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Integrated Feature Analysis and Fuzzy Rule-Based
System Identification in a Neuro-Fuzzy Paradigm
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Abstract—Most methods of fuzzy rule-based system identifica-
tion (SI) either ignore feature analysis or do it in a separate phase.
This paper proposes a novel neuro-fuzzy system that can simulta-
neously do feature analysis and SI in an integrated manner. It is a
five-layered feed-forward network for realizing a fuzzy rule-based
system. The second layer of the net is the most important one,
which along with fuzzification of the input also learns a modu-
lator function for each input feature. This enables online selection
of important features by the network. The system is so designed
that learning maintains the nonnegative characteristic of certainty
factors of rules. The proposed network is tested on both synthetic
and real data sets and the performance is found to be quite satis-
factory. To get an “optimal” network architecture and to eliminate
conflicting rules, nodes and links are pruned and then the structure
is retrained. The pruned network retains almost the same level of
performance as that of the original one.

Index Terms—Feature analysis, fuzzy systems, rule extraction,
system identification.

I. INTRODUCTION

L ET and
and let there be an unknown function

such that In other
words, there is an unknown functionwhich transforms to

. Given and , the problem of system identification (SI)
is to find explicitly or implicitly. SI appears in various forms
in science and engineering. There are many approaches to SI.
Some models, like regression, are explicit in nature while others
such as neural networks and fuzzy systems are computational
transforms that do SI implicitly.

It is known that neural networks can act as universal approxi-
mators for a large class of nonlinear functions, hence the choice
of neural networks for SI is quite justified and has been proved
to be successful [5]. Neural networks are usually robust, pos-
sesses parallelism and good generalizing capabilities but they
usually do not have readability and work as a black box. Hence,
the underlying relation in a system, which has been approxi-
mated by a neural network, cannot be easily understood from
the trained network by any easy means. On the other hand, fuzzy
rule-based systems which have also been used for SI are highly
interpretable in terms of linguistic rules. As fuzzy if-then rules
can be easily understood by human beings and often an initial
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rule-base can be provided by an expert, there is no problem of
readability. However, fuzzy rule-based systems, as such, are not
capable of learning. Therfore, to extract the rules from a given
data one has to depend on techniques like clustering or other
tools of exploratory data analysis [30] or an initial rule base is
supplied by an expert, which is then tuned using data. Thus,
judicious integrations of neural networks and fuzzy logic are
expected to result in systems with merits of both paradigms.
Several attempts have been made to integrate fuzzy systems
and neural networks with a view to achieving systems which
are interpretable, robust, and have learning abilities [7], [21],
[24]–[26], [33].

The various neuro-fuzzy unification schemes developed to
date can be classified into three major groups:

1) neural fuzzy systems;
2) fuzzy neural systems;
3) cooperative systems.
Neural fuzzy systems are fuzzy systems implemented by

neural networks [10], [11], [24], [25], [31], [33]. Fuzzy neural
systems are neural networks capable of handling fuzzy infor-
mation [4], [6], [33]. The inputs, outputs, and weights of fuzzy
neural networks could be fuzzy sets, often fuzzy numbers or
membership values. The cooperative systems are those which
use different paradigms (neuro or fuzzy) to solve various facets
of the same problem [33]. All three of these paradigms taken
together is known asneuro-fuzzy computing. The scheme that
we are going to present here is a neural fuzzy system. Hence to
begin with we discuss some previous attempts in this direction.

Lee et al. [20] proposed a neural network model for fuzzy
inferencing. They developed an algorithm for adjusting (tuning)
the membership functions of antecedent linguistic values of
the rule set by error back-propagation (EBP), where the conse-
quent parts were considered fixed. Li and Wu [22] proposed a
neuro-fuzzy hierarchical system with if-then rules for pattern
classification problem. A five-layer network is also presented
in [39]. The parameters of the net are identified using evolu-
tionary programming and the tuned network is then pruned
to extract a small set of rules. Lin and Lee [24] presented a
multilayered feedforward connectionist model designed for
fuzzy logic control and decision making. A hybrid two-step
learning scheme that combined self-organized (unsupervised)
and supervised learning algorithms for selection of fuzzy
rules and tuning of membership functions were developed.
Lin and Lee used Kohonen’s self-organizing feature map [15]
for finding the centers of the membership functions. After
selection of the rule set, i.e., when the network architecture
is established, the second step of supervised learning begins.
Some heuristic guidelines for rule reduction and combination
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were also provided. Shann and Fu [35] presented a layered
network for selection of rules. Initially, the network was con-
structed to contain all possible fuzzy rules. After EBP training,
the redundant rules were deleted by a rule pruning process for
obtaining a concise rule base. The architecture of Shann and
Fu is similar to that of Lin and Lee in several respects. Pal and
Pal [32] discussed some limitations of the scheme by Shann
and Fu and provided a better rule tuning and pruning strategy.
Lin and Cunningham [27] also developed a layered network
for SI. They used fuzzy curves for feature selection, but this
phase was a part of preprocessing on the data before the data
got into the network. Wu and Er [38] proposed a dynamic fuzzy
neural network implementing Takagi-Sugeno-Kang fuzzy
system based on extended radial basis function network. Lin
and Chung [23] developed a neuro-fuzzy combiner based on
reinforcement learning for multiobjective control. Figureiredo
and Gomide [3] proposed a neural fuzzy system which encodes
the knowledge learned in the form of fuzzy if-then rules and
processes data using fuzzy reasoning principles. After learning
linguistic rules can be easily extracted from the network. Kim
and Kasabov [12] developed a neuro-fuzzy inference system
which consists of two phases, one of rule generation from
data and a rule tuning phase by EBP. Krishnapuram and Lee
developed a neural network for classification which uses fuzzy
aggregation functions as activation functions [18], [19]. On
completion of training, the redundant links can be identified
and removed from the net. If all links emanating from an input
node are removed, then the corresponding feature is redundant
and hence eliminated. Similar types of networks are also
discussed in [8], [9], [16], and [17].

Most of the methods discussed here do notexplicitly do fea-
ture analysis. However, it is well known that feature analysis
plays an important role in SI [28], [36]. For example, consider
a system with input and output . It may be pos-
sible that not all the input features are required to understand
the relation between the input and output or, may be some of the
features are redundant or indifferent to the output of the system.
Moreover, more features are not necessarily good, some features
may even have derrogatory effect on the output. Thus, selection
of an appropriate subset of features, for the given task at hand,
not only can reduce the cost of the system but also may improve
the performance of the system.

There are many methods of feature analysis or feature
ranking. Details of some of the feature analysis methods using
soft computing tools like fuzzy logic, neural networks, and
genetic algorithms can be found in [2] and [28]. Several authors
have also designed neural networks that simultaneously learn
feature extraction and classification. For example, Wonet al.
proposed a shared weight morphological network and applied
it to target detection in [37]. Similar kinds of work can be found
in [1] and [13].

Following the concept of Pal and Chintalapudi [29], the fea-
ture selection scheme proposed here uses a modulator function.
Pal and Chintalapudi used a multilayered feed-forward archi-
tecture. Every input feature was multiplied by an attenuation
function prior to its entry in the network. The attenuation func-
tions were so designed that they took values between 0 and 1.

Fig. 1. Network structure.

The parameters of the attenuation functions were learned by the
EBP learning scheme. After training, for a bad or indifferent
feature, the attenuation function acquires a value close to 0 and
for a good feature a value close to 1. The present work is in-
spired by the feature selection scheme of Pal and Chintalpudi
but the present philosophy and formulation used here are quite
different.

Here, we present a neural fuzzy system for simultaneous fea-
ture selection and SI. In subsequent sections, we discuss the net-
work structure of the proposed system followed by the learning
rules, optimization of the network, and some simulation results.
Finally, the paper is concluded in Section VII, which also gives
some directions of future works on the proposed system.

II. THE NETWORK STRUCTURE

Let there be input features and output
features . The proposed neural fuzzy system will
deal with fuzzy rules of the form : If is and is
… and is then is . Here, is the th fuzzy set
defined on the domain of and is the th fuzzy set defined
on the domain of .

From our notation one might think that for each rule we are
using a different set of antecedent linguistic values (fuzzy sets)
but that is not necessarily true; in fact, for every feature only a
few fuzzy sets are defined and hence some of the
for some and . Similar is the case for the linguistic values
defined on the output variables.

The neural fuzzy system is realized using a five-layered
network, as shown in Fig. 1. The node functions with its inputs
and outputs are discussed layer by layer. We use suffixes

and to denote, respectively, the suffixes of the
nodes in layers 1 through 5 in order. The output of each node
is denoted by .

Layer 1:Each node in layer 1 represents an input linguistic
variable of the network and is used as a buffer to transmit the
input to the next layer, that is to the membership function nodes
representing its linguistic values. Thus, the number of nodes in
this layer is equal to the number of input features in the data. If
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denotes the input to any node in layer 1 then the output of
the node will be

(1)

Layer 2: Each node in layer 2 represents the membership
functions of a linguistic value associated with an input linguistic
variable. Moreover, this layer also does the feature analysis. The
output of these nodes lies in the interval [0,1] and represents the
membership grades of the input with respect to different lin-
guistic values. Therefore, the nodes in this layer acts as fuzzi-
fiers. The most commonly used membership functions are tri-
angular, trapezoidal and bell shaped. Although any one of these
choices may be used, we consider bell shaped membership func-
tions. All connection weights between the nodes in layer 1 and
layer 2 are unity. If there are fuzzy sets associated with the
th feature and if there areinput features then the number of

nodes in this layer would be . The output of a
node in layer 2 is denoted by

(2)

In (2), the subscript denotes the th term (fuzzy set) of the
linguistic variable . and represent the mean and spread
respectively of the bell shaped function representing a term of
the linguistic variable associated to node .

For the purpose of feature selection, the output of this layer
needs to be modified so that every indifferent/bad feature
gets eliminated. If a linguistic variable is not important (or is
indifferent) for describing the system behavior, i.e., for defining
the input-output relation, then the values ofshould not have
any effect on the firing strength of the rules involving that input
variable. This is our main guiding principle for feature analysis
and it makes our approach completely different from the work of
Pal and Chintalapudi [29]. Since for any-norm, ,

, this can be realized if an indifferent feature always
generates a membership of unity. This may appear impossible
at the first sight. Note that for an indifferent feature, all of its
terms (i.e., all of its linguistic values) should have no effect on
the firing strength. Next we explain how this can be realized.

Let us associate a function with each node in layer 2. We
call a modulator function. For an indifferent (or bad) feature
we want all linguistic values defined on that feature to result in
a membership value of 1. To achieve this, we modelas

(3)

Here, is a parameter associated with a particularlin-
guistic variable of which node is a term. From (3) we see
that when is nearly 1 then is nearly , and when
is nearly 0 then is nearly 1. Therefore, for bad features
should get large values (close to 1) and small values (close to 0)
for good features. Thus, for a bad feature, the modulated mem-
bership value would be irrespective
of the value of . Similarly, for a good feature, the modulated
membership value would be the actual
membership value. Since must take values between 0 and 1,

we model by . Thus, the activation function of any node
in layer 2 would be as

(4)

which can be simplified to

(5)

where is computed using (2). The parameter can be
learned by back-propagation or by some other technique. We
see that when takes a large value then tends to and for
small values of , tends to 1, thereby making the feature
indifferent. Therefore, our objective would be to maketake
large values for good features and small values for bad ones
through the process of learning. Layer 2 can be better realized
using two layers of neurons, the first one for computation of
the membership value, and second layer for the modulated
output using (5).

Layer 3:This layer is called the AND layer. Each node in this
layer represents an IF part of a fuzzy rule. There are many op-
erators ( -norms) for fuzzy intersection [14]. Here, we choose
product as the operator for intersection. The number of nodes in
this layer is . The output of the th node in the
layer is

(6)

where is the set of indexes of the nodes in layer 2 connected
to node of layer 3.

Layer 4: This is the OR layer and it represents the THEN
part (i.e., the consequent) of the fuzzy rules. The operation per-
formed by the nodes in this layer is to combine the fuzzy rules
with the same consequent. The nodes in layers 3 and 4 are fully
connected. Let be the connection weight between node
of layer 3 and nodeof layer 4. The weight represents the
certainty factor of a fuzzy rule, which comprises the AND node

in layer 3 as the IF part and the OR nodein layer 4 rep-
resenting the THEN part. These weights are adjustable while
learning the fuzzy rules. If there are fuzzy sets associated
with the th output variable and there areoutput features then
the number of nodes in this layer is . For sim-
plicity let us assume that there is only one output variable and
linguistic values are defined on it. Therefore, the fourth layer has

nodes. For each output linguistic value there are ex-
actly rules having that value as the consequent. Every node
of this layer picks up only one rule from among the associated

rules based on the maximum agreement with facts (in terms
of the product of firing strength and certainty factor) for com-
putation of the defuzzified output. When all certainty factors
are equal, the rules are selected based on the maximum firing
strength. This rule selection is viewed as an OR operation and
realized by the operator. Thus, like Shann and Fu [35] and
Pal and Pal [32], the output of the nodein layer 4 is computed
by

(7)
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where represents the set of indexes of the nodes in layer 3
connected to the nodeof layer 4. Since the learnable weights

’s are interpreted as certainty factors, each should be
nonnegative. The EBP algorithm or any other gradient-based
search algorithm does not guarantee that will remain non-
negative, even if we start the training with nonnegative weights.
Hence, we model by . The is unrestricted in sign
but the effective weight will always be nonnega-
tive. Therefore, the output (activation function) of theth node
in layer 4 will be

(8)

Layer 5: This layer is the defuzzification layer. Each node
of layer 5 represents an output linguistic variable and performs
defuzzification, taking into consideration the effects of all
membership functions of the associated output linguistic vari-
able. The number of nodes in this layer is equal to the number
of output features. Here, we use the centroid defuzzification
scheme, and a node in this layer computes the output as

(9)

In (9), is the set of indexes of the nodes in layer 4 connected
to node in layer 5 and are the spread and mean of the
membership function representing nodein layer 4. The weights
of the links connecting nodes in layer 4 and layer 5 are unity.

III. L EARNING OFFEATURE MODULATORS AND RULES

We now derive the learning rules for the neural fuzzy system
with the activation or node functions described in the previous
section. In the training phase, the concept of back-propagation
is used to minimize the error function

(10)

where is the number of nodes in layer 5 and and are
the target and actual outputs of nodein layer 5 for input data

. The method for adjusting the learnable
weights in layer 4 and the parametersin layer 2 are based on
gradient descent search. We use online update scheme and hence
derive the learning rules using the instantaneous error function

. Without loss, we drop the subscriptin our subsequent dis-
cussions.

The delta value of a node in the network is defined as the
influence of the node output with respect to. The derivation
of the delta values and the adjustment of the weights and the
parameters are presented layer wise next.

Layer 5:The output of the nodes in this layer is given by (9)
and values for this layer, , will be

Thus

(11)

Layer 4:The delta for this layer would be

In other words,

(12)

where is a node in layer 5 with which nodein layer 4 is
connected.

Layer 3:The delta for this layer would be

Hence, the value of will be

if
otherwise.

(13)
Here, is the set of indexes of the nodes in layer 4 connected
with node of layer 3.

Layer 2:Similarly, the for layer 2 would be

Hence,

(14)

In (14), is the set of indexes of nodes in layer 3 connected
with node in layer 2.

With the calculated for each layer now we can derive the
weight updating equation and the equation for updating

or
if
otherwise.

(15)
Similarly, we calculate

or

(16)

where is the set of indexes of nodes in layer 2 connected to
node of layer 1. Hence, the update equations for weights and

are

(17)

and

(18)

In (17) and (18), and are learning coefficients.
The network learns the weights of the links connecting layers

3 and 4 and also the parameters associated with nodes in layer



CHAKRABORTY AND PAL: INTEGRATED FEATURE ANALYSIS 395

2, which do the feature selection. The initial values of’s are
so selected that no feature gets into the network in the begin-
ning. This is realized by assigning very low positive values (say,
0.0001) to each . Thus in the beginning of learning every node
in layer 2 produces a value which is nearly equal to one, and con-
sequently, all features are considered unimportant. As learning
proceeds, the values of’s gets updated in such a way that the
important features, i.e., the features which can reduce the error
rapidly, only pass through the network. Next, we discuss strate-
gies to prune the network to get an “optimal” readable network.

IV. OPTIMIZING THE NETWORK

We started with a network which represented all possible
rules given a set of input and output fuzzy sets. But all pos-
sible rules usually are never needed to represent a system. More-
over, the modulator functions associated with the second layer,
may decide that all of the features are not important. Hence,
some of the nodes present in the network may be redundant,
and presence of these redundant nodes will decrease the read-
ability/interpretability of the network. We know that a SI task
can be easily handled by a conventional multilayered percep-
tron (MLP) network, but we have used a neural fuzzy system
for the purpose of SI to increase the readability of the network,
so that we can understand the relation between the inputs and
outputs in terms of linguistic rules. Thus, to make the network
optimal and more readable, we need to prune it removing re-
dundant nodes and incompatible rules. We next discuss what
we mean by redundant nodes and incompatible rules, and how
to remove them.

A. Pruning Redundant Nodes

Let us consider an SI problem withinput features so that
layer 1 of the network will havenodes. Let the indexes of these
nodes be denoted by( to ). Let be the set of indexes
of the nodes in layer 2 which represents the fuzzy sets on the
feature represented by nodeof layer 1 and let . We
also assume that of the features are indifferent/bad as
dictated by the training. Let be the set of indexes of the nodes
which represents theindifferent/bad features. Hence, any node
with index in layer 1 such that is redundant. Also, any
node in layer 2, where and , is also redundant.
In our network construction, a node in layer 3, can be uniquely
identified by its connections with the nodes in layer 2. We can
indicate a node in layer 3 as
where . Now for any we can group the nodes
in layer 3 into many groups, we call them , where

. Every node in theth group is connected to theth
fuzzy set on the th feature. Let be a node in layer 3 which
belongs to the th group, i.e.,

. Then, for every group , , ,
there exists exactly one node , such
that , , , where is a bad
feature.

Thus, every group of nodes has identical connection struc-
ture with the nodes of layer 2 except for its connection to a node

Fig. 2. Subnet to illustrate redundant nodes.

corresponding to the redundant feature, and as per our con-
struction that particular node produces an output membership
value of 1, for all feature values. Hence, in layer 3 it is enough
to keep only one of the groups and the other groups
of nodes are redundant.

To elucidate the concept of redundant nodes, let us consider
an SI task with two input features and . Therefore, layer
1 of the network for this task will have two nodes, we name
them as and Fig. 2. We also assume that input feature

has three fuzzy sets associated with it and the featurehas
two fuzzy sets associated with it. Hence, layer 2 will have three
nodes, , , and , connected with , and two nodes,

and , connected to . The nodes in layer 3 are named
using their connections to nodes in layer 2, e.g., a layer 3 node
connected to and will be denoted by (Fig. 2).
Now, if, training dictates feature to be redundant then irre-
spective of the values of , each of the nodes , , and

will produce an output of unity. In this case we can group
the nodes in layer 3 into three groups, which are shown by white
nodes, gray nodes, and black nodes in Fig. 2. Sincepro-
duces an output of unity, the gray group has two nodes repre-
senting two antecedent clauses “is ” and “ is .”
Similarly, each of the white and black groups also represents
the same two antecedent clauses as the outputs of bothand

are 1. Hence, it is enough to retain any one of the three
groups. Note that in this case, if two group of nodes are pruned,
then the third layer looses its importance, as it really does not do
any AND-ing operation. But such a situation, will rarely occur
where out of only two input features one is redundant. If it hap-
pens, then the third layer simply transfers its input to the next
layer.

The redundant nodes are not required for the SI task, but they
add to the computational overhead of the network. Therefore,
removal of these nodes is necessary to get an optimal network.
The crucial part of this method is determination of the set of
redundant nodes in layer 1. For this we use the value of
(we call it as ) as an indicator. We have seen earlier, that for
good features takes values close to 1 and for bad features it is
close to 0. Therefore, we fix a small positive thresholdsuch
that if . Next, we summarize the method of the
removal of redundant nodes (here the removal of a node also
means removal of its incoming and outgoing links) followed by
a discussion on the choice of threshold.
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Algorithm: Pruning of redundant nodes
begin

for each in layer 1
if ( )

remove node in layer 1
remove the nodes in layer 2 con-

nected to
end if

end for
do while ( )

let

find ,
remove nodes in

end do
end

1) Selection of the Threshold: Here, we present a guide-
line for selecting the threshold . We have used Gaussian mem-
bership functions for the input fuzzy sets (also for output fuzzy
sets), hence as per our formulation the output of the nodes in
layer 2 can be represented by

where

and . If we consider , then we have

(19)

and

(20)

We know that 99% of the area under the membership func-
tion in (19) lies over the interval . Con-
sequently, the value of , beyond this interval would be negli-
gibly small. For a bad/indifferent feature we want the modulated
membership value to be almost unity over the entire interval

. Therefore, we can safely choose that
value of as the threshold , which makes ( ) at

and at . Thus, from (20), we obtain
the threshold . Note that for such a choice if

, then . If we consider ,
then we obtain , which we use in the simulations.

B. Pruning of Incompatible Rules

According to our construction of the network, the links be-
tween layer 3 and layer 4 represent the rules, and the weights as-
sociated with the links can be interpreted as the certainty factor

Fig. 3. Incompatible rules.

of the rules. But as the nodes in layer 3 and layer 4 are fully
connected, initially, all fuzzy rules are considered. If there are

linguistic values for an output linguistic variable then there
are rules with the same antecedent but different consequents,
which are inherently inconsistent. Let us consider the subnet in
Fig. 3, which shows only the connections used for selecting the
most relevant rule corresponding to the antecedent clause (IF
part) represented by the nodein layer 3. Fig. 3 corresponds
to the following incompatible rules.

If then is , .
Where, is the antecedent clause represented

by node of layer 3, is the th fuzzy set on theth output
variable . The certainty factors of the rules are shown
in parenthesis.

For rule pruning the centroid of the set of incompatible rules
is calculated considering the connections in Fig. 3 as

(21)

Since

(22)

Hence

(23)

in (23) can be viewed as a centroid of the set of incompat-
ible fuzzy rules which corresponds to Fig. 3 with certainty factor

for the rule with antecedent node and consequent node
. We calculate the membership values of in all consequent

fuzzy sets of the incompatible rules. Then the rule which have
the highest membership value for is selected and the other
rules are deleted.

V. TRAINING PHASES

The training of the system takes place in three phases. Phase
1 is called the feature selection phase, where the training is done
on the initial network with all the possible nodes and links. The
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Phase 1 training is considered to be over once the modulator
functions stabilize, i.e., when

where is the vector of values after theth epoch
and is a small positive constant.After Phase 1 training is over,
based on the values of the parameter, the pruning of the re-
dundantnodesis done. After pruning, the output of the second
layer nodes would be as

as the modification of the membership value for the purpose of
feature selection will no longer be required. After pruning, the
network is retrained for a few epochs to adapt its weights in its
new reduced architecture, and this phase is called Phase 2 of
training. Finally, the incompatible rules (links) are pruned and
again the network is allowed to learn in its new architecture,
which is termed as Phase 3 of training. Let denote the
vector of the weights of all the links connecting layer 3 and layer
4 after the th epoch in Phase 2. The Phase 2 training can now
be stopped when

where gives the number of components in . Phase
3 tuning can also be terminated based on the same criteria. Note
that for Phase 3, the number of components of will be
less than that in Phase 2. However in the present simulations we
have arbitrarily chosen the number of epochs. After the Phase
3 training is over, we obtain a network which is readable, and
the rules that describe the input-output relation can be easily
retrieved from the final architecture of the network.

VI. RESULTS

The methodology developed is tested on two data sets taken
from [36] and the performance is found to be quite satisfactory.
We first describe the data sets and then in two separate subsec-
tions we present the results obtained on them.

Of the two data sets one is synthetically generated and the
other is a real life one. The first one is named HANG which is
generated by

(24)

The graph of (24) is shown in Fig. 4. Equation (24) repre-
sents a nonlinear system with two inputsand and a single
output . We randomly took 50 points from
and obtained 50 input-output data points according to (24). To
illustrate the feature analysis capability of the proposed net, we
added two random variables and , in the range [0,5] as
dummy inputs. It is expected that featuresand would be
indifferent to the output of the system.

The second data set is called CHEM. This is the data for
operator’s control of a chemical plant for producing a polymer

Fig. 4. Plot of HANG.

by polymerization of some monomers. There are five input fea-
tures, which a human operator may refer to for control and one
output, that is his/her control. The input variables are monomer
concentration ( ), change of monomer concentration (),
monomer flow rate ( ), two local temperatures inside the plant
( , and ). The only output () is the set point for monomer
flow rate. In [36], there is a set of 70 data points obtained from
an actual plant operation. We name this data set as CHEM and
use as our training data. In [36], it has been reported that the
two local temperatures inside the plant, i.e.,and do not
significantly contributeto the output.

One of the most important issues for rule-based SI is to de-
termine the input and output fuzzy sets. We do not use any so-
phisticated technique in this regard. We found out the domain
of each input and output component and picked up a number of
fuzzy sets to span the whole range with considerable overlap be-
tween adjacent fuzzy sets. As stated earlier we used fuzzy sets
with Gaussian membership functions.

We measure the performance of our system by the sum of
squared errors (SSE) and maximum deviation (MD) of the
output from the target. Lin and Cunningham [27] defined a
performance index (PI) as

(25)

where denotes the output at an output nodeand denotes
the desired output at the same node. However, in [34], it was
pointed out that this PI is monotonically decreasing with ,
i.e., it is possible to obtain a very small PI just by increasing.
Still, we evaluated the performance of our system based on PI
in (25) for the sake of easy comparison.

A. Results on HANG

Here, we used four input fuzzy sets for each input feature and
five output fuzzy sets for the output linguistic variable. The input
and output fuzzy sets are shown in Figs. 5 and 6, respectively.
Hence, the initial architecture for this problem is as described
in Table I.

The network was trained using the data set, HANG with
learning parameters and for 1000 epochs in
Phase 1, 500 epochs in Phase 2, and 3500 epochs in Phase 3.
The SSE was reduced from 57.907 to 1.513. The PI was equal
to 0.01, which is comparable to the result obtained by Sugeno
and Yasukawa [36], who obtained a PI of 0.01. Using this data,
Lin and Cunningham [27] obtained a PI of 0.003, but in their
case they used only the good features, i.e., only features
and . Moreover, we did not tune the membership functions
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Fig. 5. Input membership functions used for HANG.

Fig. 6. Output membership functions used for HANG.

TABLE I
ARCHITECTURE OF THE NEURAL FUZZY SYSTEM USED FORHANG

TABLE II
VALUE OF � FOR DIFFERENT INPUT FEATURES FORHANG

defined on the input and output variables which could improve
the results further.

The values of for the various features and the corre-
sponding values of after the Phase 1 training are
given in Table II. Table II clearly shows that the network
is able to indicate features and as not important and
eliminate their effect completely on the output. In this case, as
Table I shows, we started with 256 nodes in layer 3, i.e., 256
antecedent clauses. Also, as layer 4 contains 5 nodes, the initial
architecture represented rules. But Phase
1 of training indicates that two features are redundant/bad.
Before Phase 2 training the network is pruned of the redundant
nodes, which reduces the antecedent clauses to 16, hence, the
number of rules gets reduced to , i.e., 80. Since after
Phase 2 incompatible rules are removed, the total number of
rules represented by the final architecture is 16. Thus, here we
obtain a 99.75% reduction in the number of rules in the final
architecture.

We also investigated the generalizing capability of the net-
work. A mesh of 256 points in the range was
considered. The network then results in a SSE of 17.07 and a PI
of 0.008. The mean square error on the test set was 0.06. The

Fig. 7. Difference surface for HANG.

TABLE III
NO OF FUZZY SETS FOR DIFFERENT FEATURES USED WITHCHEM

TABLE IV
INITIAL ARCHITECTURE OF THENEURAL FUZZY SYSTEM USED FORCHEM

MD of the desired output from the obtained output was 0.79.
This proves that the network also has good generalizing capa-
bilities. The difference of the correct surface and the surface pro-
duced by our system is shown in Fig. 7.

B. Results on CHEM

As described before, this data set has 5 input features,
namely, and and a single output feature
. The number of input and output fuzzy sets considered are

shown in Table III, and the initial number of nodes in the
different layers are depicted in Table IV. The membership
functions of the various fuzzy sets used for this data set are
depicted in Figs. 8–12

For CHEM the learning parameters were and
and the training was continued for 1000 epochs in

Phase 1, 500 epochs in Phase 2, and 3500 epochs in Phase 3. The
SSE was reduced from 4 382 539 to 16 231. The PI was equal to
0.0021 after Phase 3. Lin and Cunningham [27] obtained a PI of
0.0022. Sugeno and Yasukawa [36] does not provide any perfor-
mance measure of their system on this data. The performance of
our system is compared with that of the real output in Fig. 13,
which exhibits a good match.

The values of and for the various features after the
Phase 1 training are given in Table V. Table V again establishes
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Fig. 8. Membership functions used foru .

Fig. 9. Membership functions used foru .

Fig. 10. Membership functions used foru .

Fig. 11. Membership functions used foru andu .

Fig. 12. Membership functions used fory.

the capability of the proposed system in identifying the features
that are not important. It clearly shows that and do not
contribute significantly to the output of the system—thus they
are indifferent or bad features. This result conforms to the find-
ings of Sugeno and Yasukawa [36], who also found that features

to are the only important ones. In this case, the number of
antecedent clauses at the beginning of Phase 1 training was 128
(Table IV) and the number of nodes in layer 4 was 7. Thus the
initial architecture represented rules. At the end
of Phase 1 two features were identified as not important, and

Fig. 13. Performance comparison of the proposed system.

TABLE V
VALUES OF� FOR DIFFERENT INPUT FEATURES

thus, pruning of redundant nodes yielded 32 antecedent clauses
resulting in rules. After pruning of the incompat-
ible rules, the final architecture represents 32 rules. Therefore,
in this case we obtain 96.42% reduction in the number of rules.

The generalization ability of the network for this data could
not be measured as we could not get any data to do so.

VII. CONCLUSION

A novel scheme for simultaneous feature selection and SI in a
neuro-fuzzy framework has been proposed. It is a five-layer net-
work, which can realize a fuzzy rule-based inferencing system
and at the same time can find out the features which are not
important. We also proposed methodologies for pruning the re-
dundant nodes and incompatible rules that can result in a more
readable network. The proposed system has been implemented
on several data sets and the results found are quite good.

There are a few issues that have not been considered in the
present work. They are as follows. We have not given any guide-
lines to decide on the number of input and output fuzzy sets
and their definitions, which are important for designing a good
system. We did not tune the parameters of different membership
functions used. Tuning of the membership functions is expected
improve the performance further. Our pruning strategy removes
redundant nodes and eliminates incompatible rules but still the
system considers all possible antecedent clauses, which may not
always be required.

The main thrust of this paper was to demonstrate the effec-
tiveness of the proposed network for simultaneous feature anal-
ysis and systems identification and it is found to do a good job
as revealed by the simulation results.
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