a 1-D input space with two output classes.
user’s needs. Not all the input features, however, are effectivef id q q bership f . £ th
the same way in extracting and representing this informatio .I trapego; share a oplteh ash”;g”l; ership unctlons_ of the
The goal of this paper is to make explicit the dimension of tHgZZY model, the optimal threshold between two contiguous

input space that is the most effective in recovering the intringi@Pe20ids o_f d|fferen-t output c.Ias.ses IS assumed to-be located
information(C) contained in the fuzzy model. 1) at the intersection of their sides if the trapezoids overlap

only on the sides;
2) inthe middle point of the overlapping flat regions# 1,
) ) ) which are also calledore) if the trapezoids overlap in the
A fuzzy merit measure of an input featurg should describe flat regions:

the information gain associated with the usezgfin @ given 3y in the middle point between the two trapezoids if they do
fuzzy analysis. In particular, such information gain can be not overlap anywhere.
_express_ed as the rela_tive difference between the intrinSiGThe definition of a set of thresholds based on the risk
information ava|la_ble_ in the system beford—éQ)—anql minimization approach is typical of the statistical classification
after—I (C'|z;)—usinginput featurez; for the fuzzy analysis g aiegies. In a fuzzy context, input may belong to both
[7]. In the following, we define vyhat the.use of cprresponds output classe; and Cy. To be fully in line with the fuzzy
to anq how to measure the |nformat|'on left in the Sysu_amassification strategy, a different threshold system should be
after Input featurex; has been_ exploited for the analys'%eveloped that takes into account the attribution of patiern
(Sections Ill-A and llI-B, respectively). to multiple classes. However, such a system would be more
complex and computationally expensive than the one based
on the risk minimization approach. In addition, in this paper,
Let us suppose that input spage C R™ is related to the we identify the effectiveness of a given input feature with the
output classes by means of a numbgf of membership func- separability of the output classes along its dimension, which

Ill. Fuzzy FEATURE MERIT MEASURES

A. Key Points on Input Dimensiory

tions u¢ (#) with ¢ = 1, ---, Q; membership functions for is well represented by the risk minimization-based threshold
each output class’;, = 1, ---, m output classes, anllg = system. Thus, we retained the set of thresholds defined in this
> Qi fuzzy rules. section for the quantification of the input features’ impact

The use of input feature; for classification purposes cor-pecause it is a sufficiently accurate and leads to an algorithm
responds to the definition of an appropriate set of thresholgéth lower computational load. These thresholds are used
alongz; that allows the best separation of the input data inignly to quantify the separability of the output classes along a
the output classes. From a risk minimization point of view, thgiven input dimension in the definition of the fuzzy feature
optimal classification thresholds on a given input dimensipn merit measure. We adopted the traditional fuzzy classification
are located at the intersection points of contiguous memberskigategy that allows each input pattern to belong to more output
functions of different output classes. classes at the same time to test the fuzzy models.

Let us restrict our analysis to a 1-D problem. In Fig. 2, an
example with two output classes on a 1-D spads reported. B. Information Gain

Let us choose a discrimination thresholdto separate class,  Tne discrimination of the output classes along input feature
from classCh. Everyz < 2™ is labeled ag’; and everyr > @™ . jeads to the definition of a set of optimal cuts that separate
asCs. Letus call the two labeling regiors apdCQ. The g'lobgl the F; < N contiguous trapezoids on this input dimension,

degree of falsenes#7 of the adopted labeling system is giverygs giscussed in the section above. After introducing the upper

—

by the area ofic, (¥) in regionCh, where &C; label isimposed and jower boundary of,;’s range in this set of optimal cuts, a

and by the area ofic, (¥) in regionC', where aC\ label is  nymber of linguistic values,, (k = 1, - - -, F;) can be defined
imposed, as expressed in for input featurez; as the intervals between two consecutive
cuts.
F= /c fic, () dz +/C pic, () dx. 11) Let us concentrate on ong’s linguistic valueL;. per time.

To consider:; = L; corresponds to the isolation of one stripe
The optimal classification threshole refers to the minimum of the input space where; falls into linguistic valueLy. In
degree of falseness of the whole classification processthis stripez; = L, new membership functions{a_ (x; = L)
that is, to the minimum intersection volumgs:, N C, and are derived as intersections of the original membership func-
ey N C.. After minimizing (11), the optimal thresholg* is tions /ﬁa_ (&) with the stripe derived fromx; = L,. Based on
found at the intersection point of the two membership functioisese new membership functiopgi (x; = Ly), the informa-
¥ pey (%) = pe, (). tion contained in this stripe can be measuféd|z; = Ly ), as



expressed in (12) and (13) according to the information func- TABLE |
tions in (9) and (10) respectively AVERAGE MEMBERSHIPDEGREES AND THEINFORMATION MEASURES FOR THE
! ’ 2-D EXAMPLE IN FIG. 1

Ig(Clz;, = L) =
rCles = La) G G | In©)] 10
= 0(Cilej = Li)logy(v(Cilz; = L)) (12) VIC) =130 | V(G) =126 | (99 | 049
=1 m ‘U(Cl) =0.51 ‘U(Cz) =0.49
I6(Clej = Li) =1 =Y (o(Cile; = Ly))? (13)
i=1 TABLE I
. I(C|z;) AND g(C|x;) FOR THEEXAMPLE IN FIG. 1
with
V(Ci|lz; = Ly, = = = =
U(CZ|.TJ — Lk) — - ( |-Tj k) (14) b7 S I L ) Y X9 o]

V(Ci|z) = 0.53 | V(Ci|z1) = 13.0 | V(Ci|z2) = 13.0 | V(Ci]z2) = 0.00
V(Cz|z) = 12.6 | V(Calzy) = 0.53 | V(Calza) = 0.00 | V(Ca|z,) =12.6
v(Ci|z1) = 0.04 | v(Cy|z1) =0.96 | v(Cilzz) =1.0 | v(Cy|ze) =0.00
Cal|z1) = 0.96 | v(Calz1) = 0.04 | v(Ca|z2) =0.00 | v(Ca|z2) =1.0

ZV(C}L|‘TJ = Lk)

h=1

I(Clz; = Ly) measures the information still available in the
stripe extracted from the original fuzzy model under the cond o

tion thatz; falls inside linguistic value.,. The average mea- Ig(Clzy) =0.24 I5(Clz») = 0.00
sure of the information contained in all stripgs = L; for I(Clzy) = 0.07 I6(Cz2) = 0.00
k=1,---, F; [see (15)] represents the measure of the infol 91 (Clz) = 0.76 9r(Clz) = 1.0
mation still available in average in the fuzzy model after inptL 96(Clazy) = 0.84 96(Clzz) = 1.0
featurex; has been exploited for the fuzzy analys{g’|z ;).
F.
N : o is, the analysis on dimensian should offer a higher gainin in-
HClws) = r; ZI(CM = L)- (15) formation than the analysis on dimensien

J p—
h=t To verify this hypothesis, the average information still avail-

The relative difference, as expressed in (16), between . iy the systend(C|z1) andI(Clx») is measured, respec-

measure of the information originally available in average ifi\/ely, after dimension:; andz, have been used for the clas-

the fuzzy model/(C) and the measure of the information stillsiication. These information measures are reported in Table Ii
available after the use of input featurg I(C|x;)

tertt , _ produces the yqgether with the corresponding information gai€|z1 ) and
corresponding information gain.
1C) - I(Cla) 9(Clz2).
_ x

The less effective the input featutg is in the original set
of fuzzy rules, the closer the remaining informatiéfC|z )
is to the original informatiod (C') of the model, resulting in a
lower information gairng(C|xz;) [see (16)]. The input features
producing the highest information gains are the most effecti
in the adopted model to separate the training data and, theref
the most informative for the proposed fuzzy analysis.

Every input parameter;; produces an information gain
¢(C|z,) expressing its effectiveness in performing the required
analysis on the basis of the given fuzzy model. The proposed
information gain can then be adopted as a fuzzy feature meritn this section, we analyze some artificial examples to show

For both choices of (), the entropy, or the Gini function,
the information gain obtained from cutting alomg is smaller
than the one obtained by cutting aloag, that is,g(C|z1) <
g(C|zz) (see Table II), as it was to be expected. This indicates
that the analysis on variable, extracts more of the informa-
tion available in the fuzzy model than the analysis carried out

input featurer; . We could reach the same conclusion using

|x1) > I(C|zz). However, a measure of merit based on the
gainh function produces clearer results than the direct use of the
information parametef(C|z,).

(16)

IV. ARTIFICIAL DATA EXAMPLES

measure. how the information gain defined in Section IlI-B characterizes
the effectiveness of the input features for the required fuzzy
C. Example input/output mapping. For all the examples reported in this

In Fig. 1, an example is shown with a 2-D input space, twetudy, we used the fuzzy clustering algorithm proposed in [18]
output classes, and trapezoids as membership functions.tdrbuild the set of fuzzy rules approximating the classification
Table |, the absolute and relative average membership degrigsk at hand and trapezoids as membership functions.
of the two classes are reported, and based on these values, the
information (C) andI(C) that is intrinsically available in A Fixed Output Classes
the model is measured by means of (9) and (10). The first example refers to a three-dimensional (3-D) problem

The discrimination of the two output classes can now be pewvith four output classes. The projection of such input space on
formed along input dimensiary or along input dimensiom.. a 2-D plane is shown in Fig. 3. Random values are generated for
From Fig. 1, we can easily see that a cut between the two mettme third dimension of all patterns. Fig. 3 shows that a correct
bership functions on dimension, [see Fig. 1(b)] produces a classification of all input data cannot be obtained on the basis
better separation than a cut on dimensigifisee Fig. 1(c)]. That of only one input feature. Both input features andzs seem
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Fig. 3. Two-dimensional projection of a 3-D input space with four outputig- 4. Variation of the input space with four output classes in Fig. 3. The input
classes. The third dimension consists of random values for all output classegpace is 3-D, and its third dimensiog consists of random values for all output

classes.
TABLE Il
INFORMATION MEASURES—I 5 (C), I6(C), I (Clx,), AND TABLE IV
I5(C|x, )—AND INFORMATION GAINS—¢z (Clx, ) AND g (C|z, )—FROM INFORMATION MEASURES—I ('), Ic(C), I (Clz,), AND

THE FuzzY MODEL CONSTRUCTED ON THEINPUT SPACE DESCRIBED INFIG. 3 I(C|x, )—AND INFORMATION GAINS—g¢ 7 (C|2,,) AND g (C|x, )—FROM
THE Fuzzy MODEL CONSTRUCTED ON THEINPUT SPACE DESCRIBED INFIG. 4

In(C) 1.87
16(C) 01 Iu(C) 185

Is(C) 0.70

dimension || = T2 T3
H(C|z,) [ 0.90| 130|185
G(Clz,) | 0.42 | 055 | 0.70
gu(Clz,) || 0.51 | 0.30 { 0.00
9¢(Ciz,) | 0.40 | 0.22 | 0.00

dimension || = 23 3

Iy(Clzy) (| 0.90 | 1.20 | 1.87
Ig(Clzy) 1 0.41 | 0.51 | 0.71
gu(Cl=z,) || 0.52 | 0.36 | 0.00
96(Clzy) || 0.42 | 0.28 | 0.00

to be necessary for this purpose. A fuzzy model is implemented
using these data points as training set. The corresponding inforJ he new information gain values are reported in Table IV.
mation measures and gains are reported in Table Il for evefy'S information gain decreases only slightly and is still the
input dimension. highest. Indeeds; still offers the smallest possibility of confu-
Let us concentrate on the information gain values in Table |§ion among the different output classes in the input space. The
The third dimensionds) contributes to the overall classificationdecreasing ok-’s information gain is also consistent with the
task with an information gain equal to 0.0, as was to be expectéfanges to class,. xs produces a 0.0 information gain because
because of its random values in all four output classes. Howedits random values like in the previous example.
none of the input features has an information gain close to 1.0, )
which means that a complete separability of the output clasdesMoVing Output Classes
is not achievable on any input dimension alone. Input featuresin the previous subsection, we have shown that the proposed
1 andzo present similar values of information gain, showingnformation gain is able to quantify the discriminative power of
that they share the responsibility of a correct classification tife input features in fuzzy models representing artificially pro-
the input space. Input feature, however, has a lower infor- duced data. In this section, we want to assess whether changes
mation gain, due to the fact that only one class can be perfedtiythe separability of the output classes are reflected into corre-
separated from the others alang whereas three output classesponding changes of the information gain.
can be separated along. Thus, the input features with highest Let us start with a configuration in a 2-D input space, where
information gain, both with entropy and Gini function, corretwo output classes are completely separable along one input
spond to those input dimensions potentially producing the maitmension and completely overlapping along the other, as de-
effective cuts among the output classes. scribed in Fig. 5. In the next snapshots, one of the two output
In order to test the strength of the fuzzy information gain palasses,) is progressively shifted along one of the input di-
rameter in quantifying the discriminative power of the input feanensions. The information gain is monitored through time, to
tures, the input space depicted in Fig. 3 was slightly changeddhserve how well the evolution of the input space configuration
Fig. 4 so that clas€’y overlaps with clas€’;, even on ther,  is described.
axis. Therefore, the discriminability of the output classes shouldThe information gains referring to the initial configuration
decrease mainly o, and slightly onz; with respect to the ex- of the input space (see Fig. 5) are reported in the first row of
ample in Fig. 3. Table V. As was to be expected, an information gain close to



a) TABLE V
5 v y g v T T v T EVOLUTION OF THE INFORMATION GAINS BASED ON THE ENTROPY,
gr(Cla,), AND ON THE GINI FUNCTION, g5 (C|z, ), FOR BOTHINPUT
45t 1 FEATURES STARTING WITH THE CONFIGURATION IN FIG. 5 AND SHIFTING
' CLASS C'; TOWARDS CLASS C'; ALONG &y WITH A STEP Az
4 -
Az, | Azp | gu(Clzy) | 9a(Clzy)
c>\<'3.5 B T T2 z1 T2
3F - - | 093 000|097 0.00
+05| - |085 000|091 0.00
25 ¢ i +10| - |0.87 000093 0.00
+15| - |[044 000] 055 0.00
2 i L 1 i I ' I 1
0o 1 2 3 4 5 6 7 8 9 +20| - 1022 000|029 000
x1 +25¢ - |008 000|010 0.00
o5 Twodi onal i " | el +30| - ]0.02 000|003 0.00
ig. 5. Two-dimensional input space with two output classes progressively
overlapping on one input dimension. +3.5 - 0.00 0.00 | 0.00 0.00
+40| - [0.03 0.00]004 0.00
1.0 describes an almost perfect separability of the two output +45] - 1008 000010 000
classes along;, whereas a 0.0 information gain describes the +50 - 020 000026 0.00
complete overlapping of the two output classes alosg +85| - 047 000|058 0.00
At this point, the patterns belonging to class are progres- +60| - (091 000|096 0.00
sively shifted toward class; along ther; -axis with a stepAz 4, +65] - 084 000|091 0.00
whereas theirs coordinate stays constant. The corresponding +70| - |094 000|097 0.00
information gains are reported in the following rows in the upper - | -15]093 099|097 1.00
part of Table V. . _ . - | -10|092 042|096 052
The information gain of input feature; stays very high - | -05|092 007|096 o010
(91(Clz1) = 0.85 — 0.87 and gg(Clz1) = 0.91 — 0.93) as - | 00 logs 000|097 o000
long as the t_wo output classes do not overlap. The two output - | +05 092 007|096 o010
classes begin to overlap fakz; = +1.5, and after that, a
: . L . . - | +10|093 042|096 052
progressive reduction af;'s information gain is observed. The
S . - | +15[092 099|096 1.00
minimum value §x(C|z1) = go(Clx1) = 0.0) is reached for 2 100 | 006 100
Azx; = +3.5, where the two output classes overlap completely - | +20/082 100)0 -

on z; as well. Continuing to shifCC; class’ patterns towards
bigger values of input dimensiony, classC; begins to part
from classC,. Consequently, the separability onbetween the the bottom part of Table \£; shows the same information gain
two output classes increases, as does the information gain, uagiin the initial configuration of the first part of the experiment
values close to 1.0 are re-established, that is\at = +6.0 (Fig. 5).z2 also shows a very high information gain, due to the
when the two output classes do not overlap anymore. complete separability now of the two output classes along

For even bigger shiftaz, the information gain of inputfea-  Progressively increasingz, and moving upwards thé’;
ture z; is supposed to increasingly approach the unitary valugass’ patterns, the corresponding new information gains are cal-
However, atAz; = 46.5, a small decrease in the informationculated and reported in the following rows in the bottom part of
gain is observed, even though the two output classes are maable V. Eveninthis case, the progressive overlapping of the two
separated than fakz; = +6.0. In this case, the adopted fuzzyclasses along, corresponds to a progressive decreasing of the
learning algorithm builds less steep trapezoids than for clogeformation gain for input feature, until the two output classes
output classes because of the nonexistence of conflict pointsnpletely overlapfz, = 0.0) and the minimum information
[18]. When the output classes move farther away, the informgains gy (C|z2) = 0.0 andgs(C|z2) = 0.0) are observed. If
tion gains increase again. Since the distribution of the input patassC; keeps moving upwards, the two output classes begin
terns alonge, has not changed, the information gaingnalso to separate again, anegy’s information gain goes up until a
does not change from the first row of Table V. value close to 1.0 is reached when the two output classes do not

The same experiment is now performed shifting class overlap anymoredz, = +1.5). The described example shows
along input dimension:». A progressive delayhzs is applied clearly the evolution of the information gain with the progres-
to thez, coordinate of the training patterns belonging to outpsive overlapping of the two output classes on input dimension
classCi, wherease; is kept constant. The progressive shifting:; andxs.
of classC starts, this time, with the configuration described in These results show that the proposed fuzzy feature merit mea-
Fig. 5 andAz, = —1.5, that is, with clasg”; located below sure is able to detect the dimension with maximum information
classC, and perfectly separable from that on as well. The content for different configuration of the output classes in the
corresponding information gains are reported in the first row trfaining set. An information gain close to 1.0 is shown on those
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input dimensions where an almost complete discrimination be- TABLE VI

tween the output classes is possible. The more the consider&fORMATION GAINS gy (C'lz, ) AND g(Cl, ) OF THE INPUT FEATURES
IN THE IRIS DATABASE. 21y = SEPAL LENGTH; x5 = SEPAL WIDTH;

output classes overlap on the given input dimension, the closer v = PETAL LENGTH; 74 = PETAL WIDTH

to 0.0 the information gain drops. The fuzziness of the system

does not allow an information gain of 1.0 when the two output I(0) 1z  x3 T4
classes are not overlapping anymore but are still very close to I#(C) = 144 | gn(Clz,) | 010 0.06 0.82 0.81
each other. In fact, the representative membership function can 16(C) = 061 | go(Clzy) | 0.10 006 0.84 0.79

extend beyond the physical boundaries of the output classes due
to their fuzzy nature. Indeed, the membership function slope al- _ .
lows an information gain of 1.0 only when the two output class@§aracter of the input features for the considered set of data. A

are very far from each other. This is due to the inductive bias sfifficient number of examples produces a sufficiently faithful
the used learning technique [18]. model of the data set, and hence, a description of the model

properties reflects a description of the training set characteris-

V. REAL-WORLD APPLICATIONS tics.

The results in the previous section show the effectivenessif Stress Detection in Spoken American English

the proposed fuzzy feature merit measure in characterizing theyosodic stress is an integral component of spoken language,
discriminability of the output classes on different input dime sarticularly for languages such as English that so heavily de-
sions for artificially created data. In this section, real-world dat&ng on this parameter for lexical, syntactic, and semantic dis-

are investigated. ambiguation. Even though it is by now quite generally accepted
[21]-[23] that prosodic stress depends mainly on amplitude, du-
A. IRIS Database ration, and pitch of the vocalic nuclei of syllables in spoken

The first experiment is performed on the IRIS database. THignerican English, the role played by each one of these basic
database is relatively small, and the results cannot be easily ge@rameters is still controversial.
eralized. On the other hand, it is a commonly used databaseln this section, the fuzzy information gain described in Sec-
which enables a comparison with other similar techniques. tion l1l-B is applied to the problem of automatic detection of
The IRIS database contains data for three classes of iris plapit@sodic stress in spoken American English to ascertain the role
(iris setosa, iris virginica, and iris versicolor). The first clasgertaining to each one of these basic parameters for reliable
is linearly separable, whereas the last two classes are not. FH&SS recognition.
iris plants are characterized in terms of sepal length, (sepal The basic parameters, characterizing each vocalic nucleus,

width (z2), petal length £3), and petal width(). are quantified as follows.
In [19], where a detailed description of the plants’ parameters ¢ Duration: Inside a speech file, thdurationof the kth vo-
is produced, the sepal length and sepal widith-andz.—are calic nucleus is the numbé;, of signal samples between

reported to be very similar for all three output classes, i.e., they its onset and end.
do not allow a sufficient discrimination of the three iris classes. « Amplitude: TheamplitudeA, is defined as the root mean
The first two parameters can thus be considered uninformative. square of theD;, signal samples contained in théh vo-

On the opposite, the petal featuress—and z4—characterize calic nucleus.
very well the first class of iris (iris setosa) with respect to the ¢ Average Pitch: The averagepitch P refers to the av-
other two (iris viriginica and iris versicolor). erage value of the fundamental frequerfgyt) inside the

The fuzzy clustering algorithm [18] is trained by using the kth vocalic nucleus. Fundamental frequencjgét) are
whole database as training set. The corresponding information estimated on the basis of the autocorrelation function of
gains for each input feature are calculated and reported in quarter of octave spectral channels, as described in [24].
Table VI. The third and the fourth input parametes @ndzx ) « Pitch Range: The pitch range P, refers to the range of
exhibit very high information gains, whereas andx, show values of the fundamental frequengy(t) inside thekth
almost zero values. These information gain values describe that vocalic nucleus.
the resulting set of fuzzy rules concentrates on input featureDiphthongs, such as “ay,” “oy,” and “er” present a longer du-
x3 and z4 for the discrimination of the three output classesation than plain vowels and, because of that, are divided in two
which is in agreement with that which is described in [19]arts. For the same reason, artificially elongated vowels that are
In [20], a statistical correlation measure of the output classiesger than 250 ms and 400 ms are split into three and five
with the input features is also reported. Parametgrandx, parts, respectively. The maximum value of the evidence variable
have a very high correlation with the output classes, whereasoss all the splits is retained for the analysis. Every speaker
x1 andz, are associated with a much lower correlation valuappears to use vocalic nuclei with different duration, amplitude,
This confirms the hypothesis of a more informative charactaverage pitch, and pitch range. In order to normalize this vari-
of x5 andz4 derived from the fuzzy feature merit measures iance among speakers, those features are expressed in terms of
Table VI. variance units from the mean value of their probabilistic distri-

The proposed fuzzy feature merit measures describe thelwrions inside each utterance [24].
formative character of the input parameters for the consideredlo provide a reference platform for the system’s perfor-
fuzzy model, which in this case agrees with the informativemance, two trained linguists separately hand labeled two
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TABLE VII patterns for each output class is defined as the sum of correct

NUMBER OF FILES FROM THE OGI STORIES DATABASE LABELED answers with respect to the number of test patterns of this
BY EACH TRANSCRIBER
output class.

voices | first transcriber | second transcriber | both The training and testing procedure is repeated using the Jack-
men ) 38 5 knife method. Two thirds of the files that are used as a training
women 34 i 5 _set, and the one third uged asa t_est set, are cyclicz_ill_y exchanged
woral P 51 o in such away as to obtain three different pairs of_tralnlng and tegt
sets. The average system’s performance and input features in-
formation gains are calculated across the three pairs training-test
sets and reported in Table IX for the first transcriber’s data and
TABLE VIl in Table X for the second transcriber’s data.
IN THE FIRST THREE COLUMNS: AGREEMENT OF TRANSCRIBER# 1 In the first row of Tables IX and X, the system is trained to dis-
VERSUS TRANSCRIBER# 2. IN THE LAST THREE COLUMNS: AGREEMENT . . . .
OF TRANSCRIBER# 2 VERSUS TRANSCRIBER# 1. THE AGREEMENT tinguish between stresséfl) and unstressedv) vocalic nuclei
PERCENTAGES ARECALCULATED ON ALL COMMON FILES. S+ PrRIMARY, S—  on the basis of the corresponding duration, amplitude, average
MINOR STRESSED N UNSTRESSEDVOWELS pitch, and pitch range. The percentages refer to the stressed vo-

calic nuclei(S) correctly recognized, to th&+ vocalic nuclei

Transcr. # 1 vs. # 2 | Transcr. # 2vs. # 1 correctly recognized as stressed (unfles), to theS— vocalic

% agreement % agreement nuclei also correctly recognized as stressed (usdey;, and to
5+ & N 5+ & N the unstressed vocalic nuclei correctly recognized as unstressed
%0 67 84 78 57 93 (underN). The following row refers to the classification sub-

problemS+ versusN. The analysis of these two fuzzy clas-
sification processes should help in understanding which input

different subsets of the American English component ¢éature is the most effective in characterizing each stress class.
the OGI Stories Corpus [3] in terms of prosodic stress (seeA similar study is reported in [24], where the effectiveness of
Table VII). The OGI corpus contains 50-60-s files of spont@ach basic parameter to a heuristic algorithm is evaluated on the
neous speech about any subject. Ten files—five men’s and fivasis of the receiver operator characteristic (ROC) curve.
women’s voices—are common to both subsets. The stress arnfhe fuzzy models’ performances are slightly lower than the
notations refer to primary stresséfi+), other minor stressed agreement percentages between the two transcribers but are
(S—), and unstressed syllabléd’). comparable with the performance of other automatic algorithms

The agreement between the two transcribers on the comnjea]. The problem seems to be easier on the first transcriber’s
files is shown in Table VIII and will be used as a baseline fatataset, where higher discrimination percentages of stressed
the system’s performance. The first three columns of Table VIF+ and S—) versus unstressedV) syllables are obtained
refer to the agreement percentage of transcriber# 1 versus ti@ixble IX compared with Table X).
scriber# 2 and the second three columns to that of transcriberfihe discrimination among different kinds of stres$+H
2 versus transcriber# 1. Since only a two-level stress automatérsusS—) and between minor stresses and unstressed syl-
classification (stressed versus unstressed syllables) is impébles ¢ — versus/N) are much more complicated problems.
mented, the agreement percentages in Table VIl are calculatedgeneral, linguists can only reliably distinguish between
accordingly. A stressed syllable labeled%s (or S—) by one fully stressed §+) and unstressedN) syllables, whereas
transcriber is considered in agreement if the other transcribge distinction among different levels of stresses can not be
labeled it also as eithei+ or.S—. The two transcribers roughly reliably performed. The fuzzy systems’ performances for this
agree in recognizing primary stregS + : 90-78%) versus task become very low, being close to the random choice, and
unstressed syllabled’: 84-93%). Much more disagreementtherefore, the corresponding performance and information
exists in recognizing minor stressgs$ — : 67-57%). gains are omitted.

From each subset of annotated files from the OGI databaseln the stressed versus unstressed vocalic nuclei classification
two thirds of the files are used as a training set to implemef+ and.S— versusV), duration and amplitude produce com-
a fuzzy model [18] that discriminates stressédi-(and.S—) parable information gains for both transcribers’ data sets. This
versus unstressédV ) vocalic nuclei. The resulting fuzzy modelmeans that both of them contribute circa with the same strength
is tested on the remaining one third of files and analyzed in termasthe final decision process. The average pitch has the lowest in-
of the discriminative power granted to each input feature (sé®mation gain in both tables, which shows the low contribution
Tables IX and X). of this input feature to the classification. Finally, the pitch range

During the test phase, each membership function is weightegems to play a more important role for the second transcriber
with the number of training patterns covered at the end of thiean for the first transcriber. This agrees with the results reported
training procedure. This helps to solve conflicts among merim [24]. Indeed, the heuristic algorithm used in [24] produced a
bership functions, favoring the one representing the highesry good performance when using the pitch range alone, but
number of training patterns. For each test pattern, the corrgety little improvement was obtained if combining pitch range
answer of the system is defined as the membership degesel duration in the input vector due to an information overlap-
to the correct output class divided by the sum of all nonzeming. Moving to theS+ versusN problem, the fuzzy algorithm
membership degrees. The percentage of correctly classified tdsracterizes primary stress) by means of only amplitude



TABLE IX
INFORMATION GAINS OF THE INPUT FEATURES CHARACTERIZING STRESS IN SPOKEN AMERICAN ENGLISH
FOR THEFUZZY MODEL IMPLEMENTED ON THE FIRST TRANSCRIBER'STRAINING SETS

classification Information gains % correct
task duration amplitude average pitch pitch range | S+ and S- S+ S- N
S (S+and S-) | gu 0.10 0.14 0.02 0.02 62 _
vs. N 9G 0.13 0.17 0.02 0.02
S+ vs. 9H 0.19 0.17 0.02 0.02 _ 54 - 88
N 9 0.22 0.21 0.03 0.02
TABLE X

INFORMATION GAINS OF THE INPUT FEATURES CHARACTERIZING STRESS IN SPOKEN AMERICAN ENGLISH
FOR THEFUzzZY MODEL IMPLEMENTED ON THE SECOND TRANSCRIBER'STRAINING SETS

classification Information gains % correct
task duration amplitude average pitch pitch range | S+ andS- S+ S- N
S(S+andS) (g | 017 0.14 0.04 0.13 56 60 40 80
vs. N ge | 020 0.18 0.05 0.16
S+ vs. gr | 022 0.11 0.09 0.08 i 53 . 83
N ge | 027 0.14 0.12 0.11
and duration for both transcriber’s data sets (second rows of Ta- TABLE XI
bles IX and X). This analysis indicates the minor role of pitch ~SET OF MEASURESCHARACTERIZING BACH ECG BEAT WAVESHAPE
in ch_aracterlzmg stress, espemally_prlmary stress, in Am_erlc RR/RRa orematarity degres
English sentences, which agrees with what was reported in [2
. . - QRSw QRS width (ms)
The same experiment is performed after adding the prodt — -
of duration, amplitude, and average pitch to the input vector. __PA Positive amplitude of the QRS (4V)
this case, the product is associated with the highest informati __4 Negative amplitude of the QRS (4V)
gain for all the classification tasks. Even this is in agreeme _PQRS Positive area of the QRS (uV * ms)
with the results reported in [24], where the product of these thr nQRS Negative area of the QRS {4V * ms)
acoustic features obtains the highest ROC curve and the t Tarea positive T wave area + negative T wave area (uV * ms)
performance on the test set. IVR | Inverted Ventricular Repolarization = (pQRS + nQRS)/ Tarea
ST ST segment level (uV)
C. ECG Arrhythmia Classification STl slope of the ST segment (4V/ms)
A very suitable area for fuzzy—or, in general, qualita P P exist (yes 0.5, no -0.5)
tive—decision systems consists of medical applications. O pr PR interval (ms)

of the most investigated fields in medical reasoning is the
automatic analysis of the electrocardiogram (ECG) and, inside
that, the detection of arrhythmic heart beats. [supraventricular premature beats (SVPB)] or in the ventricula
In this section, we analyze an ECG classification problem thigentricular premature beats (VPB)].
has a much higher input dimension than the previous two ex-The MIT-BIH ECG database [25] represents a standard for
periments. Because of the redundancy in the input dimensitime evaluation of methods for the automatic classification of
some of the input features will present a zero or close to zde@€G arrhythmic events because of the wide set of examples pro-
information gain. Such input features should be the ones witided. The MIT-BIH ECG database consists of 48 two-channel,
the lowest impact on the decision process. The goal is to inv&®-min-long records, sampled at 360 samples/s and manually
tigate whether the removal of these input features influence thenotated by trained cardiologists. QRS complexes are detected,
system’s performance on the test set. and for each beat waveshape, a set of 12 measures [2] is ex-
Being an almost periodic signal, the electrocardiogratracted by using the first of the two channels in the ECG record
(ECG) describes the electrical activity of the myocardium ifsee Table XI).
time. Each time period consists of a basic waveshape, whosé\ total of 39 records are used for this experiment, and a
waves are marked with the alphabet letters P, Q, R, S, T, andthkee-class problem (normal versus VPB's versus SVPB'’s) is
A big family of cardiac electrical misfunctions consists of theonsidered. In order to produce more general results, the Jack-
arrhythmic heart beats that derive from an anomalous (ectopke)ife procedure is applied. The selected 39 records are divided
origin of the depolarization wavefront in the myocardium. Thin three groups, each containing one third of the original number
most common types have an anomalous origin in the ato&records. Three different fuzzy models are constructed and
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TABLE XlI
INFORMATION GAINS FOR TWELVE ECG MEASURES IN ATHREE-CLASS ARRHYTHMIA CLASSIFICATION PROBLEM

% correct
RR/RRa QRSw pAmp nAmp pQRS nQRS T IVR ST STsi P PR| N VPB SVPB
.13 .04 .06 .10 .03 .02 00 02 01 .02 02 .08|92 80 67
A2 .03 .06 12 .02 .03 - 01 01 00 .02 .08)94 80 68
.15 .03 .07 .15 .06 .04 - 02 - 02 01 .09(9 79 70
.15 .03 .06 14 .05 .04 - 02 - .02 - 099 79 74
.12 .03 .08 A2 .08 - - .01 - .02 - 00]|9 8 72
A1 .01 .06 .06 .05 - - - - .02 - 09|95 83 72
.08 .01 .07 .05 .06 - - - - - - 07|95 8 71
07 .02 11 .05 - - - - - - - 0|95 83 70
.05 - .09 .03 - - - - - - - Jd0 |8 70 37
.04 - - .03 - - - - - - - 09|91 67 53
.05 - - .04 - - - - - - - - 19 63 56
.06 - - - - - - - - - - - |96 54 00
- - - .05 - - - - - - - - 19 37 00
- - - - - - - - - - - 10| 7 39 00
- 18 - - - - - - - - - - 198 78 00
- - .03 - - - - - - - - - |93 30 00
- - - - - - .01 - .01 - - - |8 39 00
- - - - - - .02 - - - - - |9 29 00
- - - - - - - - .02 - - - |94 36 00

tested, using two of these three groups as training set and themeasures with lowest information gain. The corresponding
maining one as test set, respectively. The output classes in esg$tem’s performance actually improves. Indeed, such input
training set are forced to be equally distributed by repetition ééatures were used by the system to classify outliers or ex-
the examples from the less-represented output classes. ceptions in the training sets. Continuing the removal of the
At first, a set of fuzzy rules is constructed [18] on eacBECG measures with lowest information gain in the first row
training set to discriminate the three output classes by usingafl Table XII, the system performance keeps improving until
12 ECG measures. The information gains of the ECG measugemaximum of 95% correctly classified normal beats—83%
and the percentages of correctly classified beats are calcula#tB’'s and 72% SVPB'’s (see the sixth row of Table Xll)—is
for the three fuzzy systems and reported in average in Table Xiached. Such a maximum in performance occurs in correspon-
The highest information gains are marked bold. Since the twlence of an input vector with only seven components.
proposed information gains assume very close values, as iPerformance, however, does not change much as long as the
could be seen in the previous experiments, only the informatiarmain five components of the input vector are kept: the prematu-
gain based on the entropy function is reported in Table XII. rity degree, the QRS width, the positive and negative amplitude
The average performance of the three sets of fuzzy rules whirthe QRS complex, and the PR interval. These ECG measures
all 12 ECG measures are used as input vector (see the first romafre also the ones with a non-negligible information gain in the
Table XII) are comparable with those reported in the literatugiginal analysis (see the first row of Table XII). The percent-
[2]. The information gains on the left part of the row show thadges of correctly classified beats begin to decrease dramatically
such performances are mainly due to the action of the prenmaly when one of these ECG measures is removed from the input
turity degree (pd), the negative amplitude of the QRS complexector (see the ninth row of Table XII).
and the PR interval. The width and the positive amplitude andThe second part of the table reports the situation—informa-
area of the QRS complex contribute only up to a minor extention gain and system performance—of the system when using
Could the set of 12 ECG measures then be representedtlyy input features with highest information gain alone. None of
only the input parameters with highest information gain? If thiae five ECG measures with highest information gain in the orig-
information gain of the removed input features is negligiblénal analysis can achieve very good performance if used alone
such reduction of the input vector should not make a big difsee the 12th—16th rows of Table XII). This was to be expected
ference in terms of system’s performance. In order to test thmce all those features exhibit an information gain that is quite
hypothesis, the ECG measures with lowest information gdiar from the maximum 1.0. The concurrence of fuzzy rules on
are progressively removed from the input vector and the catifferent input dimensions seems to be necessary, particularly
responding system’s performance, and input features informta+ecognize SVPBs. For example, the fuzzy classifier uses the
tion gains are recalculated and reported in the following rows pbsitive amplitude of the QRS complex in strict connection with
Table XII. its duration, as we can see from the system’s performance in the
At first, the T wave area (T) and the ST segment amplitudenth row versus the system’s performance in the tenth row of
(ST) are removed from the input vector, which are the ECGable XII.
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The last three rows of Table Xl contain the information gaintute (Berkeley, CA) for the measures of the acoustic parameters
and the system’s performance when the input vector consistobfvocalic nuclei in spoken American English sentences. The
only the ECG measures with lowest information gain, namelguthors would also like to thank the anonymous reviewers for
the T wave area and ST segment amplitude. As it was to tieir helpful feedback.

expected, the system’s performance becomes quite poor, failing
in recognizing SVPBs.

In a previous study [16] on only two files of the MIT-BIH
database, the fuzzy system was retrained at each step after the
removal of the input feature with lowest information gain. The [1]
information gains of the new fuzzy model resulted in more dis- 7]
tributed across clusters of input features but, in general, was con-
sistent with what was observed in the first experiment using all[3]
12 ECG measures. For example, after removing an ECG meay,
sure related with the QRS morphology, the retrained system
would increase the information gain of all the other ECG mea-
sures related with QRS morphology.

This investigation shows that reducing the dimension of the 6]
data set does not worsen the fuzzy system’s performance if sucL
a reduction is performed on the basis of an appropriate fuzzy7]
feature merit measure.

(5]

(8]

VI. CONCLUSIONS
9
An a posteriorianalysis of fuzzy models is presented that o
guantifies the influence of the input features on the decisiofhl0]
process, that is, their discriminative power among the output
classes. [11]
Using properties of fuzzy logic, itis easy and computationally
inexpensive to define a measure of the information containet?l
in the fuzzy model. Such measure is used to quantify the in—13]
formation available in the fuzzy model both before and after a
given input feature is used for classification. The relative dif-
ference of these two information measures defines the informal4l
tion gain associated with the use of this input feature, whicq15
provides a quantification of the discriminability among output
classes along the analyzed input feature. This is related to thes]
system’s classification performance only if the fuzzy model is
constructed on a sufficiently general set of training examples. [17]
Artificial and real-world examples illustrated the method’s
potentiality. In particular, as real-world examples, the most in{18]
formative electrocardiographic measures are detected for an ar-
rhythmia classification problem, and the role of duration, ampli-[19]
tude, and pitch of syllabic vocalic nuclei in American English
spoken sentences is investigated for prosodic stress detection.
The proposed algorithm represents a computationally inex20l
pensive tool to reduce high-dimensional input spaces, to get in-
sights about the implemented decision process, to look for pogs1)
sible errors in the decisional structure, and to compare the use
of the input features by fuzzy classifiers with different perfor- 22
mances.

(23]
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