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Expertness Based Cooperative Q-Learning
Majid Nili Ahmadabadi and Masoud Asadpour

Abstract—By using other agents’ experiences and knowledge, a
learning agent may learn faster, make fewer mistakes, and create
some rules for unseen situations. These benefits would be gained if
the learning agent can extract proper rules out of the other agents’
knowledge for its own requirements. One possible way to do this is
to have the learner assign some expertness values (intelligence level
values) to the other agents and use their knowledge accordingly.

In this paper, some criteria to measure the expertness of the re-
inforcement learning agents are introduced. Also, a new cooper-
ative learning method, called weighted strategy sharing (WSS) is
presented. In this method, each agent measures the expertness of
its teammates and assigns a weight to their knowledge and learns
from them accordingly. The presented methods are tested on two
Hunter–Prey systems.

We consider that the agents are all learning from each other and
compare them with those who cooperate only with the more expert
ones. Also, the effect of the communication noise, as a source of un-
certainty, on the cooperative learning method is studied. Moreover,
the Q-table of one of the cooperative agents is changed randomly
and its effects on the presented methods are examined.

Index Terms—Cooperative learning, expertness, multi-agent
systems, Q-learning.

I. INTRODUCTION

I N HUMAN societies, it can be observed that, the more one
learns from another’s experiences, a higher chance he has to

succeed. In fact, people take advice, consult with each other, re-
ceive unprocessed information, and observe others to learn from
their activities and experiences. In other words, people coop-
erate to learn.

In almost all of the present artificial multi-agent teams, agents
learn individually and cooperative learning has not been deeply
investigated. However, similar to human beings, agents are not
required to learn everything from their own experiences (see
Fig. 1). In fact, due to having more knowledge and informa-
tion acquisition resources, cooperation in learning in a multi-
agent system may result in a higher efficiency compared to indi-
vidual learning [17]. Improvements in learning have been shown
in different researches even when simple cooperative learning
methods are used [30].

As the learner agents are not capable of representing their
knowledge properly and observing the other agents requires a
high level of sensing and intelligence, the agents cannot ad-
vise each other or automatically learn by passively observing
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the other agents. Therefore, they are required to communicate
their experiences and information.

In almost all of the multi-agent learning published papers,
cooperation is unidirectional between a fixed trainer agent and
a learner. However, all agents may learn something from each
other provided that, some proper measures and methods are im-
plemented.

One of the most important issues for a learner agent is the
assessment of the behavior and the intelligence level of the
other agents. In addition, the learner agent must assign a relative
weight to the other agents’ knowledge and use it accordingly.

In general, these three issues are very complex and need
careful attention. Therefore, in this paper, as well as in [22], at-
tention has been paid to find some solutions for homogeneous,
independent, and cooperative Q-learning agents.

In [22], a new cooperative learning strategy, called weighted
strategy sharing (WSS) and some expertness measuring
methods are introduced. In that paper, it is assumed that the
learner agents cooperate only with the more expert agents.
Also, it is assumed that, the communication is perfect and all
of the agents are reliable. In this paper, it is considered that
all of the agents could learn from each other and the obtained
results are compared with the results of the algorithm presented
in [22]. In addition, effects of the communication noise as a
source of uncertainty on the cooperative learning are studied.
Moreover, the Q-table of one of the cooperative agents is
changed randomly and its effects on the presented method are
examined.

Related researches are reviewed in the next section. Then,
WSS is briefly introduced and some expertness measures
are presented. Also, some weight assigning methods are
established. WSS, the effects of implementing the expertness
measures, and the role of weight assigning methods are tested
in the fourth section. In that section, effects of uncertainty and
wrong knowledge are also studied. A conclusion and some
directions for future research are given in the last section.

II. RELATED RESEARCHES

Samuel [26] used the competitive Llearning algorithm to train
a checker game player. In his method, the cooperator agent acts
as an enemy or an evaluator and tries to find the weak points of
the learned strategy. Hu and Wellman [12] proposed a frame-
work for multi-agent Q-learning when the competitor agents
have incomplete information about other agents’ payoff func-
tions and state transition probabilities.

In the ant colony system [6], some ants learn to solve the trav-
eling salesman problem by nonverbal communication through
the pheromones on the edges of a graph.

Imitation [16] is one of the cooperative learning methods. In
this method, the learners watch the actions of a teacher, learn
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them, and repeat these actions in similar situations. This method
does not affect the teacher performance [3] and the learning
process is unidirectional. For example, in [16], a robot perceives
a human doing a simple assembly task and learns to repeat it in
different environments. Hayes and Demiris [10] built a robotic
system in which a learner robot imitates a trainer moving in a
maze and learns to escape from it.

Yamaguchi and others [33] developed a robotic imitation
system to train Q-learning ball-pusher robots. In this system,
agents learn individually and imitate each other using simple
mimetism, conditional mimetism, and adaptive mimetism
methods.

In simple mimetism [35], all agents imitate each other when
they are neighbors. In this method, two neighbors may wait for
each other forever. This problem is solved by applying condi-
tional mimetism [35]. In conditional mimetism, only the low
performance agent (performance is measured based on the sum
of the rewards and punishments received in pastactions) im-
itates the other one. Adaptive mimetism [33], [34] is similar to
conditional mimetism, but the imitation rate is adjusted based
on the performance difference of two neighbor robots.

The robots cooperate to learn when they share their sensory
data and play the role of scout for each other [30]. Episode
sharing [14], [30] can be used to communicate the state, ac-
tion, and reward triples between the reinforcement learners. Tan
showed that, sharing episodes with an expert agent could im-
prove the group learning significantly [30]. In [15], the state,
action, and value pairs are communicated among the agents. No
measure is used to evaluate the received rules by the learners.

In [4], a blackboard is used as a global information system for
improving the individual learning and coordination in a multi-
agent team.

In the collective memory method, learners put learned
strategy or experienced episodes on a shared memory [8] or
they have a single memory and update it cooperatively [30].

A cooperative ensemble learning system [17] has been devel-
oped as a new method in neural network (NN) ensembles [1],
[11], [17], [25], [27]. In these studies, a linear combination of
the concurrent learning NN’s outputs are used as a feedback to
add a new penalty term to the error function of each network.

Provost and Hennessy [24] developed a cooperative dis-
tributed learning system for systems with huge training sets.
The training set is divided into smaller training subsets
and rule-learning agents learn the local rules. The rules
are transmitted to the other agents for evaluation; if the rule
satisfies the evaluation criteria, it is accepted as a global one.

High attention is paid to the advice taking method in recent
years [9], [13], [19], [21], [23]. Mostow [21] wrote a program
that accepts high-level advices to play the card game. Gordon
and Subramanian [9] developed a system that translates high-
level advices into the concrete actions and evaluates them by
genetic algorithm (GA).

Maclin and Shavlik [18] used the advice taking scheme to
help a connectionist reinforcement learner. The learner accepts
advice in the form of a simple computer program, compiles it,
represents the advice in some NNs and adds them to its current
network.

In most of the reviewed researches, cooperation is unidi-
rectional from a prespecified trainer to a preselected learner

Fig. 1. Weighted strategy sharing (WSS) architecture.

agent. In the real world, cooperative learning is bidirectional
and all of the agents learn something from each other (even
from the nonexpert ones). In the strategy sharing method [30],
each Q-learning agent learns from all of its teammates. The
agents learn individually and at some special instants, each
agent gathers the Q-tables of the other agents and takes the
average of the tables as its own new strategy. In this system, the
agents do not have the ability to find good teachers. It seems
that, simple averaging of the Q-tables is nonoptimal when the
agents have different skills and experiences. Additionally, the
Q-tables of the agents become equal after each cooperation
step. This decreases the agents adaptability to the environment
changes [33].

To overcome the described problems, a new strategy sharing
method based on the expertness level of the other agents was
proposed in [22].

III. WSS METHOD

In the WSS method [22] (Fig. 1), it is assumed thatn homo-
geneous one-step Q-learning agents [28], [29], [31], [32] learn
in some distinct environments and no hidden state is produced
[7].

The agents learn in two modes: individual learning mode and
cooperative learning mode (see Algorithm 1). At first, all of
the agents are in individual learning mode. Agentexecutes
learning trials. Each learning trial starts from a random state and
ends when the agent reaches the goal. After a specified number
of individual trials, all agents switch to cooperative learning
mode.

Algorithm 1. Weighted Strategy Sharing
Algorithm for agent

(1) Initialize
(2) while not End Of Learning do
(3) begin

(4) If In Individual Learning Mode then
(5) begin Individual Learning
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(6) Find Current State ()
(7) Select Action ()
(8) Do Action
(9) Get Reward ()
(10) Go To Next State ()
(11)

(12)

(13) Update Expertness
(14) end
(15) else Cooperative Learning
(16) begin

(17) for to do
(18) Get Expertness

(19)
(20) for to do
(21) begin

(22) Compute Weights

(23) Get

(24)
(25) end

(26) end
(27) end

In cooperative learning mode, each learning agent assigns some
weights to the other agents’ Q-tables with respect to their rel-
ative expertness. Then, each agent takes the weighted average
of the others’ Q-tables and uses the resulted table as its new
Q-table1

(1)

A. Some Expertness Criteria

In the WSS method, is a measure of agentreliance on
the knowledge and the experiences of agent. Here we argue
that this weight is a function of the agents relative expertness.

In the strategy sharing method [30], expertness of the agents
are assumed to be equal. Nicolas Meuleau [20] used the user
judgment for specifying the expert agent. This method requires
continuous human supervision.

In [2], different but fixed expertness values are assumed for
the agents. However, differences in the expertness values may
change during the learning process and are not constant.

Yamaguchiet al. [33] specified the expert agents by means
of their successes and failures during currentmoves and con-
sidered the expertness criterion as an algebraic sum of the re-
inforcement signals in that time interval. This means that more
successes and fewer failures are considered a sign of a higher
degree of expertness. This expertness measuring method is not
optimal in some situations.

For example, the agent that has faced many failures has some
useful knowledge to be learned from it. In other words, it is pos-
sible that this agent does not know the ways arriving at the goal,

1Multiplication (*) and summation (+) operators must be specified based on
the knowledge representation method.

but it is aware of those not leading to its target and can avoid
them. Also, an agent at the beginning of its learning process is
less expert than those learned for a longer time and naturally has
confronted more failures.

Considering the discussions, six expertness measures are in-
troduced. These measures include the following.

1) Normal (Nrm) : An algebraic sum of the reinforcement
signals

(2)

2) Absolute (Abs): A sum of the absolute value of the rein-
forcement signals

(3)

3) Positive (P): A sum of the positive reinforcement signals

if
otherwise.

(4)

4) Negative (N): A sum of the absolute value of the negative
reinforcement signals

if
otherwise.

(5)

5) Gradient (G): Changes in the received reinforcement
signals since the last cooperation time

(6)

where is the start time of the individual learning mode.
6) Average Move (AM): A reverse number of moves each

agent does to reach the goal

(trial) (7)

where trial is the trial number, is the current trial, and
(trial) is the number of moves that each agent has done to

reach the goal.
Nrm criterion gives more credit to those who have more suc-

cesses and fewer failures. Abs considers both rewards and pun-
ishments as a sign of being experienced. P disregards experi-
ences not resulted in achieving the goal and considers the suc-
cessful experiences only. N formula looks at unsuccessful tries
only and assigns a higher expertness value to those experiencing
more failures. AM is an indirect way to measure the expertness
and considers the average number of actions the agent does to
reach the goal. G looks at the trend of improvement in the agent
performance in its recent actions and does not look directly at its
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past experiences. It is noteworthy that some of these expertness
measures are similar to those used by the human beings.

B. Weight Assigning Mechanisms

1) Learning From All (LA): It can be said that all agents have
some valuable knowledge to be learned. When using all agents’
knowledge, the simplest formula to assign weight to agent
knowledge by learnercould be

(8)

where is the number of the agents andis the amount of the
expertness of agent. In this method, effects of agentknowl-
edge on all learners are equal, i.e., .
Also all of Q-tables become homogeneous after each coopera-
tion step.

2) Learning From All With Positive Weights (LAP):If
and is a constant, then

. So, the following weight assigning method
can be introduced:

(9)

The weight of the least expert agent is

(10)

If , then and WSS converges to SA.
3) Learning From Experts(LE):To decrease the amount of

communication required to exchange the Q-tables, the learner
may use only the Q-tables of the more expert agents. Learner
assigns the weights based on its expertness difference with the
more expert agents using the following formula:

if

if

otherwise

(11)

where is the impressibility factor and indicates how much
each agent relies on the others knowledge. Partial weights of the
others knowledge are zero if they are less expert than the learner
agent . Substituting this equation in the weighted averaging
formula results in

Exprt(i) (12)

where Exprt(i) is the set of the agents that are more expert than
agent . As the WSS equation mathematically resembles the
reinforcement learning formula, the mathematical approaches

taken to the reinforcement learning method are also applicable
to the WSS technique.

C. Special Cells Communication

Two mechanisms called positive only (PO) and negative only
(NO) are also introduced to reduce interagent communication.
In PO, the learner uses the other agents Q-table cells having
positive value and assumes that the other cells are zero. In PO,
the expertness values of the agents are measured by positive
criterion.

In NO, agents only send negative-value cells of their Q-tables
to the others and their expertness is measured by negative crite-
rion.

IV. SIMULATION ON HUNTER–PREY PROBLEM

The hunter–prey problem [30] is one of the classical testbeds
to study and compare different learning processes (Fig. 2). In
this paper, there are three hunters independently searching a
10 10 environment to capture a prey agent. The moving speed
of the hunters and the prey is positive and less than 1 and 0.5
units, respectively. The prey is captured when its distance to the
hunter is less than 0.5 units. Upon capturing the prey, the hunter
receives reward and punishment otherwise.

Each agent has a visual field to locate the other agents. The
visual field of the hunters and the prey are two and three, respec-
tively. The hunter states are specified with respect to the prey
position ( ) in its local coordinate frame. If the prey is not
inside its visual field, a default state is considered. The hunters
actions consist of rotation and velocity change: . The
distance, the velocity difference, and the angle difference of the
hunter and the prey are divided into sections of one distance unit,
0.5 velocity unit, and 45, respectively.

For complicating the learning problem and in order to show
the differences in efficiency of the cooperative learning algo-
rithms more clearly, a simple and a complicated version of the
hunter–prey problem are used. In the simple case, similar to the
other researches, the prey moves randomly. In the other case,
the prey moves based on the potential field model and escapes
from the hunter. We call this agent the intelligent prey.

In the potential field model, four walls around the environ-
ment, the prey, and the hunter are assumed to be electroposi-
tive materials and repulse each other. The repulsive force of the
hunter is considered 1.5 times that of the wall. The hunter and
the prey are modeled as spot loads and the walls as linear ones.

To create some agents with different expertnesses, the hunter
agents have different learning times (). The first hunter learns
six trials, then the second one is permitted to do three trials,
and the last hunter does one learning trial. The total number
of individual learning trials is 1000 and the cooperation time is
after every 50 individual learning trials of all hunters together.
The reward and the punishment signals are one of the following
six pairs:

An individual learning trial ends when the hunter captures
the prey. The one-step Q-learning parameters are set to
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Fig. 2. Hunter–Prey problem simulator.

Fig. 3. Average number of moves in random–prey and equal experience case
for LE.

, and . The Q-table values are initialized
to zero and all agents have . Also, for the trial , the
average number of the hunter actions to capture the prey over
the past trials is measured.

Four types of experiments are performed to check the
effectiveness of the WSS method. In the first and the second
experiments, agents have equal and different learning trials,
respectively.

The last two sets of experiments are designed to study the
sensitivity of WSS to uncertainties in the agents’ knowledge.
The third experiments are performed in the presence of noise in
the communication medium. One of the agent’s Q-table is filled
by incorrect and random data in the fourth experiments.

A. Equal Experiences

In this set of experiments, all of the agents have equal chances
for individual learning. Figs. 3 and 4 show the average number

Fig. 4. Average number of moves in intelligent–prey and equal experience
case for LE.

of moves to reach the goal with the six prescribed expertness
measures in the random and intelligent prey cases using LE
weighting mechanism. Similar graphs are obtained using LA
and LAP methods. Table I shows the improvement percentage
of these methods over independent learning, i.e., without coop-
eration in learning.

In the random–prey case, Nrm, AM, P, N, and G methods
sometimes have small positive effects on the learning, but in the
intelligent–prey case, all of the methods have small negative or
approximately zero influence on the learning. So, cooperative
learning is not effective in this case.

As expected, in equal experience experiments, the weighted
strategy sharing converges to the simple averaging and almost
all of the graphs, especially in the intelligent–prey cases, ap-
proximately show the same results except for the PO and NO.

PO and NO have significant negative effects on the learning
(see improvement percents in Table I). In these two methods,
each learner uses only one part of the other agents knowledge.
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TABLE I
IMPROVEMENT PERCENTS INEQUAL EXPERIENCECASE

In PO, failures of the other agents are ignored, and, in NO, suc-
cessful actions of others are not considered. A study of the Q-ta-
bles of the learning hunters shows that most cells of the Q-ta-
bles have negative values and, consequently, a small number
of the cells are transferred in PO. But, in all cases, PO has
better results than NO and the successful actions have been
more important. This is due to two facts. First, as the number
of the successful actions is small, each learner possibly cannot
find a good action without cooperation with the other learners.
Secondly, in Booltzmann probability distribution, the selection
probability of a positive-value action (hereafter called a positive
action) is increased exponentially when its value is increased,
but, the selection probability difference of two negative-value
(negative actions) actions is small; even their values are consid-
erably different.

In the PO and NO methods, unlike other methods, the other
agents negative and positive actions values are considered zero
(more and less than the real values, respectively). As a result,
the differences of the positive and the negative actions are de-
creased. Therefore, the agents make more mistakes in their ac-
tion selection.

Expertness measuring methods approximately have the
same or better results when the weight assigning mechanism is
changed from LA to LAP, except for Nrm and G. A problem
with the LA method is that, if , e.g., in gradient and
normal methods, according to (8) we may have

or . Also, if we have ,
which contradicts the main idea of the expertness-based weight
assignment method.

More studies on Nrm and G methods showed that, because of
receiving many punishments, the expertness values of the agents
become negative. Therefore, the more experienced agents get
more negative expertness values, but in LA, the numerator and
enumerator are both negative. Consequently, the more expert
agents are assigned more positive weights.

On the other hand, LAP prevents a division by zero and wrong
weight assignment problems by shifting the agents expertness
values. So, the more expert agents (having negative expertness
value with respect to Nrm and G) get smaller weights compared
to the less expert agents. Therefore, LA works better than LAP
for Nrm and G measures.

Fig. 5. Average number of moves in random–prey and different experiences
case for LE.

Fig. 6. Average number of moves in intelligent–prey and different experiences
case for LE.

Another disadvantage of LA and LAP is that
and the Q-tables become the same after cooperation

steps. This feature decreases the adaptability of a multi-agent
system [33].

Comparing simple averaging strategy sharing (SA) [30] and
individual learning shows that, on average, the SA method has
no positive effects on learning (Table I). More detailed studies
showed that, in experiments with high convergence rate, e.g.,
when the rewards and punishments were (10,1) or (5, 1), SA
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TABLE II
IMPROVEMENT PERCENTS INDIFFERENTEXPERIENCECASE

Fig. 7. Summary of a comparison among Abs, P, N, and Nrm.

caused little improvement in the group learning. Also, when the
learning problem became simpler, the results improved gradu-
ally, e.g., SA has better results in the random–prey case.

B. Different Experiences

In these experiments, the hunters perform a different number
of learning trials and, as a result, have different experiences.
Figs. 5 and 6 show the average number of moves to hunt, using
six prescribed reinforcement functions and an LE weighting
mechanism in random– and intelligent–prey cases. Similar
graphs are obtained for LAP and LA. Table II shows the average
improvement percentage relative to individual learning.

It is the same with the previous section results; PO and NO
have negative effects on the learning. The results also show that
SA has a worse performance compared with the performance of
the equal experience case. The reason for such an outcome is
that the method assigns nonoptimal equal weights to the agents
having different expertnesses.

AM has a negative or a very small effect. In the AM method,
due to using the function, the difference of the agents’
expertness values is small, even when they have a considerably
different number of moves.

Nrm and G methods have a positive effect on the learning in
the LA case but are noneffective in LAP and LE and have the
worst results in these two cases. As explained in the previous
section, the wrong expertness assignment to the agents is the
main reason for this behavior. Considering the presented expert-
ness computation formula, Nrm and G become equivalent when

Fig. 8. Divergence of N after temporary convergence.

the learning time is increased. This claim is verified in the intel-
ligent–prey case where the learning time is long and the results
of Nrm and G are very close.

Table II shows that Abs, P, and N measures help the learning
process in all of the cases. P has the best results in the LE case
for the random–prey, but N criterion gives the best performance
in the LE case for the intelligent–prey. The reason is that, since
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Fig. 9. Uncertain data: Improvement percents relative to independent learning (random–prey).

Fig. 10. Uncertain data: Improvement percents relative to independent learning (intelligent–prey).

hunting a random–prey is simpler, the learner gets less punish-
ment, compared to the case where the agent hunts an intelli-
gent–prey.

In [22], we showed that, when the received punishments are
greater than the rewards, N is the best criteria and P is the worst
one among Abs, P, N, and Nrm, but when the rewards are greater
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Fig. 11. Incorrect knowledge experiments: Improvement percents relative to independent learning.

than the punishments, P is the best measure and N is the worst
one. In addition, when the received punishments and rewards
are approximately equal, Abs gains the best results. Neverthe-
less, since any little difference in the rewards and punishments
significantly affects the weights, Nrm criterion has the worst re-
sults in this case (Fig. 7).

1) Divergence of N Criterion:The N criterion helps the
agents with different experiences to learn faster. However, it
is important to note that, the learning process may start to
diverge after a temporary convergence for N or NO criteria.
The divergence time is closer when the absolute value of the
punishments is increased. Fig. 8 shows the group learning
curves for N where the punishments and rewards are1 and 5,
respectively. Similar results are obtained for NO. This outcome
can be explained as follows.

Before the learning curves converge, the agent having
more failures is considered a more expert agent, but after the
convergence of the learning process, the number of the expert
agent failures decreases and the nonexpert agent receives more
punishments. Consequently, it gets a higher expertness value.
Therefore, the expert agent is forced to learn from the nonexpert
agent and the group learning starts to diverge. As a result, the
cooperative learning process must be stopped after convergence
if N or NO criterion is used and the punishment value is high.

C. Effects of Uncertainty

In the third type of experiments, it is assumed that there
are some uncertainties in the agents’ knowledge. To simulate
these uncertainties, a normal random number N(0,v) is added
to the communicated Q-table cells (this could be assumed as
a communication noise). The cooperative learning is done for
the agents which have different experiences. The improvement
percent of the methods relative to the independent learning

(without uncertainty) for v 0.2 and v 0.5 are compared to v
0 (without noise) and the results are shown in Figs. 9 and 10.
It could be observed that, although PO and NO methods are

mainly inefficient, they are two of the least sensitive methods
due to less communication. SA is the second method (after
PO) in sensitivity because positive and negative random values
added to the Q-table cells may, on average, cancel out each
other. Also, the Abs method is less sensitive compared to P, N,
and Nrm methods.

It is observed that the sensitivity is lower in the intelli-
gent–prey case because the Q-table cells have higher values
and the effect of noise is less.

D. Incorrect Knowledge

In this set of experiments, the second agent Q-table is filled
with some random numbers between 0 and 1. The improvement
percents relative to independent learning are depicted in Fig. 11.

It can be seen that the SA, Nrm, Abs, and N methods are the
most sensitive methods. P, PO, and AM methods have the least
sensitivities.

V. CONCLUSION AND FUTURE WORKS

In this paper, three weight-assigning procedures for the
weighted strategy sharing (WSS) method were introduced.
Also, some criteria to measure the expertness of the agents
were presented. The introduced methods were tested on the
Hunter–Prey problem.

Results showed that the WSS method had no effect (or little
effect) on the learning process when the agents had equal ex-
periences. When the experiences of agents were different, the
WSS algorithm improved the learning speed.
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All of the introduced expertness measures were sensitive to
the reinforcement signal value, but as the Abs consider both
rewards and punishments as a sign of being experienced, it had
the minimum sensitivity.

Obtained results indicated that the best expertness measure is
different for different received reinforcement signals. Positive
criterion was the best measure when the sum of the received
rewards was greater than the punishments in the beginning of
learning. On the other hand, when the sum of the received pun-
ishments was greater, Negative (N) criteria was the best. When
the difference between the rewards and the punishments were
little, the N method had the worst results and the Positive (P) and
N method had approximately the same effects. Absolute (Abs)
was the best measure in such situations.

Usage of incorrect knowledge and uncertain data decreases
the cooperative learning quality. When facing uncertain data,
PO, NO, and SA were the least sensitive methods and Abs had
less sensitivity compared to P, N, and Nrm. In the incorrect
knowledge case, SA, Nrm, Abs, and N were the most sensitive
methods and P, PO, and AM were the least sensitive ones.

Results in Section IV showed that WSS is sensitive to the
value of the reinforcement signal. One of the next steps is to im-
plement a suitable mechanism to dynamically switch between
the expertness criteria based on the value of the received rein-
forcement signals.

The proposed weight assigning method was created for
reinforcement learning algorithm, however, we believe other
learning methods may reveal more problems and give a better
insight into the expertness-measuring subject. Also, a substan-
tial mathematical examination of the proposed approach is one
of the subjects of our future research.

In the experiments, the impressibility factors of the agents
were equal and fixed over the learning period. This parameter
could be dynamically changed according to the effectiveness of
the others’ knowledge.

Detection of the agents with incorrect knowledge and mini-
mizing their effects on the cooperative group learning is another
direction for future research.
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