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Integrated Feature Analysis and Fuzzy Rule-Based
System Identification in a Neuro-Fuzzy Paradigm

Debrup Chakraborty and Nikhil R. Ré&enior Member, IEEE

Abstract—Most methods of fuzzy rule-based system identifica- rule-base can be provided by an expert, there is no problem of
tion (SI) either ignore feature analysis or do it in a separate phase. readability. However, fuzzy rule-based systems, as such, are not
This paper proposes a novel neuro-fuzzy system that can simulta- anape of learning. Therfore, to extract the rules from a given

neously do feature analysis and Sl in an integrated manner. ltis a dat has to d d techni like clusteri h
five-layered feed-forward network for realizing a fuzzy rule-based ata one has to depenad on techniques fixe clustering or other

system. The second layer of the net is the most important one, t00ls of exploratory data analysis [30] or an initial rule base is
which along with fuzzification of the input also learns a modu- supplied by an expert, which is then tuned using data. Thus,
lator function for each input feature. This enables online selection judicious integrations of neural networks and fuzzy logic are
of important features by the network. The system is so designed expected to result in systems with merits of both paradigms.
that learning maintains the nonnegative characteristic of certainty .

factors of rules. The proposed network is tested on both synthetic Several attempts have.been .made to n:\tegrate fuzzy sySFems
and real data sets and the performance is found to be quite satis- @nd neural networks with a view to achieving systems which
factory. To get an “optimal” network architecture and to eliminate ~ are interpretable, robust, and have learning abilities [7], [21],
conflicting rules, nodes and links are pruned and then the structure [24]-[26], [33].

is retrained. The pruned network retains almost the same level of The various neuro-fuzzy unification schemes developed to

performance as that of the original one. date can be classified into three major groups:

1) neural fuzzy systems;
2) fuzzy neural systems;
3) cooperative systems.
|. INTRODUCTION Neural fuzzy systems are fuzzy systems implemented by
ET ¥ — . R andY — neural networks [10], [11], [24], [25], [31], [33]. Fuzzy neqral
i) C{);zlt’ Z?{d Iet7 i;]]:eie Ee an unknown szé%?]’ systems are neural networks capable of handling fuzzy infor-
- :> .}7? J;UCh thatys = S(xz) Vb = 1,....N. In othér mation [4], [6], [33]. The inputs, outputs, and weights of fuzzy
words. there is an unknown functi@which trénsforms: to neural networks could be fuzzy sets, often fuzzy numbers or
y. Giv’enX andY, the problem of system identification (Sl)membership values. The cooperative systems are those which
’ use different paradigms (neuro or fuzzy) to solve various facets

is to find S explicitly or implicitly. SI appears in various forms .
in science and engineering. There are many approaches toO:fSIt.he same problem [33]. All three of these paradigms taken
ether is known aseuro-fuzzy computing’he scheme that

Some models, like regression, are explicit in nature while othdfd g t there i If i H i
such as neural networks and fuzzy systems are computatio‘f’fﬁlare going to present here IS a neural fuzzy system. nence to

transforms that do SI implicitly. begin with we discuss some previous attempts in this direction.
Itis known that neural networks can act as universal approxi

_Leeet al. [20] proposed a neural network model for fuzzy
mators for a large class of nonlinear functions, hence the chol gerencmg. They developed an algorithm for adjusting (tuning)
of neural networks for Sl is quite justified and has been prové

membership functions of antecedent linguistic values of
to be successful [5]. Neural networks are usually robust, p&g—e rule set by error back-propagation (EBP), where the conse-
sesses parallelism and good generalizing capabilities but t

nt parts were considered fixed. Li and Wu [22] proposed a
usually do not have readability and work as a black box. Hen

uro-fuzzy hierarchical system with if-then rules for pattern
the underlying relation in a system, which has been appro»

assification problem. A five-layer network is also presented
mated by a neural network, cannot be easily understood fré?n[39]' The paran_]eters gfttlre tnet 3re |(:ent|l1;|§d tjhs 'ng evolu(-j
the trained network by any easy means. On the otherhand,fu??)r/]ary programrnlng a'; | € E.ne r:jeli/vor 2'2 en prur:je
rule-based systems which have also been used for Sl are hi |>5|at>.<|tract a(ljsfmadfset odru es. Irt]' an ¢ eed[ | ]dprgsen;ef a
interpretable in terms of linguistic rules. As fuzzy if-then rule uitiayered feediorward connectionist model designed for

can be easily understood by human beings and often an ini a2y logic control and dec'ision making. A hybrid two-stgp
earning scheme that combined self-organized (unsupervised)
and supervised learning algorithms for selection of fuzzy
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were also provided. Shann and Fu [35] presented a layered

network for selection of rules. Initially, the network was con- o

structed to contain all possible fuzzy rules. After EBP training, e

the redundant rules were deleted by a rule pruning process for

obtaining a concise rule base. The architecture of Shann and Layer 4: OR nodes

Fu is similar to that of Lin and Lee in several respects. Pal and

Pal [32] discussed some limitations of the scheme by Shann

and Fu and provided a better rule tuning and pruning strategy. Layer 3: AND nodes

Lin and Cunningham [27] also developed a layered network

for SI. They used fuzzy curves for feature selection, but this

phase was a part of preprocessing on the data before the data Layer 2: Fuzzification

got into the network. Wu and Er [38] proposed a dynamic fuzzy end feature

neural network implementing Takagi-Sugeno-Kang fuzzy analysi nodes

system based on extended radial basis function network. Lin

and Chung [23] developed a neuro-fuzzy combiner based on

reinforcement learning for multiobjective control. Figureiredo

and Gomide [3] proposed a neural fuzzy system which encodes

the knowledge learned in the form of fuzzy if-then rules anfdd- 1 Network structure.

processes data using fuzzy reasoning principles. After learning

linguistic rules can be easily extracted from the network. Kimthe parameters of the attenuation functions were learned by the

and Kasabov [12] developed a neuro-fuzzy inference systgfBp |earning scheme. After training, for a bad or indifferent

which consists of two phases, one of rule generation frofaature, the attenuation function acquires a value close to 0 and

data and a rule tuning phase by EBP. Krishnapuram and Lf¢ a good feature a value close to 1. The present work is in-

developed a neural network for classification which uses fUZébired by the feature selection scheme of Pal and Chintalpudi

aggregation functions as activation functions [18], [19]. OByt the present philosophy and formulation used here are quite

completion of training, the redundant links can be identifiedifferent.

and removed from the net. If all links emanating from an input Here, we present a neural fuzzy System for simultaneous fea-

node are removed, then the corresponding feature is redundgpé selection and SI. In subsequent sections, we discuss the net-

and hence eliminated. Similar types of networks are alggork structure of the proposed system followed by the learning

discussed in [8], [9], [16], and [17]. rules, optimization of the network, and some simulation results.
Most of the methods discussed here doeqilicitly do fea- Finally, the paper is concluded in Section VII, which also gives

ture analysis. However, it is well known that feature analysgome directions of future works on the proposed system.

plays an important role in Sl [28], [36]. For example, consider

Layer | : Input nodes

a system with inpuk € R? and outputy € Rt._ It may be pos- Il. THE NETWORK STRUCTURE

sible that not all the input features are required to understand )

the relation between the input and output or, may be some of thé-€t there bes input featureg(zy, zs, ..., ;) and¢ output
features are redundant or indifferent to the output of the systef@@turesy:, vz, ..., ¢). The proposed neural fuzzy system will

Moreover, more features are not necessarily good, some feat§tgdl With fuzzy rules of the fornf;: If z; is A1; andz is Ay
may even have derrogatory effect on the output. Thus, selection@Nds IS As; thenu;; is Bj;. Here,Aj; is theith fuzzy set
of an appropriate subset of features, for the given task at hafgfined on the domain af; and5;; is theith fuzzy set defined

not only can reduce the cost of the system but also may imprd¥/a the domain of;. _ .
the performance of the system. From our notation one might think that for each rule we are

soft computing tools like fuzzy logic, neural networks, angy, some; and#. Similar is the case for the linguistic values
genetic algorithms can be found in [2] and [28]. Several autho§igfined on the output variables.

have also designed neural networks that simultaneously learfre neural fuzzy system is realized using a five-layered

feature extraction and classification. For example, Woml.  enyork, as shown in Fig. 1. The node functions with its inputs
proposed a shared weight morphological network and appligfly outputs are discussed layer by layer. We use suffixes
it to target detection in [37]. Similar kinds of work can be foun%’ n, m, I, andk to denote, respectively, the suffixes of the
in [1] and [13]. nodes in layers 1 through 5 in order. The output of each node
Following the concept of Pal and Chintalapudi [29], the feas denoted by.

ture selection scheme proposed here uses a modulator functiohayer 1: Each node in layer 1 represents an input linguistic
Pal and Chintalapudi used a multilayered feed-forward archvariable of the network and is used as a buffer to transmit the
tecture. Every input feature was multiplied by an attenuationput to the next layer, that is to the membership function nodes
function prior to its entry in the network. The attenuation funaepresenting its linguistic values. Thus, the number of nodes in
tions were so designed that they took values between 0 andhis layer is equal to the number of input features in the data. If
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x, denotes the input to any node in layer 1 then the output we model), by ¢~% . Thus, the activation function of any node
the node will be n in layer 2 would be as

#p = Zp- @) Zn = Zy €Xp |:6_’812’ In < } )} 4)

Zn,

Layer 2: Each node in layer 2 represents the membership . o
functions of a linguistic value associated with an input linguisti?Nich can be simplified to
variable. Moreover, this layer also does the feature analysis. The =73y
output of these nodes lies in the interval [0,1] and represents the Zn =2y )
membership grades of the input with respect to different lin-

guistic values. Therefore, the nodes in this layer acts as fuzr%ihere Zn IS computed using (2). The parameféy can be

fiers. The most commonly used membership functions are zamed by ba(Q:k—propagation or by some other Eechnique. We
angular, trapezoidal and bell shaped. Although any one of theS ':Ihat ;/vheﬁp;;a\kes a Iac;ge va:lLIuehthe% tendi.tOZ" r?ncfi for
choices may be used, we consider bell shaped membershipﬁ.gigf" values of3;, z, tends to 1, thereby making the feature

tions. All connection weights between the nodes in layer 1 a| |ﬁere?t. Tr;erefored (f)ur ObJeCtIV%WOURﬂ belto m;ﬁf;a:)alije
layer 2 are unity. If there ar&’; fuzzy sets associated with the arge values for good features and small values for bad ones

ith feature and if there areinput features then the number Oilhrough the process of learning. Layer 2 can be better realized

nodes in this layer would b — 3™ N;. The output of & using two layers of neurons, the first one for computation of
node in layer 2 is denoted by =1 the membership value,, and second layer for the modulated

output using (5).
_ (2p — pn)? Layer 3:This layer is called the AND layer. Each node in this
Zn = €xp {_4} . (2) layer represents an IF part of a fuzzy rule. There are many op-
erators {-norms) for fuzzy intersection [14]. Here, we choose
In (2), the subscript: denotes thenth term (fuzzy set) of the product as the operator for intersection. The number of nodes in
linguistic variabler,,. u.,, ande,, represent the mean and spreathis layer isN® = []’_, N;. The output of thenth node in the
respectively of the bell shaped function representing a termlafer is
the linguistic variabler,, associated to node .
For the purpose of feature selection, the output of this layer Zm = H Zn (6)
needs to be modified so that every indifferent/bad feaitye ne P,

_get_s eliminated. Ifa l.in.ngtiC variabls, is noF important (or_is_ whereP,, is the set of indexes of the nodes in layer 2 connected
indifferent) for describing the system behavior, i.e., for deﬂnm% nodem of layer 3

the input-output relation, then the valueswgfshould not have Layer 4: This is the OR layer and it represents the THEN
any effect on the firing strength of the rules involving that inp art (i.e. t.he consequent) of the fuzzy rules. The operation per-
variable. This is our main guiding principle for feature analys rmed t;y the nodes in this layer is to combine the fuzzy rules
and itmakes our approach completely different from the work ith the same consequent. The nodes in layers 3 and 4 are fully

(Ija<| and<Cih|tr;]t-alapudb| [29]. I.S|n(cj:r-.?ffor a.ﬂz-r;form,tTf(l’to‘) = CI)C connected. Letv;,,, be the connection weight between node
= = 1, Inis can be realized I an indiiierent teature alway Llayer 3 and nodé of layer 4. The weighty;,,, represents the

generates a membership of unity. This may appear impossi ertainty factor of a fuzzy rule, which comprises the AND node

at the first sight. Note that for an indifferent feature, all of its n layer 3 as the IF part and the OR not layer 4 rep-

terms (i.e., all of its linguistic values) should have no effect OtQ—zsenting the THEN part. These weights are adjustable while
the firing strength. Next we explain how this can be realized.

Let te a funci ith hnode in| > Wi learning the fuzzy rules. If there ard; fuzzy sets associated
etusassociate atunc i wi each node Iniayer 2. We i the ith output variable and there ar@utput features then
call f,, a modulator function. For an indifferent (or bad) featur

fhe number of nodes in this layer¥* = S>*_ M;. For sim-
we want all linguistic values defined on that feature to result igy. . . =1
X . ) icity let us assume that there is only one output variablefdnd
a membership value of 1. To achieve this, we magfiehs H y y P

linguistic values are defined on it. Therefore, the fourth layer has
)} N* = M nodes. For each output linguistic value there are ex-

n

(3) actly N rules having that value as the consequent. Every node
of this layer picks up only one rule from among the associated

Here, )\, € [0,1] is a parameter associated with a particiifar N3 rules based on t_he maximum agreement with facts (in terms

guistic variablez,, of which noden is a term. From (3) we see Of the product of firing strength and certainty factor) for com-

that when),, is nearly 1 thery,, is nearly1/z,, and when,, putation of the defuzzified output. When all certamt_y factqr_s

is nearly O thenf, is nearly 1. Therefore, for bad featurs are equal, the rules are selected based on the maximum firing

should get large values (close to 1) and small values (close toS9)gngth. This rule selection is viewed as an OR operation and

for good features. Thus, for a bad feature, the modulated mefifi@lized by thenax operator. Thus, like Shann and Fu [35] and

bership value would b¢, - z, ~ 7, - (1/7,) ~ 1 irrespective Pal and Pal [32], the output of the notiie layer 4 is computed

of the value ofz,,. Similarly, for a good feature, the modulatedy

membership value would bg, .z, = 1.7, =~ z, = the actual

membership value. Sincg, must take values between 0 and 1, = },?é*é(zmwlm) ™

fn=exp {)\p In <i

~T
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where P, represents the set of indexes of the nodes in layer 3Layer 4: The delta for this layer would be
connected to the nodeof layer 4. Since the learnable weights OE  OF Oz
wy,'S are interpreted as certainty factors, eagh, should be b= B2 = Bz, O
nonnegative. The EBP algorithm or any other gradient-basm:iother words,
search algorithm does not guarantee thgt will remain non-
negative, even if we start the training with nonnegative weights.
Hence, we modely;,,, by gl?m. The g, is unrestricted in sign
but the effective weightv;,,, = g7, will always be nonnega- ] ) ] ] ) ]
tive. Therefore, the output (activation function) of thie node Wherek is a node in layer 5 with which nodein layer 4 is
in layer 4 will be connected. _
Layer 3:The delta for this layer would be
21 = max(Zmgin,)- (8) OFE  9F 9z
meD; 6nlI—I——.
0%y Oz Oz,
Layer 5: This layer is the defuzzification layer. Each nodgence, the value of,,, will be

CL[(C[ — Zk)

b1 = 6
El’ePk v ay

12)

of layer 5 represents an output linguistic variable and performs 6 a2 : 2 2

s if Zm = MaXm/ 1 Zm’ ’
defuzzification, taking into consideration the effects of all 6m = {OZIEQW t9um ot;erg\ige e { ' Gi }
membership functions of the associated output linguistic vari- ’ ' (13)

able. The number of nodes in this layer is equal to the numhggre (),,, is the set of indexes of the nodes in layer 4 connected
of output features. Here, we use the centroid defuzzificatifith nodem of layer 3.

scheme, and a node in this layer computes the output as Layer 2: Similarly, theé,, for layer 2 would be
ZlePk zac; 5, = 8_E _ oF 8Zm.
2k = m- ()] 0z, 92y, 02y,
* Hence,
In (9), P is the set of indexes of the nodes in layer 4 connected »
to nodek in layer 5 anda;, ¢; are the spread and mean of the 6 = Z 6m <ﬂ> . (14)
membership function representing nddelayer 4. The weights mER,, #n

of the links connecting nodes in layer 4 and layer 5 are unity.In (14), R, is the set of indexes of nodes in layer 3 connected

with noden in layer 2.
With the é calculated for each layer now we can derive the
We now derive the learning rules for the neural fuzzy systemeight updating equation and the equation for updating

Ill. L EARNING OF FEATURE MODULATORS AND RULES

with the activation or node functions described in the previous AE OE 9z
section. In the training phase, the concept of back-propagation Gim = 321 O
is used to minimize the error function or " "
N N ot OF > 281 2 Gimy I 2m Gy, = MaX {20 Gy
1 1 — 1CQun m Jims m Yim m m’ Yim/
€=3 Z Ei=3 Z Z(?ﬁk — zin)? (10)  dgim { 0, otherwise.
i=1 i=1 k=1 (15)
) ) Similarly, we calculate
wheret is the number of nodes in layer 5 apgl. andz;;, are OF  OF 02

the target and actual outputs of nddén layer 5 for input data
x;; ¢ = 1,2,..., N. The method for adjusting the learnable
weights in layer 4 and the parametgisin layer 2 are based on or )
i i oF 2 %o — L
gradient descent search. We use online update scheme and hence _ Z 5, (2 3, o zn) <7p M ) (16)
Tn
nCR,

B, 9z, 9B,

derive the learning rules using the instantaneous error function Wip B

E;. Without loss, we drop the subscripih our subsequent dis- . . .
cussions. whereR,, is the set of indexes of nodes in layer 2 connected to

The delta value of a node in the network is defined as thd'0dep of layer 1. Hence, the update equations for weights and

influence of the node output with respectfib The derivation ~» &€
of the delta values and the adjustment of the weights and the

i oF
parameters, are presented layer wise next. Gim(t+1) = gim(t) +n <— 5 ) (17)
Layer 5:The output of the nodes in this layer is given by (9) Gim
andé values for this layerd;, will be and
I9E JF
S = ) G,t+1)=p5 t+u<——>. (18)
Thus In (17) and (18)y and: are learning coefficients.

The network learns the weights of the links connecting layers
o = —(yn — 1) (11) 3 and 4 and also the parameters associated with nodes in layer
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2, which do the feature selection. The initial valuesiaf are

so selected that no feature gets into the network in the begin-
ning. This is realized by assigning very low positive values (say,
0.0001) to eacls,.. Thus in the beginning of learning every node

in layer 2 produces a value which is nearly equal to one, and con-
sequently, all features are considered unimportant. As learning
proceeds, the values @fs gets updated in such a way that the
important features, i.e., the features which can reduce the error
rapidly, only pass through the network. Next, we discuss strate-
gies to prune the network to get an “optimal” readable network.

IV. OPTIMIZING THE NETWORK Fig. 2. Subnet to illustrate redundant nodes.

We started with a network which represented all possible
rules given a set of input and output fuzzy sets. But all pogorresponding to the redundant featpreand as per our con-
sible rules usually are never needed to represent a system. MtgUction that particular node produces an output membership
over, the modulator functions associated with the second lay¢glue of 1, for all feature values. Hence, in layer 3 it is enough
may decide that all of the features are not important. Hend@ keep only one of th&/,, groups and the othe¥,, — 1 groups
some of the nodes present in the network may be redundd¥thodes are redundant.
and presence of these redundant nodes will decrease the reado elucidate the concept of redundant nodes, let us consider
ability/interpretability of the network. We know that a Sl taskan Sl task with two input features; andz». Therefore, layer
can be easily handled by a conventional multilayered percepof the network for this task will have two nodes, we name
tron (MLP) network, but we have used a neural fuzzy systethem asX; and.X, Fig. 2. We also assume that input feature
for the purpose of Sl to increase the readability of the network; has three fuzzy sets associated with it and the featsteas
so that we can understand the relation between the inputs &nwd fuzzy sets associated with it. Hence, layer 2 will have three
outputs in terms of linguistic rules. Thus, to make the networkodes X1, X2, and X3, connected withY;, and two nodes,
optimal and more readable, we need to prune it removing r&21 and.X,,, connected td\,. The nodes in layer 3 are named
dundant nodes and incompatible rules. We next discuss whatng their connections to nodes in layer 2, e.g., a layer 3 node
we mean by redundant nodes and incompatible rules, and hesnnected to{;; andX», will be denoted byX1, X», (Fig. 2).
to remove them. Now, if, training dictates featurg; to be redundant then irre-
spective of the values af;, each of the node¥;, X;,, and
X3 will produce an output of unity. In this case we can group
the nodes in layer 3 into three groups, which are shown by white

Let us consider an S| problem withinput features so that nodes, gray nodes, and black nodes in Fig. 2. Sikice pro-
layer 1 of the network will have nodes. Let the indexes of theseduces an output of unity, the gray group has two nodes repre-
nodes be denoted y(p = 1 to s). Let\V,, be the set of indexes senting two antecedent clauses; ‘is X»;” and “z5 is Xz,.”
of the nodes in layer 2 which represents the fuzzy sets on tBinilarly, each of the white and black groups also represents
feature represented by nogef layer 1 and letV,,| = N,,. We the same two antecedent clauses as the outputs offhethnd
also assume that(c < s) of thes features are indifferent/bad asX;5; are 1. Hence, it is enough to retain any one of the three
dictated by the training. L&k be the set of indexes of the nodegroups. Note that in this case, if two group of nodes are pruned,
which represents theindifferent/bad features. Hence, any nodéhen the third layer looses its importance, as it really does not do
with indexp in layer 1 such thap € R is redundant. Also, any any AND-ing operation. But such a situation, will rarely occur
noden in layer 2, wherer € NV, andp € R, is also redundant. where out of only two input features one is redundant. If it hap-
In our network construction, a node in layer 3, can be uniqugbens, then the third layer simply transfers its input to the next
identified by its connections with the nodes in layer 2. We cdayer.

A. Pruning Redundant Nodes

indicate a noden in layer 3 asS,, = [Zm1,Zm2;--->Zms] The redundant nodes are not required for the Sl task, but they
wherez,,, € N,. Now for anyp € R we can group the nodesadd to the computational overhead of the network. Therefore,
in layer 3 intoV,, many groups, we call thei®,,., wherer = removal of these nodes is necessary to get an optimal network.

1,2,..., N,. Every node in theth group is connected to tith  The crucial part of this method is determination of the set of
fuzzy set on theth feature. LetS,, be a node in layer 3 which redundant nodes in layer 1. For this we use the value-af %
belongs to the-th group, i.e.,5,, = [Tm1,Tm2,...,Tms] € (we call it asy,) as an indicator. We have seen earlier, that for
Gpr. Then, for every grougz,., » # =, s = 1,2,...,N,, good features,, takes values close to 1 and for bad features it is
there exists exactly one nod§, = [z41,%42,---,%es], SUCh close to 0. Therefore, we fix a small positive threshtidsuch
thatz,; = 2,5, Vi #p,j =1,2,...,s,wherep € Risabad thatp € Rif v, < th. Next, we summarize the method of the
feature. removal of redundant nodes (here the removal of a node also

Thus, every group of nodes has identical connection struneans removal of its incoming and outgoing links) followed by
ture with the nodes of layer 2 except for its connection to a nodediscussion on the choice of thresheotd
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Algorithm: Pruning of redundant nodes %
begin
=9 ()
for each p in layer 1
it (vp < th)
R = RU{p}
remove node p in layer 1
remove the nodes in layer 2 con- ° o o
nected to p
end if

end for °

do while (R # ¢)

let i€ R
fifd - g“_, {LJ} —1.2.... N Fig. 3. Incompatible rules.
remove nodes in  Gj2,Gis,. .., Gin, .
end do of the rules. But as the nodes in layer 3 and layer 4 are fully
end connected, initially, all fuzzy rules are considered. If there are

7 linguistic values for an output linguistic variable then there
) ~arer rules with the same antecedent but different consequents,
1) Selection of the Threshoid: Here, we present a guide-yhich are inherently inconsistent. Let us consider the subnet in
line for selecting the threshotd. We have used Gaussian memrgig 3, which shows only the connections used for selecting the
bership functions for the input fuzzy sets (also for output fuzzy,ost relevant rule corresponding to the antecedent clause (IF
sets), hence as per our formulation the output of the nodespigrt) represented by the nodein layer 3. Fig. 3 corresponds
layer 2 can be represented by to the following incompatible rules.
If (antecedent),, thenyy isTq ., (wik,.m), 1 =1,2,..., 7.
Zn = (Zn)™ Where,(antecedent),, is the antecedent clause represented
by nodem of layer 3,1} ., is thelth fuzzy set on théth output
where variabley;,. The certainty factorss, ., of the rules are shown
(2 — jin)? in parenthesis.
Zn = exp {—%} For rule pruning the centroid of the set of incompatible rules
Tn is calculated considering the connections in Fig. 3 as

andy, =1 — ¢~ % . If we consider,, = v/20,/, then we have

zac
e, = Aten AU 21)
(zp = pn)? Zien, A0
Zn = €Xp —pﬁ (19)
20", Sincez; = zmg3,
and
ZIEPA, nglQmalcl
(7 _ )2 T Ckm = 2 . (22)
Zp = [exp {_%}} . (20) Ele Pr Zm G, A
2077
) Hence
We know that 99% of the area under the membership func- )
tion in (19) lies over the intervdhs,, — 307, 1, + 307,]. Con- - 21y Jim MC 23)

sequently, the value cf,, beyond this interval would be negli-
gibly small. For a bad/indifferent feature we want the modulated
membership value,, to be almost unity over the entire intervalcxm in (23) can be viewed as a centroid of the set of incompat-
[1tn — 307, 1t + 307,]. Therefore, we can safely choose thafPle fuzzy rules which corresponds to Fig. 3 with certainty factor
value ofy, as the thresholeh, which makesz,, = ¢ (¢ ~ 1) at gz, for the rule with antecedent node and consequent node
Zp = pim — 307, and atu, + 307,. Thus, from (20), we obtain [. We calculate the membership values:pf, in all consequent
the thresholdh = — 111(0)/45 Note that for such a choice if fUZZy sets of the incompatib|e rules. Then the rule which have
zp € (pin—30",, pn+30"), thenz, > c. If we consider: = 0.8, the highest membership value far,, is selected and the other

then we obtairth = 0.05, which we use in the simulations.  rules are deleted.

5 .
ZlePk glrn,al

B. Pruning of Incompatible Rules V. TRAINING PHASES

According to our construction of the network, the links be- The training of the system takes place in three phases. Phase
tween layer 3 and layer 4 represent the rules, and the weightshis-called the feature selection phase, where the training is done
sociated with the links can be interpreted as the certainty factor the initial network with all the possible nodes and links. The
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Phase 1 training is considered to be over once the modulator
functions stabilize, i.e., when

Ir@ -+ Ol _

whereI'(t) € R’ is the vector ofy, values after theéth epoch

ande is a small positive constant.After Phase 1 training is over,

based on the values of the parametethe pruning of the re- Fig. 4. Plot of HANG.

dundantnodesis done. After pruning, the output of the second

layer nodes would be as by polymerization of some monomers. There are five input fea-
tures, which a human operator may refer to for control and one

Zp = Zn output, that is his/her control. The input variables are monomer

concentration ), change of monomer concentrations],

as the modification of the membership value for the purpose mibnomer flow rate#s), two local temperatures inside the plant

feature selection will no longer be required. After pruning, th@.,, andu;). The only output4) is the set point for monomer

network is retrained for a few epochs to adapt its weights in il®w rate. In [36], there is a set of 70 data points obtained from

new reduced architecture, and this phase is called Phase amfictual plant operation. We name this data set as CHEM and

training. Finally, the incompatible rulegiriks) are pruned and use as our training data. In [36], it has been reported that the

again the network is allowed to learn in its new architecturéyo local temperatures inside the plant, i#;,and«; do not

which is termed as Phase 3 of training. D&(¢) denote the significantly contributeo the output.

vector of the weights of all the links connecting layer 3 and layer One of the most important issues for rule-based Sl is to de-

4 after thetth epoch in Phase 2. The Phase 2 training can nagermine the input and output fuzzy sets. We do not use any so-

be stopped when phisticated technique in this regard. We found out the domain
of each input and output component and picked up a number of
[[W(t) - W+ 1| <e fuzzy sets to span the whole range with considerable overlap be-
|W ()] tween adjacent fuzzy sets. As stated earlier we used fuzzy sets

with Gaussian membership functions.
where|W(t)| gives the number of componentsWi(t). Phase e measure the performance of our system by the sum of
3 tuning can also be terminated based on the same criteria. Ng§@ared errors (SSE) and maximum deviation (MD) of the
that for Phase 3, the number of component3¥(t) will be  output from the target. Lin and Cunningham [27] defined a
less than that in Phase 2. However in the present simulationsgegformance index (Pl) as
have arbitrarily chosen the number of epochs. After the Phase
3 training is over, we obtain a network which is readable, and Ekf_l(Zk — )2
the rules that describe the input-output relation can be easily Pl = —~ (25)
retrieved from the final architecture of the network. > e Ukl

wherez;, denotes the output at an output nddandy,; denotes

the desired output at the same node. However, in [34], it was
The methodology developed is tested on two data sets takminted out that this Pl is monotonically decreasing with'/2,

from [36] and the performance is found to be quite satisfactoniye., it is possible to obtain a very small Pl just by increasig

We first describe the data sets and then in two separate subs#ih we evaluated the performance of our system based on Pl

tions we present the results obtained on them. in (25) for the sake of easy comparison.
Of the two data sets one is synthetically generated and the

other is a real life one. The first one is named HANG which i&- Results on HANG

VI. RESULTS

generated by Here, we used four input fuzzy sets for each input feature and
} five output fuzzy sets for the output linguistic variable. The input
y=00+z2+2,'°)? 0<uz,22<5  (24) and output fuzzy sets are shown in Figs. 5 and 6, respectively.

Hence, the initial architecture for this problem is as described

The graph of (24) is shown in Fig. 4. Equation (24) reprén Table I.
sents a nonlinear system with two inputsandz, and asingle  The network was trained using the data set, HANG with
outputy. We randomly took 50 points frod < z;,22, < 5 learning parameterg = 0.1 andy, = 0.1 for 1000 epochs in
and obtained 50 input-output data points according to (24). Rihase 1, 500 epochs in Phase 2, and 3500 epochs in Phase 3.
illustrate the feature analysis capability of the proposed net, Wae SSE was reduced from 57.907 to 1.513. The Pl was equal
added two random variables; and x4, in the range [0,5] as to 0.01, which is comparable to the result obtained by Sugeno
dummy inputs. It is expected that featuresandx, would be and Yasukawa [36], who obtained a Pl of 0.01. Using this data,
indifferent to the output of the system. Lin and Cunningham [27] obtained a PI of 0.003, but in their

The second data set is called CHEM. This is the data foase they used only the good features, i.e., only features
operator’s control of a chemical plant for producing a polymemdz,. Moreover, we did not tune the membership functions
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Fig. 5. Input membership functions used for HANG.

' Fig. 7. Difference surface for HANG.
TABLE Il
. NO OF FuzzyY SETS FOR DIFFERENT FEATURES USED WITEHEM
o Features | No of Fuzzy Sets
Ty 4
Fig. 6. Output membership functions used for HANG. T 2
z3 4
TABLE | . 9
ARCHITECTURE OF THE NEURAL FUZZY SYSTEM USED FORIANG 4 9
Is
layer no. | no. of nodes y 7
1 4
2 16 TABLE IV
3 256 INITIAL ARCHITECTURE OF THE NEURAL FUZZY SYSTEM USED FORCHEM
4 5
5 1 layer no. | no. of nodes
1 5
TABLE I 2 14
VALUE OF 3, FOR DIFFERENT INPUT FEATURES FORIANG 3 128
4 7
I T ] ) | r3 I 4 5 1

B, 2.53 | 2.54 | 0.00 | 0.00
1—eP | 099099 000|000

MD of the desired output from the obtained output was 0.79.
This proves that the network also has good generalizing capa-
defined on the input and output variables which could improvalities. The difference of the correct surface and the surface pro-
the results further. duced by our system is shown in Fig. 7.

The values off3, for the various features and the corre-
sponding values of — ¢=P after the Phase 1 training areB- Results on CHEM
given in Table Il. Table Il clearly shows that the network As described before, this data set has 5 input features,
is able to indicate features; and z, as not important and namely, w1, w2, us ,uws, and u; and a single output feature
eliminate their effect completely on the output. In this case, @s The number of input and output fuzzy sets considered are
Table | shows, we started with 256 nodes in layer 3, i.e., 258own in Table Ill, and the initial number of nodes in the
antecedent clauses. Also, as layer 4 contains 5 nodes, the inilififerent layers are depicted in Table IV. The membership
architecture representezb6 x 5 = 1280 rules. But Phase functions of the various fuzzy sets used for this data set are
1 of training indicates that two features are redundant/baiepicted in Figs. 8-12
Before Phase 2 training the network is pruned of the redundanfor CHEM the learning parameters weyfe= 0.0001 and
nodes, which reduces the antecedent clauses to 16, hencethe0.000 01 and the training was continued for 1000 epochs in
number of rules gets reduced 16 x 5, i.e., 80. Since after Phase 1,500 epochsin Phase 2, and 3500 epochs in Phase 3. The
Phase 2 incompatible rules are removed, the total numberS8$E was reduced from 4 382539 to 16 231. The Pl was equal to
rules represented by the final architecture is 16. Thus, here @021 after Phase 3. Lin and Cunningham [27] obtained a PI of
obtain a 99.75% reduction in the number of rules in the fin&.0022. Sugeno and Yasukawa [36] does not provide any perfor-
architecture. mance measure of their system on this data. The performance of

We also investigated the generalizing capability of the netur system is compared with that of the real output in Fig. 13,
work. A mesh of 256 points in the ran@e< z;,z» < 5was Wwhich exhibits a good match.
considered. The network then results in a SSE of 17.07 and a PThe values off, and1—c~" for the various features after the
of 0.008. The mean square error on the test set was 0.06. Ri®mse 1 training are given in Table V. Table V again establishes
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ST Be o e BF 8 a1 s o8 o8
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Fig. 12.  Membership functions used for
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Fig. 13. Performance comparison of the proposed system.

TABLE V
VALUES OF 3, FOR DIFFERENT INPUT FEATURES

| ur [ up | ug | ug [ us
Bp -2.53 1198 | 1.39]0.21] 0.20
1—e=P | 0.99 | 0.98 | 0.85 | 0.04 | 0.04

thus, pruning of redundant nodes yielded 32 antecedent clauses

resulting in32 x 7 = 224 rules. After pruning of the incompat-

ible rules, the final architecture represents 32 rules. Therefore,

in this case we obtain 96.42% reduction in the number of rules.
The generalization ability of the network for this data could

not be measured as we could not get any data to do so.

VIlI. CONCLUSION

A novel scheme for simultaneous feature selection and Slin a
neuro-fuzzy framework has been proposed. Itis a five-layer net-
work, which can realize a fuzzy rule-based inferencing system
and at the same time can find out the features which are not
important. We also proposed methodologies for pruning the re-
dundant nodes and incompatible rules that can result in a more
readable network. The proposed system has been implemented
on several data sets and the results found are quite good.

There are a few issues that have not been considered in the
presentwork. They are as follows. We have not given any guide-
lines to decide on the number of input and output fuzzy sets
and their definitions, which are important for designing a good
system. We did not tune the parameters of different membership
functions used. Tuning of the membership functions is expected
improve the performance further. Our pruning strategy removes
redundant nodes and eliminates incompatible rules but still the
system considers all possible antecedent clauses, which may not
always be required.

The main thrust of this paper was to demonstrate the effec-
tiveness of the proposed network for simultaneous feature anal-
ysis and systems identification and it is found to do a good job
as revealed by the simulation results.
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