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A Method for Evaluating Elicitation Schemes for
Probabilistic Models

Haiqin Wang, Denver Dash, and Marek J. Druzdzel

Abstract—We present an objective approach for evaluating probability
and structure elicitation methods in probabilistic models. The main idea is
to use the model derived from the experts’ experience rather than the true
model as the standard to compare the elicited model. We describe a general
procedure by which it is possible to capture the data corresponding to the
expert’s beliefs, and we present a simple experiment in which we utilize
this technique to compare three methods for eliciting discrete probabilities:
1) direct numerical assessment, 2) the probability wheel, and 3) the scaled
probability bar. We show that for our domain, the scaled probability bar is
the most effective tool for probability elicitation.

Index Terms—Bayesian network, evaluation of elicitation methods,
learning, probability elicitation.

I. INTRODUCTION

As more and more decision-analytic models are being developed to
solve real problems in complex domains, extracting knowledge from
experts is arising as a major obstacle in model building [1]. Quite a
few methods have been proposed to elicit subjective probabilities from
domain experts. These techniques balance quality of elicitation with
the time required to elicit the enormous number of parameters asso-
ciated with many practical models. Structure elicitation is likewise a
tedious problem and formal techniques for this task are even less ma-
ture. Systematic evaluation and comparison of different model elicita-
tion methods are thus becoming of growing concern.

In Bayesian probabilistic models, encoded probabilities reflect the
degree of personal beliefs of the experts. The sole purpose of prob-
ability elicitation is to extract an accurate description of the expert’s
personal beliefs. In order to judge whether the elicitation procedure
has produced an accurate model, therefore, the elicitor must know inti-
mate details about the expert’s knowledge. Unfortunately, these details
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that the elicitor is seeking from the start are hidden from explicit ex-
pressions; so it has not been possible to evaluate elicitation schemes
directly. Less direct methods are the only possibility.

In this paper, we present an objective approach for evaluation of elic-
itation methods that avoids the assumptions and pitfalls of existing ap-
proaches. Our technique is much closer to the ideal “direct” comparison
between the elicited network and the expert’s beliefs. The main idea
is to simulate the training/learning process of an expert by allowing
the trainee to interact with a virtual domain. Underlying the domain
is a Bayesian network that is used to stochastically update the state of
the world in response to the subject’s interaction. Then, by recording
every state of the world that is experienced by the trainee, we can ef-
fectively gain direct access to the trainee’s knowledge. It is quite an
established fact that people are able to learn observed frequencies with
amazing precision if exposed to them for a sufficient time [2]. There-
fore, after training, the trainee obtains some level of knowledge of the
virtual world and, consequently, becomes an expert at a certain pro-
ficiency level. This knowledge, in the form of a database of records
Dexp, can be converted to an “expected” model of the expert^Mexp, by
applying Bayesian learning algorithms toDexp. Finally, this expected
expert model can be directly compared to the model elicited from the
expert to judge the accuracy of elicitation.

Our approach captures a subject’s state of knowledge of the proba-
bilistic events in the toy world. The subject’s experience with the toy
world, rather than the actual model underlying the world, forms the
basis of his or her knowledge. For this reason, the learned model should
be the standard used to evaluate the elicitation schemes, rather than the
original toy model. This technique allows us to avoid the expensive
process of training subjects to fully-proficient expertise. For example,
our expert’s experience may have led him to explore some states of
the world very infrequently. In this case, even if our elicitation proce-
dure is perfect, the elicited probabilities of these states may be signifi-
cantly different from the underlying model. Using the expert’s experi-
ence rather than the original model gets around this problem completely
because we know precisely how many times our expert has visited any
given state of the world.

We use these techniques along with a toy cat–mouse game to eval-
uate the accuracy of three methods for eliciting discrete probabilities
from a fixed structure: 1) direct numerical elicitation, 2) the probability
wheel [3], and 3) the scaled probability bar [4]. We use mean-squared
errors (MSEs) between the learned and the elicited probabilities to
evaluate the accuracy of each of the three methods. We show that, for
our domain, the scaled probability bar is the most effective and least
time-consuming.

We begin with a brief review of the existing evaluation techniques for
probability elicitation methods. Then, we present the relevant learning
equations that allow us to capture a subject’s beliefs in the form of
learned network parameters. We describe the cat–mouse game that we
used to train our subjects and collect data for learning. We present our
experimental design and results followed by a discussion of our find-
ings.

II. EVALUATION SCHEMES OFPROBABILITY ELICITATION METHODS

The difficulty in evaluating elicitation methods is that the true model
is needed in order to be compared to the elicited model. Since the
former is encapsulated in the expert’s mind, it is not readily available
for comparison. Previous comparisons of elicitation schemes followed
essentially three lines of reasoning: 1) expert’s preference, 2) bench-
mark model, and 3) performance measure.

The first approach,expert’s preference, is based on the assumption
that when an elicitation method is preferred by the expert, it will
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yield better quality estimates. While this assumption is plausible, to
our knowledge it has not been tested in practice. There are a variety
of factors that can influence the preference for a method, such as
its simplicity, intuitiveness, or familiarity, and these factors are not
necessarily correlated with accuracy.

The second approach,benchmark model, compares the results of
elicitation using various methods against an existing benchmark (gold
standard) model^M of a domain (or a correct answer that is assumed to
be widely known). Accuracy is measured in terms of deviation of the
elicited model from^M . For example, in a study of people’s perception
of frequencies of lethal events, there was a readily available collec-
tion of actuarial data on those events [5]. Similarly, in another study on
effects of a relative-frequency elicitation question on likelihood judg-
ment accuracy, general knowledge was used[6]. An important assump-
tion underlying the benchmark model method is that the model^M is
shared by all experts. While in some domains this assumption sounds
plausible, human experts notoriously disagree with each other [7], [8],
and an experimenter is never sure whether the model elicited is derived
from a gold standard model or some other model in the expert’s mind.
A debiasing training of experts with an established knowledge base
may help to establish a benchmark model among them. For example,
Horaet al. [9] trained their subjects in a formal probability elicitation
process directed toward assessing the risks from nuclear power gen-
erating stations and compared two elicitation methods for continuous
probability distributions. Their subjects were scientists and engineers
who quite likely possessed extensive background knowledge about the
risks. Effectively, it is hard in this approach to make an argument that
the elicited model is close to the experts’ actual knowledge, as the latter
is simply unknown.

The third approach,performance measure, takes a pragmatic stand
and compares the predictive performance of models derived using var-
ious methods. This reflects, in practice, how well calibrated the expert’s
knowledge is [10]. An example of this approach is the study performed
by van der Gaaget al. [11], who used prediction accuracy to evaluate
their probability elicitation method in the construction of a complex
influence diagram for cancer treatment. While it is plausible that the
quality of the resulting model is correlated with the accuracy of the
elicitation method, this approach does not disambiguate the quality of
the expert’s knowledge from the quality of the elicitation scheme. A
model that performs well can do so because it was based on superior
expert knowledge, even if the elicitation scheme was poor. Conversely,
a model that performs poorly can do so because the expert’s knowledge
is inferior, even if the elicitation scheme is perfect.

The next section introduces an evaluation method that we believe
does not suffer from the problems identified in the existing evaluation
schemes.

III. D ATA MINING EXPERT BELIEFS

To evaluate the accuracy of an elicitation method is to make a judg-
ment about how good the elicited model reflects the expert’s real de-
gree of personal belief. The closer the elicited model reflects the ex-
pert’s real beliefs, the more accurate we say the method of elicitation
is. But how can we measure an expert’s real degree of personal belief?
What can be used as a standard to evaluate the accuracy of a subjective
probability? What we need is a method to capture the knowledge/be-
liefs that are held by our expert, then we need a method to construct a
model entailed by that knowledge.

On the other hand, if we have a set of records in the form of a data-
base, there are many machine-learning algorithms that are available to
learn various types of models from that database. In this section, we
will present the theory needed to learn probabilistic network models
from data.

A. Capturing the Expert’s Knowledge

Complicating this effort is the fact that a person becomes an expert
from a novice in a process of acquiring knowledge from a wide array
of sources. Sources of knowledge range from reading books, talking
to other experts, and most importantly for us, to observing a series of
instances in the real world. In the method that we are proposing, we
createan expert in a particular toy domain. In the process, we confine
the source of knowledge available to that expert to be strictly of the
latter type; namely, a series of observations of the real world. Being
assured that our expert accumulates only this knowledge allows a par-
ticularly simple analysis of what our expert’s beliefs about the domain
should be. Throughout the paper, we will refer to this type of knowl-
edge asobservational knowledge.

If we assume that we have an expert whose entire knowledge of a
domain is observational, then the expert’s knowledge can be viewed
as originating entirely from a database,Dexp, of records filled with
instances of the domain our expert has committed to memory. If we
further assume that we have recorded all relevant instances of the do-
main that our expert has actually observed into a databaseD, then our
databaseD will be identical toDexp under the assumption that the
subject has paid attention to the occurrence of each event during his or
her observation process. Thus, in any experiment designed to measure
Dexp, it will be important to incentivate the subject in some way to pay
attention to all events in the world.

B. Learning Bayesian Networks From Data

Assuming that we can assessDexp correctly, we must now construct
a probabilistic model that is most consistent with that data. Much work
has been done on this problem in recent years [12], [13], [14], [20].
We will present just the key results of some of this work here. A good
review of the literature can be found in [15].

Bayesian methods [14] for learning a probabilistic model over a set
of variablesX = fX1; X2; . . . ; Xng, assume that the learner be-
gins with a set of prior beliefs governing the domain. In the case of
an unrestricted multinomial distribution, each variableXi is discrete,
havingri possible valuesx1i ; . . . ; x

r

i , wherei = 1; . . . ; n. In this
case, it is assumed for convenience that the priors take the form of
a Dirichlet distribution [16], having parameters�ijk. One common
sense interpretation of�ijk in a Bayesian network capturing this do-
main is that it is the number of times an expert has observed vari-
ableXi = xki when the parents ofXi achieved thejth configuration:
Pai = pa

j
i . As a bit of notation, we define�ijk to be the true prob-

ability thatXi = xki given thatPai = pa
j
i . In other words, it is the

conditional probability parameter corresponding to the�ijk. We use
���ijijij = f�ijkj1 <= k <= rig to denote the conditional probability
distribution ofXi under thejth parent configuration. We assumepa-
rameter independence, which states that���ijijij is independent of���ijijij for
all j 6= j0.

In the Bayesian approach, the data setD is considered fixed. To
find a good network structure which encodes the physical joint proba-
bility distributions forX, we need to select a network structure that has
highest posterior probabilityp(SjD). Assuming all possible structures
are equally likely,p(SjD) is proportional to the marginal likelihood
of the data given structurep(DjS). Under the assumption of complete
data setD, Dirichlet prior parameters�ijk , and parameter indepen-
dence, the most likely structure can be selected using the following
scoring metric:

p(DjS) =

n

i=1

q

j=1

�(�ij)

�(�ij +Nij)
�

r

k=1

�(�ijk +Nijk)

�(�ijk)
(1)
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Fig. 1. Screen snapshot of the cat–mouse game.

and the expected value of the network parameters given a structure can
be expressed as

^�ijk =
�ijk +Nijk

�ij +Nij

: (2)

In (1) and (2),� is the gamma function,Nijk are the number of times in
D that the variableXi took on valuexki when the parents ofXi took
on configurationpaji , �ij = r

k=1
�ijk, andNij = r

k=1
Nijk.

Equation (2) computes the probability parameters by usingmaximum
a posterioriprobability. The� parameters represent the experts’ do-
main knowledge and result in a different set of probability parameter
distributions from maximum likelihood parameters.

For a domain where the expert has little or no previous experience,
we assume that all�ijk are equal and small. Under this assumption,
when no data are present for a particular(i; j) configuration of the
world (i.e.,Nij = 0), then theNijk terms drop out of (2) and the
small equal priors produce a uniform distribution. However, even if a
small amount of data is involved, the priors have little influence on the
parameters learned.

For example, assume we are estimating the probability that a given
coin will come up heads on an arbitrary toss, and assume that for our
subject�heads = �tails = 0:001. Such a low prior indicates that our
subject has had very little experience with coins, but still assumes ini-
tially that the coin is equally likely to be weighted toward heads or tails.
After one flip of the coin (say a “heads” outcome), our subject’s esti-
mate ofP (heads) = (1 + 0:001)=(1 + 0:002) � 1, so our subject’s
initial belief in uniformity has quickly been affected by the data. On the
other hand, if our subject’s initial beliefs were�heads = �tails = 10,
then after one flip, his or her new assessment would beP (heads) =
11=21 � 0:5, much closer to his initial estimate. Therefore, the larger
the� parameters, the more weight our subject’s expertise will play into
his estimate of parameters.

IV. EVALUATING ELICITATION SCHEMES WITH A TOY

VIRTUAL WORLD

We designed a game in which a subject can move a cat to capture a
mouse. We recorded the state changes of the cat–mouse game during
the game playing process. What each subject experiences is unique
and depends on the subject’s actions. The recorded data allows for the
learning of the probabilistic model of the toy world as seen by the sub-
ject. This learned model, in turn, gives us a standard by which to mea-
sure the accuracy of the model elicited from the subject.

A. The Cat and Mouse Game: A toy Virtual World

Our toy world includes three characters: a cat and two mice. The
objective of the game is for the cat to capture a mouse. There are 12
possible positions indicated by the grid cells in a horizontal line (see
Fig. 1). The cat can move one cell at a time between the current cell and

TABLE I
YELLOW MOUSE AND GREY MOUSE

TABLE II
FOUR STATES OF THECAT

an adjacent cell. One and only one mouse is present at any given time,
and it can only bounce back and forth between two positions on each
side of the screen. The two special positions for the mice are called
left-posandright-pos, respectively. When the cat enters the cell/posi-
tion where the mouse is located, it catches the mouse and the game is
over.

The two mice are characterized by a color:yellowor grey. The cat
can be in one of four states:normal, angry, frustrated, andalert. Four
icons are used to represent the states of the cat. Tables I and II illustrate
the icons we used in the game.1

Two buttons, labeledmoveandgo, respectively, are provided for the
subject to manipulate the position of the cat. After the subject clicks a
button, the cat moves to either the left or the right. Its moving direction
is uncertain and depends on the current state of the world (i.e., which
mouse is present, the position of the mouse, the state of the cat, and
which button the subject has clicked). There is a short delay (half a
second in our experiment) between button clicks during which the but-
tons are disabled. This prevents the subject from clicking the buttons
too frequently and paying little attention to probabilistic relationships
among the variables. It allows the subject to have enough time to ob-
serve how the moving direction of the cat is influenced by the state of
the world and the subject’s own actions.2

After this delay, the toy world is updated to a new state. One mouse
may disappear and another may show up instead. The mouse may ap-
pear in a different position. The cat may change its state. The two but-
tons for the subject’s action become enabled.

In the beginning, the yellow mouse is put in theleft-posposition.
The cat is put in the farthest position away from the mouse. After the
cat has caught a mouse, the game ends and a new round of the game
begins. A new game always begins with the same initial positions for
both the mouse and the cat, but the states of the rest of the world are
uncertain.

Scoring rules are adopted to encourage the subject’s involvement
in the game. Whenever the cat captures a mouse, the subject’s score
increases as an incentive. Also, the game emits a celebratory sound as
a reward for the subject.

1Our experimental subjects only saw the figures as the representation of the
cat’s states and mouse color. The verbal expressions are used to encode the cat’s
states and mouse color in the Bayesian network for the cat–mouse world due to
the restraint of the modeling environment. These labels, “normal,” “angry,” etc.,
were not provided to the subjects during game play but were used, together with
the pictures, to identify the states of the cat during the elicitation process.

2The delay length of the disabled state of the buttons was selected based on
our experiments with pilot subjects. We first tried 1 s and 2 s as the delay, but
our pilot subjects soon complained the delay was too long and made the game
boring. Therefore, we selected the maximum delay (half a second) with which
the subjects still felt comfortable.
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Fig. 2. Bayesian network of the cat–mouse world.

B. The Bayesian Network for the Cat–Mouse World

The cat–mouse world is based on a simple Bayesian network (see
Fig. 2) consisting of five variables:Action, Mouse Color, Mouse Posi-
tion, Cat State, andCat Moving Direction.

VariableAction with two outcomes,moveandgo, models the ob-
served subject’s action.Mouse Color, which could beyellowandgrey,
defines which of the two mice is present.Mouse Positionindicates the
current position of the present mouse:left-posandright-pos. Cat State
represents four possible states of the cat:normal, angry, frustrated, and
alert. The last variable,Cat Moving Direction, reflects the moving di-
rection of the cat in the current step. Two directions are defined:left
andright.

The five variables influence each other probabilistically. The states
of the variables change at each step according to the probabilities en-
coded in the network. Their probability distributions, either prior or
conditional, were assigned randomly when the network was built to
avoid biases to a particular probability distribution. One exception is
the probability distribution of theActionnode. The value of theAction
node is always instantiated to the state that corresponds to the subject’s
action, and hence, the prior probability distribution becomes irrelevant.
We chose the two nearly identical action words,moveandgo, to avoid
any semantic difference which could have a potential influence on the
subjects’ preference.

C. The State Change of the World by Sampling

After the subject has clicked a button to take an action, the state of
the world and the cat’s moving direction are updated. The new states
are selected by generating a stochastic sample on the cat–mouse net-
work following the partial parent order of the graph. We use proba-
bilistic logic sampling [17] to generate node states on the basis of their
prior probabilities of occurrence. By choosing more likely states more
often, we simulate the state changes of the toy world. The subjects are
exposed to changes in the world that are an effect of their actions and
the underlying joint probability distribution.

D. Collecting Data for Expert’s Knowledge

Every time the state of the toy world changes, it is recorded auto-
matically. In our data set, a case consists of the outcomes of all five
variables encoded in the cat–mouse Bayesian network. The database
of a subject’s experience contains all states of the world that the sub-
ject has seen and it is the subject’s observational knowledge about the
toy virtual world. This knowledge comes completely from the subject’s
game-playing experience. Therefore, the records constitute a perfect
data set for learning the subject’s knowledge about the cat–mouse do-
main.

We used (1) and (2) in the learning algorithm to learn the desired
network from data. The assumptions required were satisfied. First, the
probability distributions were unrestricted multinomial. Second, our
data set was complete. Third, we assigned the probability parameters
randomly in the cat–mouse Bayesian network and made them satisfy
parameter independence.

V. EXPERIMENTAL DESIGN

We demonstrated our method in an experimental study that inves-
tigated the effectiveness of three elicitation methods: 1) asking for
numerical parameters directly, 2) translating graphical proportions
by using the probability wheel, and 3) using the scaled probability
bar. We used the graphical modeling systemGeNIe[18] and built a
module of cat–mouse game inGeNIeas well.

A. Subjects

The subjects were 28 graduate students enrolled in an introductory
decision analysis course at the University of Pittsburgh. They received
partial course credit for their participation.

B. Design and Procedure

The subjects were first asked to read the instructions from a help
window that introduced the game characters and the game rules. They
were asked to pay attention to the probabilistic influences from the state
of the toy world and their action choice to the direction of the cat’s
movement. The subjects were told that knowledge of these probabilistic
relationships would help to improve their performance. To motivate the
subjects to perform well, extra credit was offered for higher scores in
the cat–mouse game and lower errors of estimates of the probabilities
in elicitation.

Each trial included two stages. The subjects first played the
cat–mouse game for 30 min. The data about their experienced states
of the toy virtual world were automatically recorded. The data sets in
our experiment typically contained between 400 and 800 records.

The second stage involved probability elicitation by each of the three
elicitation methods. The subjects were shown the Bayesian network
structure in Fig. 2 and were asked to estimate the conditional proba-
bility table (CPT) for the nodeCat Moving Directionby:

1) typing the numerical parameters directly in CPTs;
2) giving graphical proportions in the probability wheel; and
3) giving graphical proportions in the scaled probability bar.

We applied here a within-subject design in which each subject used the
three elicitation methods. To offset the possible carry-over effects, we
counterbalanced the order of method usage across our subjects.

The CPT elements�ijk elicited were compared to^�ijk, the CPT
elements learned by applying (2) to the subjects’ acquired data. The
MSE of the parameters was calculated as

MSE =
1

N

N

i=1

(�ijk � �̂ijk)
2
:

In order to evaluate the speed of the elicitation methods, we also
recorded the time taken for each elicitation procedure.

Since our domain experts had very little knowledge about the proba-
bility distributions of the cat–mouse domain prior to playing the game,
we assigned small uniform values to the� parameters for the learning
algorithm. For all possible values ofi; j; k, we used the assignment
�ijk = 5 and�ijk = 10, respectively. In order to test purely data-
based learning, we also used�ijk = 10�4.

C. Results

Table III shows the means and standard deviations of the MSEs of the
three elicitation methods when compared to the probabilities learned
with different� parameters. A time comparison is also shown as the
last two lines in the table. Fig. 3 plots the elicitation time and MSE
(� = 5) for each of the three elicitation methods.

For each pair of elicitation methods, we conducted one-tailed, paired
samplet test for comparison of accuracy corresponding to the learned
results with different�s. Three similart tests were also done for time
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TABLE III
MEANS (x) AND STANDARD DEVIATIONS (s) FOR MSEsAND TIME FOR

EACH OF THE THREE ELICITATION METHODS

Fig. 3. MSE (� = 5) and elicitation time for each of the three methods tested.

TABLE IV
p VALUES OF ONE-TAILED t TESTS FOREACH PAIR OF THE

ELICITATION METHODS

comparison. Thep values which resulted from thet tests are shown in
Table IV.

The t tests showed that scaled probability bar performed signifi-
cantly better than direct numerical elicitationp � 0:05 for all three
values of the learning parameter�. Probability wheel was marginally
better than direct numerical elicitationp < 0:1 for � = 5 and� = 10.
Thep value (0.12) was a little higher when� = 10

�4. However, prob-
ability wheel was almost as accurate as scaled probability bar. Even
though the latter had a slightly lower MSE, the difference was not sta-
tistically significant (p � 0:20 under all values of�).

From thet tests conducted for the comparison of elicitation time,
we can see that generally using scaled probability bar took the shortest
time (p � 0:007). However, using probability wheel did not improve
the time compared with direct numerical assessment (p = 0:37).

D. Discussion

The experimental results showed that the learning approach to eval-
uate elicitation methods for probabilities is quite robust. From the re-
sults of the paired samplet tests, we can draw a conclusion about the
accuracy of the three elicitation methods. Both the scaled probability
bar and the probability wheel performed better than direct numerical
elicitation, though the latter difference was not statistically significant.
Scaled probability bar may be more accurate than probability wheel.
However, the difference was again not quite statistically significant at
p = 0:05 level. Considering time taken in elicitation processes, we can
order the three methods according to their speed: probability bar, prob-
ability wheel, and direct numerical elicitation.

An interesting effect is evident in Table IV. When the value of the
prior parameters was 5 or 10, the MSE for all techniques is lower than
when the�s are set to 10�4. In fact, when the� parameters were set to
very small values, it was observed that the probabilities elicited from
the experts were closer to thetruemodel than they were to theexpected
models calculated with the� parameters. We believe that the reason
for this discrepancy is the following. The subjects will naturally have a
small but substantial prior belief of uniformity in the parameters, which
may act like an anchor in the elicitation. For example, if a subject were
given a loaded coin with the instruction to estimate the probability of
the coin coming up heads, he or she is likely to require at least a few (5
or 10) flips of the coin before concluding that the coin is weighted one
way or the other.

When the� parameters are set to 5 and 10, the elicited models
are closer to the expected models than they are to the original model.
Furthermore, our results were observed to be statistically significant;
whereas with� = 10

�4 our results were not significant. Another
way of looking at this result is that if the user explored one configu-
ration of a node’s parents only a few times, then the small-� parameter
model would produce very extreme, nonsmooth probability distribu-
tions under certain parent configuration. For example, if the user ex-
plored one configuration just one time, then the low-� model would
produce a probability distribution with the one visited state having
probability�1; whereas, a sensible user would not predict such an ex-
treme distribution, but would rather assume that the probability was
still roughly uniformly distributed.

This observation may be related to the well-known finding that
people tend to overestimate very low probabilities [5]. In fact, what
may be happening in the case of low-probability events is that the
person’s assumption of weak prior uniformity is smoothing the
distribution, producing “erroneous” estimates. This fact may suggest
a means of correcting for low-probability event estimates by first
subtracting out the small uniform distribution from the assessed
distribution.

One objection that could be raised to our technique is that a 30-min
training session is not sufficient for the subjects to achieve expert status.
This would be a key objection if we were comparing the elicited models
to the original model underlying the toy-world; however, the main
point in using the trainees’ actual acquired knowledge is to deflect this
criticism: we are comparing the elicited model precisely to the knowl-
edge that we know our trainee has observed. In principle, this technique
should work regardless of the expertise of the trainee. Nonetheless, we
acknowledge that there may be some transition during the process of
achieving true expertise that alters the trainees’ elicitation behavior. We
assume that these effects will affect the elicitation techniques in a uni-
form way, so that the relative assessment of elicitation techniques is not
affected.

It may be that the effectiveness of different elicitation techniques
varies from expert to expert. In that case, our evaluation technique can
provide a relatively quick and effective way to judge which elicitation
procedure is most effective for a given expert. The expert can be quickly
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trained on a toy model, and then our experimental procedure can be
used to decide which elicitation technique is most effective for that
particular expert.

VI. CONCLUSION

We proposed a method that allows for an objective evaluation of
the elicitation methods for probability distributions and the structure
of probabilistic models. Our method is based on machine learning the
expert’s beliefs when data of the expert’s learning knowledge is avail-
able. We illustrated the evaluation approach with a toy virtual world and
evaluated three elicitation methods for probabilities: 1) direct numer-
ical elicitation, 2) the probability wheel, and 3) the scaled probability
bar. Based on the results of our experiment, we concluded that the prob-
ability wheel and the scaled probability bar both performed better than
direct numerical elicitation, which supports the proposition that graph-
ical tools are useful in eliciting experts’ beliefs.
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