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the world in response to the subject’s interaction. Then, by recording
every state of the world that is experienced by the trainee, we can ef-
fectively gain direct access to the trainee’s knowledge. It is quite an
established fact that people are able to learn observed frequencies with

A Method for Evaluating Elicitation Schemes for amagzing precision if exposed to them for a sufficient time [2]. There-
Probabilistic Models fore, after training, the trainee obtains some level of knowledge of the
virtual world and, consequently, becomes an expert at a certain pro-

Haigin Wang, Denver Dash, and Marek J. Druzdzel ficiency level. This knowledge, in the form of a database of records

D.;, can be converted to an “expected” model of the exﬂfé,&tp , by
applying Bayesian learning algorithms .., . Finally, this expected

Abstract—We present an objective approach for evaluating probability expert model can be directly compared to the model elicited from the
and structure elicitation methods in probabilistic models. The main idea is expert to judge the accuracy of elicitation.

to use the model derived from the experts’ experience rather than the true o
model as the standard to compare the elicited model. We describe a general Our approac_:h captures a subject’s St_ate of knowledge Of the proba-
procedure by which it is possible to capture the data corresponding to the bilistic events in the toy world. The subject’'s experience with the toy
expert's beliefs, and we present a simple experiment in which we utilize world, rather than the actual model underlying the world, forms the
this technique to compare three methods for eliciting discrete probabilities:  ,5qjs of his or her knowledge. For this reason, the learned model should
1) direct numerical assessment, 2) the probability wheel, and 3) the scaled be th dard d | he elicitati h her th h
probability bar. We show that for our domain, the scaled probability bar is eft_ e standard use t?’ eva ua_te the elicitation sc emes’ rathert a_n the
the most effective tool for probability elicitation. original toy model. This technique allows us to avoid the expensive
Index Terms—Bayesian network, evaluation of elicitation methods, process Of,trammg.SUbJECtS tohfully-lprgflhc_lent eXpe{tlse' For example,f
learning, probability elicitation. our expert’s experience may have led him to_exp ore some states o
the world very infrequently. In this case, even if our elicitation proce-
dure is perfect, the elicited probabilities of these states may be signifi-

|. INTRODUCTION cantly different from the underlying model. Using the expert’s experi-

As more and more decision-analytic models are being developecﬁgce rather than the original model gets ground this problem cqmpletely
solve real problems in complex domains, extracting knowledge froffc2uSe We know precisely how many times our expert has visited any

experts is arising as a major obstacle in model building [1]. Quiteq;ven state of the world.

few methods have been proposed to elicit subjective probabilities from/Ve USe these techniques along with a toy cat-mouse game to eval-

domain experts. These techniques balance quality of elicitation wift€ the accuracy of three methods for eliciting discrete probabilities
the time required to elicit the enormous number of parameters asigM @ fixed structure: 1) direct numerical elicitation, 2) the probability
ciated with many practical models. Structure elicitation is likewise 4N€€! [3], and 3) the scaled probability bar [4]. We use mean-squared
tedious problem and formal techniques for this task are even less fHO"S (MSES) between the learned and the elicited probabilities to
ture. Systematic evaluation and comparison of different model elicigvaluate t_he accuracy of each Of the three methods. We _show that, for
tion methods are thus becoming of growing concern. our domain, the scaled probability bar is the most effective and least

In Bayesian probabilistic models, encoded probabilities reflect t{ige-consuming. _ . , .
degree of personal beliefs of the experts. The sole purpose of probWe b_e_gln V\_/lt_h a.brlef review of the existing evaluation technlquesf_or
ability elicitation is to extract an accurate description of the expert®°bability elicitation methods. Then, we present the relevant learning
personal beliefs. In order to judge whether the elicitation procedufguations that allow us to capture a subject's beliefs in the form of
has produced an accurate model, therefore, the elicitor must know illﬁarned network parameters. We describe the cat-mouse game that we

mate details about the expert's knowledge. Unfortunately, these det&f§d t0 train our subjects and collect data for learning. We present our
experimental design and results followed by a discussion of our find-

ings.
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yield better quality estimates. While this assumption is plausible, fa Capturing the Expert's Knowledge

our knowledge it has not been tested in practice. There are a variet% . . .
) omplicating this effort is the fact that a person becomes an expert
of factors that can influence the preference for a method, such ,as

ST T L from a novice in a process of acquiring knowledge from a wide array
its simplicity, intuitiveness, or familiarity, and these factors are no . .
: . of sources. Sources of knowledge range from reading books, talking
necessarily correlated with accuracy. . . .
to other experts, and most importantly for us, to observing a series of
The second approacbenchmark modelcompares the results of . . )
o . . . L instances in the real world. In the method that we are proposing, we
elicitation using various methods against an existing benchmark (gal . . : )
- . . reatean expert in a particular toy domain. In the process, we confine
standard) modeV/ of a domain (or a correct answer that is assumed . -
! ) . o e source of knowledge available to that expert to be strictly of the
be widely known). Accuracy is measured in terms of deviation of the i . . -
- - ) ; . latter type; namely, a series of observations of the real world. Being
elicited model froml/. For example, in a study of people’s perception

. . . assured that our expert accumulates only this knowledge allows a par-
of frequencies of lethal events, there was a readily available collec- . : \ : .
. i . . icularly simple analysis of what our expert’s beliefs about the domain
tion of actuarial data on those events [5]. Similarly, in another study o : -

. o . S .~ should be. Throughout the paper, we will refer to this type of knowl-
effects of a relative-frequency elicitation question on likelihood jud

. ge_dge a®bservational knowledge
ment accuracy, general knowledge was used[6]. An important assUMBit we assume that we have an expert whose entire knowledge of a
tion underlying the benchmark model method is that the mddes P g

shared by all experts. While in some domains this assumption sourcljc%nam is observational, then the expert's knowledge can be viewed

plausible, human experts notoriously disagree with each other [7], [%ISS originating entirely from a database..,, of records filled with

. : S ances of the domain our expert has committed to memory. If we
and an experimenter is never sure whether the model elicited is der|¥e .
. .. 1yrther assume that we have recorded all relevant instances of the do-
from a gold standard model or some other model in the expert’s min

A debiasing training of experts with an established knowledge ba%‘gm thatt our expert has actually observed into a databasien our

. atabaseD will be identical to D..,, under the assumption that the
may help to establish a benchmark model among them. For example, - . ; ;
. . . . " .. 'subject has paid attention to the occurrence of each event during his or
Horaet al.[9] trained their subjects in a formal probability elicitation . . . -
. . . her observation process. Thus, in any experiment designed to measure
process directed toward assessing the risks from nuclear power gen- .. . . . . L
. ) o : <p» It Will be important to incentivate the subjectin some way to pay
erating stations and compared two elicitation methods for continuou : :
e : ; - . _aftention to all events in the world.
probability distributions. Their subjects were scientists and engineers
who quite likely possessed extensive background knowledge about the
risks. Effectively, it is hard in this approach to make an argument th@t Learning Bayesian Networks From Data

the elicited model is close to the experts’ actual knowledge, as the latte,rb\ssuming that we can asseBs., correctly, we must now construct

is sirr]nplz_ udnknown. ; K . q a probabilistic model that is most consistent with that data. Much work
The third approactperformance measuréakes a pragmatic stan has been done on this problem in recent years [12], [13], [14], [20].

and compares the predictive performance of models derived using MRle will present just the key results of some of this work here. A good
ious methods. This reflects, in practice, how well calibrated the experfS iaw of the literature can be found in [15]

knowledge is [10]. An example of this approach is the study performedBayesian methods [14] for learning a probabilistic model over a set
by van der Gaaet al.[11], who used prediction accuracy to evaluat%f variablesX = {Xi, X» X,.}, assume that the learner be-
their probability elicitation method in the construction of a comple ins with a set of prio; béliefs goverr’ﬂng the domain. In the case of

influence diagram for cancer treatment. While it is plausible that t ¥ unrestricted multinomial distribution, each variaBileis discrete
quality of the resulting model is correlated with the accuracy of t %vingrv possible values:! e Wherei -1 S thisl

elicitation method, this approach does not disambiguate the quality %.Se, it is assumed for convenience that the priors take the form of

the expert's knowledge from the quality of tht_e elicitation scheme. é Dirichlet distribution [16], having parameters, . One common
model that performs Wel.l can d_o_so _because it was based on supe, Shse interpretation ef; ;. in a Bayesian network capturing this do-

expert knowledge, even if the elicitation scheme was poor. Convers ain is that it is the number of times an expert has observed vari-
amodel that performs poorly can do so because the expert’s knowle 9% Y. — 2* when the parents of; achieved the'th configuration:
is inferior, even if the elicitation scheme is perfect. f ' X

. ! - Pa; = pa’. As a bit of notation, we definé; ;.. to be the true prob-
The next section introduces an evaluation method that we be|leé1§ Pds Lk P

. P L _ability that X; = xh given thatPa; = pa?. In other words, it is the
does not suffer from the problems identified in the existing evaluat'o&nditional probability parameter corresponding to s, . We use
schemes. o

0:; = {#:;1|1 <= k <= r;} to denote the conditional probability
distribution of X; under thejth parent configuration. We assurpa-
lIl. DATA MINING EXPERT BELIEES r&lllm'e;er'i/ndependencwhich states tha;; is independent of;;, for
all i
To evaluate the accuracy of an elicitation method is to make ajudg-é theJ Bayesian approach, the data Beis considered fixed. To
ment about how good the elicited model reflects the expert’s real divd a good network structure which encodes the physical joint proba-
gree of personal belief. The closer the elicited model reflects the axtity distributions forX, we need to select a network structure that has
pert's real beliefs, the more accurate we say the method of elicitatinighest posterior probability(S| D). Assuming all possible structures
is. But how can we measure an expert’s real degree of personal beligi@ equally likelyp(S|D) is proportional to the marginal likelihood
What can be used as a standard to evaluate the accuracy of a subjegfiyge data given structugg D|S). Under the assumption of complete
probability? What we need is a method to capture the knowledge/kgita setD, Dirichlet prior parameters,;,, and parameter indepen-
liefs that are held by our expert, then we need a method to construegfehce, the most likely structure can be selected using the following
model entailed by that knowledge. scoring metric:
On the other hand, if we have a set of records in the form of a data-
base, there are many machine-learning algorithms that are available to
learn various types of models from that database. In this section, we " , v -
will present the theory needed to learn probabilistic network models  ,,(p|s) = H H Dlaij) H D(aije + Niji) (1)
from data. laij + Nij) 25 Tlovie)

i=1j=1
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w TABLE |
VAT T BT YELLOW MOUSE AND GREY MOUSE
I

yellow | grey

B sl BB yellow.
LERL E
e |

TABLE I
FOUR STATES OF THECAT

Fig. 1. Screen snapshot of the cat-mouse game.

normal | angry | frustrated | alert

an adjacent cell. One and only one mouse is present at any given time,
and it can only bounce back and forth between two positions on each
In (1) and (2)I is the gamma functiony; ;. are the number of timesin side of the screen. The two special positions for the mice are called
D that the variableX; took on valuer! when the parents of; took left-posandright-pos respectively. When the cat enters the cell/posi-
on configurationpa?, a;; = Y12, aije, andN;; = Y12, Ny, tion where the mouse is located, it catches the mouse and the game is
Equation (2) computes the probability parameters by usiagimum over.
a posterioriprobability. The« parameters represent the experts’ do- The two mice are characterized by a colgellowor grey. The cat
main knowledge and result in a different set of probability parametean be in one of four statesormal, angry, frustrated andalert. Four
distributions from maximum likelihood parameters. icons are used to represent the states of the cat. Tables | and Il illustrate
For a domain where the expert has little or no previous experientkee icons we used in the garhe.
we assume that all; ;. are equal and small. Under this assumption, Two buttons, labelechoveandgo, respectively, are provided for the
when no data are present for a particular;j) configuration of the subject to manipulate the position of the cat. After the subject clicks a
world (i.e., N;; = 0), then theV;;;. terms drop out of (2) and the button, the cat moves to either the left or the right. Its moving direction
small equal priors produce a uniform distribution. However, even ifia uncertain and depends on the current state of the world (i.e., which
small amount of data is involved, the priors have little influence on thmouse is present, the position of the mouse, the state of the cat, and
parameters learned. which button the subject has clicked). There is a short delay (half a
For example, assume we are estimating the probability that a givegcond in our experiment) between button clicks during which the but-
coin will come up heads on an arbitrary toss, and assume that for eems are disabled. This prevents the subject from clicking the buttons
subjectaneads = ataiis = 0.001. Such a low prior indicates that our too frequently and paying little attention to probabilistic relationships
subject has had very little experience with coins, but still assumes iaimong the variables. It allows the subject to have enough time to ob-
tially that the coin is equally likely to be weighted toward heads or tailserve how the moving direction of the cat is influenced by the state of
After one flip of the coin (say a “heads” outcome), our subject’s estihe world and the subject’s own actiohs.
mate of P(heads) = (14 0.001)/(1 4 0.002) = 1, so our subject’s  After this delay, the toy world is updated to a new state. One mouse
initial belief in uniformity has quickly been affected by the data. On thenay disappear and another may show up instead. The mouse may ap-
other hand, if our subject’s initial beliefs wef@..4s = a4aiis = 10,  pear in a different position. The cat may change its state. The two but-
then after one flip, his or her new assessment woul@becads) =  tons for the subject’s action become enabled.
11/21 = 0.5, much closer to his initial estimate. Therefore, the larger In the beginning, the yellow mouse is put in thdt-posposition.
thea parameters, the more weight our subject’s expertise will play infthe cat is put in the farthest position away from the mouse. After the
his estimate of parameters. cat has caught a mouse, the game ends and a new round of the game
begins. A new game always begins with the same initial positions for
both the mouse and the cat, but the states of the rest of the world are
uncertain.
Scoring rules are adopted to encourage the subject’s involvement
We designed a game in which a subject can move a cat to captuia the game. Whenever the cat captures a mouse, the subject’s score
mouse. We recorded the state changes of the cat—-mouse game dunig@ases as an incentive. Also, the game emits a celebratory sound as
the game playing process. What each subject experiences is unigueward for the subject.
and depends on the subject’s actions. The recorded data allows for the
learning of the probabilistic model of the toy world as seen by the sub-15y; experimental subjects only saw the figures as the representation of the
ject. This learned model, in turn, gives us a standard by which to meat's states and mouse color. The verbal expressions are used to encode the cat's
sure the accuracy of the model elicited from the subject. states and mouse color in the Bayesian network for the cat—-mouse world due to
the restraint of the modeling environment. These labels, “normal,” “angry,” etc.,
were not provided to the subjects during game play but were used, together with
A. The Cat and Mouse Game: A toy Virtual World the pictures, to identify the states of the cat during the elicitation process.
Our toy world includes three characters: a cat and two mice. TheZThe delay length of the disabled state of the buttons was selected based on

o . our experiments with pilot subjects. We first tried 1 s and 2 s as the delay, but
objective of the game is for the cat to capture a mouse. There are pilot subjects soon complained the delay was too long and made the game

possible positions indicated by the grid cells in a horizontal line (S@@ring. Therefore, we selected the maximum delay (half a second) with which
Fig. 1). The cat can move one cell at a time between the current cell anel subjects still felt comfortable.

and the expected value of the network parameters given a structure can @
be expressed as

A aijk + Nijk

k= . 2
9"71' ;5 + .N,j]’ ( )

IV. EVALUATING ELICITATION SCHEMES WITH A TOY
VIRTUAL WORLD
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Mouse Position V. EXPERIMENTAL DESIGN

We demonstrated our method in an experimental study that inves-
tigated the effectiveness of three elicitation methods: 1) asking for
numerical parameters directly, 2) translating graphical proportions
by using the probability wheel, and 3) using the scaled probability
bar. We used the graphical modeling syst&eNIe[18] and built a
module of cat—-mouse game @eNleas well.

Cat State

- Cat Moving
Mouse Color

Fig. 2. Bayesian network of the cat-mouse world.
A. Subjects

B. The Bayesian Network for the Cat-Mouse World The subjects were 28 graduate students enrolled in an introductory

The cat-mouse world is based on a simple Bayesian network (éjeeé:lsmn analysis course at the University of Pittsburgh. They received

Fig. 2) consisting of five variablegction Mouse Coloy Mouse Posi- partial course credit for their participation.
tion, Cat State andCat Moving Direction

Variable Action with two outcomesmoveand go, models the ob-
served subject’s actioMouse Colorwhich could beyellowandgrey,
defines which of the two mice is presehouse Positiorindicates the
current position of the present mousat-posandright-pos Cat State

B. Design and Procedure

The subjects were first asked to read the instructions from a help
window that introduced the game characters and the game rules. They
were asked to pay attention to the probabilistic influences from the state

represents four possible states of the satmal angry, frustrated and of the toy world anc_i their action choice to the direction of the cg_t’s_
alert. The last variableCat Moving Direction reflects the moving di- movement. The subjects were told that knowledge of these probabilistic

rection of the cat in the current step. Two directions are defifest: relationships would help to improve their performance. To motivate the
andright. subjects to perform well, extra credit was offered for higher scores in

The five variables influence each other probabilistically. The statfi€ cat-mouse game and lower errors of estimates of the probabilities
of the variables change at each step according to the probabilities Erglicitation. _ _
coded in the network. Their probability distributions, either prior or Each trial included two stages. The subjects first played the
conditional, were assigned randomly when the network was built §gt-mouse game for 30 min. The data about their experienced states
avoid biases to a particular probability distribution. One exception @ the toy virtual world were automatically recorded. The data sets in
the probability distribution of théctionnode. The value of thaction ~OUr experiment typically contained between 400 and 800 records.
node is always instantiated to the state that corresponds to the subject’§1e Second stage involved probability elicitation by each of the three
action, and hence, the prior probability distribution becomes irrelevafficitation methods. The subjects were shown the Bayesian network
We chose the two nearly identical action womgveandgo, to avoid ~ Structure in Fig. 2 and were asked to estimate the conditional proba-
any semantic difference which could have a potential influence on tRit table (CPT) for the nod€at Moving Directionby:
subjects’ preference. 1) typing the numerical parameters directly in CPTSs;

2) giving graphical proportions in the probability wheel; and

3) giving graphical proportions in the scaled probability bar.
We applied here a within-subject design in which each subject used the

After the subject has clicked a button to take an action, the statetbfee elicitation methods. To offset the possible carry-over effects, we
the world and the cat’s moving direction are updated. The new stat@sinterbalanced the order of method usage across our subjects.
are selected by generating a stochastic sample on the cat-mouse ndthe CPT elements; ;. elicited were compared t8;;,, the CPT
work following the partial parent order of the graph. We use prob&lements learned by applying (2) to the subjects’ acquired data. The
bilistic logic sampling [17] to generate node states on the basis of thBIEE of the parameters was calculated as
prior probabilities of occurrence. By choosing more likely states more N
often, we simulate the state changes of the toy world. The subjects are MSE = 1 Z(ﬂ = i)’
exposed to changes in the world that are an effect of their actions and N R
the underlying joint probability distribution.

C. The State Change of the World by Sampling

=1

In order to evaluate the speed of the elicitation methods, we also
recorded the time taken for each elicitation procedure.
Since our domain experts had very little knowledge about the proba-

Every time the state of the toy world changes, it is recorded autpllity distributions of the cat-mouse domain prior to playing the game,
matically. In our data set, a case consists of the outcomes of all fi#¢ assigned small uniform values to thgparameters for the learning
variables encoded in the cat-mouse Bayesian network. The datatlgerithm. For all possible values of j, &, we used the assignment
of a subject’s experience contains all states of the world that the sd@ps# = 5 @nda;;,. = 10, respectively. In order to test purely data-
ject has seen and it is the subject’s observational knowledge about®R€ed learning, we also used; = 107"
toy virtual world. This knowledge comes completely from the subject’s
game-playing experience. Therefore, the records constitute a perfectResults
data set for learning the subject’s knowledge about the cat-mouse dorable Il shows the means and standard deviations of the MSEs of the
main. three elicitation methods when compared to the probabilities learned

We used (1) and (2) in the learning algorithm to learn the desiredth differenta parameters. A time comparison is also shown as the
network from data. The assumptions required were satisfied. First, thet two lines in the table. Fig. 3 plots the elicitation time and MSE
probability distributions were unrestricted multinomial. Second, o = 5) for each of the three elicitation methods.
data set was complete. Third, we assigned the probability parameterBor each pair of elicitation methods, we conducted one-tailed, paired
randomly in the cat-mouse Bayesian network and made them satisfynplet test for comparison of accuracy corresponding to the learned
parameter independence. results with differentys. Three similat tests were also done for time

D. Collecting Data for Expert’'s Knowledge
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TABLE 1II D. Discussion
MEANS (T) AND STANDARD DEVIATIONS (s) FOR MSESAND TIME FOR . .
EACH OF THE THREE ELICITATION METHODS The experimental results showed that the learning approach to eval-
uate elicitation methods for probabilities is quite robust. From the re-
wheel | bar | direct sults of the paired samptetests, we can draw a conclusion about the
accuracy of the three elicitation methods. Both the scaled probability
a=5 T (| 0.0786 | 0.0758 | 0.0850 bar and the probability wheel performed better than direct numerical
s 1l 0.0384 | 0.0383 | 0.0448 elicitation, though the latter difference was not statistically significant.
Scaled probability bar may be more accurate than probability wheel.
a=10 | T | 0.0685 | 0.0663 | 0.0744 However, the difference was again not quite statistically significant at
s I 0.0376 | 0.0371 | 0.0431 p = 0.05 level. Considering time taken in elicitation processes, we can
order the three methods according to their speed: probability bar, prob-
a=10"* |z | 0.1217 | 0.1182 | 0.1283 ability wheel, and direct numerical elicitation.
s I 0.0462 | 0.0468 | 0.0520 An interesting effect is evident in Table IV. When the value of the
prior parameters was 5 or 10, the MSE for all techniques is lower than
time T 6.6 4.9 6.9 when thens are setto 10*. In fact, when they parameters were set to
(minutes) | s || 4.0663 | 2.1141 | 2.3242 very small values, it was observed that the probabilities elicited from

the experts were closer to three model than they were to trexpected
models calculated with the parameters. We believe that the reason
for this discrepancy is the following. The subjects will naturally have a
small but substantial prior belief of uniformity in the parameters, which
may act like an anchor in the elicitation. For example, if a subject were
given a loaded coin with the instruction to estimate the probability of
the coin coming up heads, he or she is likely to require at least a few (5
or 10) flips of the coin before concluding that the coin is weighted one
way or the other.

When the« parameters are set to 5 and 10, the elicited models
are closer to the expected models than they are to the original model.
Furthermore, our results were observed to be statistically significant;
whereas witha = 107" our results were not significant. Another
Fig. 3. MSE ¢ = 5) and elicitation time for each of the three methods testedyay of looking at this result is that if the user explored one configu-

ration of a node’s parents only a few times, then the smaarameter
model would produce very extreme, nonsmooth probability distribu-
tions under certain parent configuration. For example, if the user ex-
TABLE IV plored one configuration just one time, then the lewnodel would
P VALUES OF ONE-TAILED t TESTS FOREACH PAIR OF THE produce a probability distribution with the one visited state having
ELICITATION METHODS L . .
probabilitya1; whereas, a sensible user would not predict such an ex-
treme distribution, but would rather assume that the probability was
still roughly uniformly distributed.
vs. vS. vS. This observation may be related to the well-known finding that
people tend to overestimate very low probabilities [5]. In fact, what
may be happening in the case of low-probability events is that the
a= 0.19 0.03 0.07 person’s assumption of weak prior uniformity is smoothing the
distribution, producing “erroneous” estimates. This fact may suggest
=10 0.22 | 003 | 0.07 ; o : ;
a means of correcting for low-probability event estimates by first

Comparman clthe Thres Lictatan Methsds |

(s st

ai (1]
LR

]
|

bar bar | wheel

wheel | direct | direct

a=10"*{ 0.21 0.05 0.12 subtracting out the small uniform distribution from the assessed
- distribution.
time 0.007 | 0.0005 | 0.37 One objection that could be raised to our technique is that a 30-min

training session is not sufficient for the subjects to achieve expert status.

This would be a key objection if we were comparing the elicited models
comparison. The values which resulted from thetests are shown in to the original model underlying the toy-world; however, the main
Table IV. point in using the trainees’ actual acquired knowledge is to deflect this

Thet tests showed that scaled probability bar performed signiferiticism: we are comparing the elicited model precisely to the knowl-
cantly better than direct numerical elicitatipn< 0.05 for all three edge that we know our trainee has observed. In principle, this technique
values of the learning parameter Probability wheel was marginally should work regardless of the expertise of the trainee. Nonetheless, we
better than direct numerical elicitatipn< 0.1 fora = 5 anda = 10.  acknowledge that there may be some transition during the process of
Thep value (0.12) was a little higher when= 10~*. However, prob- achieving true expertise that alters the trainees’ elicitation behavior. We
ability wheel was almost as accurate as scaled probability bar. Exassume that these effects will affect the elicitation techniques in a uni-
though the latter had a slightly lower MSE, the difference was not stirm way, so that the relative assessment of elicitation techniques is not
tistically significant ¢ ~ 0.20 under all values ofv). affected.

From thet tests conducted for the comparison of elicitation time, It may be that the effectiveness of different elicitation techniques
we can see that generally using scaled probability bar took the shortestes from expert to expert. In that case, our evaluation technique can
time (p < 0.007). However, using probability wheel did not improveprovide a relatively quick and effective way to judge which elicitation
the time compared with direct numerical assessmest (0.37). procedure is most effective for a given expert. The expert can be quickly
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trained on a toy model, and then our experimental procedure can b¢7]
used to decide which elicitation technique is most effective for that
particular expert.

VI. CONCLUSION

(8]
9]

We proposed a method that allows for an objective evaluation of

the elicitation methods for probability distributions and the structure,
of probabilistic models. Our method is based on machine learning th

o

expert’s beliefs when data of the expert’s learning knowledge is avail-
able. We illustrated the evaluation approach with a toy virtual world and
evaluated three elicitation methods for probabilities: 1) direct numeri11]

ical elicitation, 2) the probability wheel, and 3) the scaled probability

bar. Based on the results of our experiment, we concluded that the prob-
ability wheel and the scaled probability bar both performed better thaiiL2]

direct numerical elicitation, which supports the proposition that graph-[

ical tools are useful in eliciting experts’ beliefs.
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