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ABSTRACT

We present a novel methodology for identify-
ing internal network performance characteristics

- based on end-to-end multicast measurements,

The methodology, solidly grounded on statistical
cstimation theory, can be used to characterize
the internal loss and delay behavier of a net-
work. Measurements on the MBone have been
used to validate the approach in the case of loss-
es. Bxtensive simulation experiments provide
further validation of the approach, not only for
losses, buf also for delays, We also deseribe our
strategy for deploying the methodology on the
Internet, This ineludes the continued develop-
ment of the Natienal Internet Measurement
Infrastructure to support RTP-based end-te-cnd
multicast measurements and the development of
software tools to analyze the traces. Once com-
plete, this combined softwarc/hardware inlra-
structure will provide a service for understanding
and forecasting the performance of the Internet.

INTRODUCTION

As the Tnternet grows in size and diversity, its
internal performance becomes ever more diffi-
cult to measure. Any one organization has
administrative access to only a small fraction of
the network’s internal nodes, whereas commer-
cial factors often prevent organizations from
sharing internal performance data. End-te-end
measurements using unicast trallic do not rely
on administrative access privileges, but it is diffi-
cult to infer link-level performance from them,
and they require large amounts of traffic to
cover multiple paths. Consequently, there is a
need for practical and efficient procedures that
can take an internal snapshot of 4 significant
portion of the network.

We have developed a measurement tech-
nique that addresses these problems. Multicasi
inference of nelwork characteristics (MINC) uses

end-10-end multicast measurements to infer link-
level loss rates and delay statistics by cxploifing
the inherent correlation in performance observed
by muliicast receivers. These measurements do
not rely on administrative access to internal
nodes since they are done between end hosts. In
addition, they scale to large notworks because of
the bandwidth efficiency of multicast traffic.

Focusing on loss for the moment, the intuition
behind packet loss inference is that the arrival of
a packet 4t a given internal node in the tree can
be inferred from the packet's arrival at one or
more receivers descended from that node, Condi-
tioning on this latter event, we can determine the
prabability of successful transmission to and
beyond the given node. Consider, [or example
(Lig. 1), a simple multicast tree with a root node
{the source), two leaf nodes (receivers 81 and
Ry), a link from the source to a branch point (the
shared link), and a link from the branch point to
each of the receivers (the left and right links},
The source sends a stream of sequenced multicast
packets through the tree o the two receivers, If a
packet reaches cither receiver, we can infer that
the packet reached the branch point, Thus, the
ratio of the number of packers that reach both
receivers to the fotal number that reach only the
right receiver gives an estimate of the probability
of successful transmission on the left link. The
probability of successful transmission on the other
links can be found by similar reasoning,

This technique extends to general trees [1],
and it can be shown that the resulting loss rate
estimates converge to the true loss rates as the
number of probes grows indefinitely large, This
and related approaches can be used to estimate
path delay distributions [2], path delay variances
(3], and the logical multicast topology itself [4].
We have validated the accuracy of the loss rate
inference techniques against measurements on
the MBene. Further validation of both the loss
rate and dclay statistics inference techniques has
been made through simulation experiments,
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W Figure 1. A tree conneciing a sender to two
recefvers.

In this article we deseribe the MINC method-
ology and the results of the network measure-
ments and simulation experimeats , Tollowing this,
we deseribe our eflforis to deploy this methodolo-
gy. These include the further development of the
National lnternel Measurement Infrastructurc
(NIMI) [3] to support the required multicast mea-
surements, the extension of the Real-Time Trans-
fer Protacol (R'LP) control protocol (RTCTP) to
include detailed loss reports, and the development
-of the Multicast Inference Network Tool (MINT)
to visualize and manipulate the multicast-bascd
inferred internal network performance.

Asurvey of related work is included, and the
last section offers some conclusions.

STATISTICAL METHODOLOGY

MINC works on logical multicast trees, that is,
those whose nodes are identificd as branch
points of the physical multicast tree. A single
logical link between nodes of the logical multi-
cagt tree may comprise more than one physical
link, MINC infers composite propertics of the
logical links. 1lencelorth, when we speak of irees
we will bo speaking of logical multicast trees.

Loss INFERENCE

We madel packet loss as independent across dil-
ferent links ol the tree, and independent
hetween different probes. Thus, the loss mode!
associntes with each link & in.the tree, the proba-
bility oy that a packet reaches Lhe terminating
node of the link, also denoted by £, given that it
reaches the parent node of k. The link loss prob-
ability is then {1— o). Hach receiver records the
cutcome of each probe sent by the source (i.e.,
whether or not it is received). The oy can be
expressed directly as a fonction of the probabili-
ties of all possible cutcomes of success and loss
of a probe at cach receiver. An experiment con-
sists of a serics of probes transmitied from the
source. The outeome of cach probe at each
receiver is recorded, and the link probabilities
are inferred by the cstimators @ oblained by
using the actual frequencies of the outcomes,
Reference [1] contains a detailed description
and analysis of the inference algorithm,

The estimators &, exhibit several desirable
statistical propertics. It was shown in [1] that Gy
i the maximum likelihood estimator (MLE) ol
oy when sullicient probes arc used. The MLE is
defined as the set of link probabilitics thal maxi-
mizes the probability of obtaining the observed
oulcome frequencies. The MLE property in turn
implics two further properties of G
* Consistency: 8 converges to the true value

oy almost surely as the number of probes »

grows to infinity,

* Asymprotic normality: The distribution of the
quantity ¥n { G — &) converges (o a ner-
mal distribution as n grows to infinity.

The latter property implics that the probability

of an crror of a given size in estimating a link

probability goes to zero exponentially fast in the
number of probes,

The compulation of the & is performed
recursively on the iree; the computational cost is
lincar in the number of probes and number of
nodes in the tree,

DELAY DISTRIBUTION INFERENCE

A gencralization of the loss inference methodal-
ogy allows one to infer per link delay distribu-
tions, More precisely, we infer the distribution of
the variable portion of the packet delay: what
remains once the link propagation delay and
packet transmission time arc removed. Packet
link delays are modeled as discrete random vari-
ables that can take one of a finite number of val-
ues, independent between different packets and
links. The modcl is specified by a finile set of
probabilities og(f) that a packet experiences
delay ¢ while traversing the link terminating at
node &, with infinite delay interpreted as loss,
When a probe is transmitted from the source,
we record either the time taken by a probe to
reach each receiver or the loss of the probe, As
with loss inference, a probabilistic analysis cnables
s to relate the og(¢) 10 the probabilities of the
outcomes at the receivers. We infer the link delay
probabilitics by the estimators &,(f) obtained by
using instead the actual frequencies of the out-
comes arising frem the dispatch of a number of
probes. In [2] it was shown that the corresponding
estimator 8(-) of the link delay distributions is
strongly consistent and asymptotically normal.

DELAY VARIANCE INFERENCE
The delay variance can he directly estimated.
Consider the binary topology of [ig. 1. Let Dy be
the packet delay on the link cmanating from the
source, and Dy, i = 1, 2, the delay on the link ter-
minating at receiver I, The end-to-end delays
[rom the source to leaf node § = 1, 2 is cxpressed
as X; = Dy + D, A shotl calculation shows that,
under the assumption that the D; are indepen-
dent, Var{Dgy)= Cov(X), X3). Thus, the variance
of the delay Dy can be estimated from the mea-
surcd cnd-to-cnd delays from the soucce to the
leaves, This approach has been gencralized to
estimate link delay variances in arbitrary trees [3].

TOPOLOGY INFERENCE

In the loss inference methodology described
above, the logical multicast tree was assumed to
be known in advance. However, extensions of
the method enable inference of an unknown

A generafizatio
of the loss
inference
methodology
allows one to
infer per link

n

dalay distribu-
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W Figure 2. The multicast routing tree during our represeniative MBone experinent.

multicast topology from end-to-ond measure-
ments, We briefly describe three approaches.

Loss-Based Grouping -— An approach to
tapology inference was suggested in [6], in the
context of grouping multicast reccivers that
share the same set of network bottlenecks from
the source. The loss estimator of an carlier sec-
tion estimates the shared loss 1o a pair of
receivers, that is, the composite loss rate on the
common portion of the paths from the source,
irrespective of the underlying topology. 8ince
this loss rate is larger the lenger the common
path in question, the actual shared loss rate is
maximized when the two receivers are siblings.

A binary tree can be reconstructed iferatively
using this approach. Starting with the set of
receiver nodes R, select the pair of nodes §, k in B
that maximizes the estimated shared loss, and
group them together as the composite node. Iter-
atc on this and the sct of remaining nodes from R
until ail are prouped. The atgorithm is consistent:
the probabilily of correct identification converges
to one as the number of probes grows [4]. Gener-
al (i.c., nonbinary) trees can be inferred using this
algorithm and then transfarming the resulting
binary tree by pruning links with inferred loss
rates less than some threshold £ = (. '

General Grouping Algorithms — The above
approach can be extended by replacing shared
loss with any function on the nodes:
* That increases on maoving further from the
solirce
* Whose value at a given node can be consis-
tently cstimated from measurements at
receivers desconded from that node
The mean and variance of the cumulative
delay from the source to a given node exhibit
these properties. Hence, multicast end-to-cnd
delay measurements can also be used to infer
the multicast topology.

Direct Maximum Likelihood Classification
— 'The direct ML approach ealculates the maxi-
mum likelihood of the measured outcomes over
all possible oy, The topology that maximizes this
quantity is chosen to be our estimate. This classi-
fier is consistent [4],

Accuracy and Comparison — Experiments
show similar aceuracy for all the approaches
described above. However, computational costs

ditfer widely. The cost of the direct ML classifier
grows rapidly with the number of receivers, The
grouping methods avoid this since cach grouping
narrows the sct of viable topologics; the binary
grouping + pruning approach has near optimal
accuracy and is simplest fo implement.

EXPERIMENTAL RESULTS

In this section we briefly describe our eftorts to
validate the MINC methodology. The next sec-
tion contains a description of the results of a
measurement study in which we collected end-to-
end loss traces from the MBone and validated the
results from inferences of loss rates collected
nsing the Internct tool mtrace. Another scction
contains a description of the results [rom more
detailed simulation studies of both loss and delay.

MEASUREMENT EXPERIMENTS

To validate MINC under real network condi-
tions, we performed a number of measurement
experiments on the MBone, the multicast-capa-
ble subset of the Internet. Across aur cxperi-
ments we varicd the multicast sources and
receivers, the time of day, and the day of the
week, We compared inferred loss rates to direct-
ly measured loss rates for all links in the result-
ing multicast trees. The two sets of quantitices
agreed closcly thronghout. _

During each experiment, a source sent a
stream of 40-byte sequenced packels every 100
ms to a multicast group consisting of a collection
of reccivers over the course of one hour. The
resulting traffic stream placed less than 4 kb/s of
load on any one MBone link. At each receiver,
we made two sets of measurements on this fraf-
fic stream using the mtrace (see [7] for a
description) and mbat software tools,

We used mtrace to determine the topology
of the multicast tree. mtrace traces the reverse
path from a multicast source to a receciver. It
runs at the receiver and issucs trace querics that
travel hop by hop along the multicast tree foward
the source. Bach router along the path responds
to these queries with its own II' address. We
determined the tree topology by combining this
path information for all receivers,

We also used mtrace to measure per-link
packet losscs. Routers also respond Lo mtrace
queries with a count of how many packets they
have seen directed to the specified multicast
group. mtrace calculates packet losscs on a link

~ by comparing the packet counts returned by the

iwo routers at either end of the link. We ran
mtrace every 2 min during each 1-hr experi-
ment, These merace queries were also used to
verify that the topology remained constant dur-
ing each experiment.

It is important to note thal mcrace does not
scale to measurements of large multicast groups
if used in parallel at all receivers, as we describe
here. Paraltel mtrace querics converge as they
travel up the tree, Enough such queries will
overload routers and links with measurement
traffic. We used mtrace in this way only to vali-
date MINC on relatively small multicast groups.

We used mbat to collect traces of end-to-cnd
pucket losses. mhat runs at a receiver, subscribes
to a specificd multicast group, and records the
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sequence number and arrival time of each
incoming packct, We ran rbat at each receiver
for the duration of each 1-hr cxperiment,

We then scgmented the mbat traces into 2-
min subiraces corresponding to the 2-min inter-
vals on which we collecied mrrace measurements,
Finally, we ran our loss inference algorithm on
cach 2-min interval and compared the inferred
loss rates with the directly measured loss rates.

Here we highlight results from a representa-
tive experiment on August 26, 1998, Figure 2
shows the multicast routing tree in effect during
the cxperiment. The source was at the University
of Kentucky, and the reccivers were at AT&T
Laboratories, the University of Massachusetls,
Carncgie Mellon University, Georgia Tech, the
University of Southern California, the University
of California at Besrkeley, and the University of
Washington. The four branch routcrs were in Cal-
ifornia, Georgia, Massachuseits, and New Jerscy,

Figurce 3 shows that inferred and directly
measured loss rates agreed closely despite a link
expericneing a wide range of loss rates over the
course of a 1-hr experiment. Each shorl horizon-
tal segment in the graph represeats one 2-min
1200-probe measurement interval, As shown,
loss rates on the link betwgen the University of
Kentucky and Georgia Tech varied between 4
and 30 percent. Nevertheless, differences
between inferred and directly measured loss
rates remained below 1.5 percent,

Tn summary, our MBone experiments showed
that inferrcd and directly measured loss rates
agreed closcly under a variety of real network
conditions:
¢ Across a wide range of logs rates (4-30 per-

cent} on the same link
» Across links with very low (< 1 percent)
and very high (> 30 percent) loss rates
* Acrosg all links in & multicast tree regard-
less of their position in the iree
* Across different multicast trees
* Acrosg time of day and day of the weck
Turthermore, in all cascs the inference algorithm
converged to the desired loss rates well within
cach 2-min 7200-probe measurement interval.

SIMULATION EXPERIMENTS

We have performed more extensive validalions of
our inference techniques through simulation in two
different settings: the simulation of the model with
Bernoulli losses and simuiations of networks with
realistic traffic. Tn the model simulations, probe
loss and delay obey the independence assumption
of the model. We applicd the inference algorithm
to the end-to-end measurcments, and compared
the inferred and actual madel parameters for a
large set of topologics und parametcr values. We
found that loss rates, mean delay, and variance
cstimates converged to close to their actual valucs
with 2000 probes. The number of probes required
lo accurately compute the entire delay distributions
is higher. In our experiments we found good agree-
ment with 10,000 probes,

The second type of cxperiment is based on the
ns simulator. Here delay and loss correspond to
queuing delay and queue overfiow at network
nodes as multicast probes compete with traffic
generated by TCP/UDP iraftic sources, Multicast
probes are gencrated by the source with fixed

: Infarred
- Mtrace.

M Fig ure
Kentucky and Georgin Tech.

mean interarrival times; we used constant bit rate -

(CBR} or Poisson probes. We simulated different
lopologies with different background fratfic mixes
comprising infinite FTT sessions over TCP and
exponcential or Pareto on-off UDP sources. We
considered both Drop Tail and Random Early
Detection (RED) buffer discard methods [8].

We compared the inferred loss and delay with
actual probe loss and delay, We found rapid con-
vergence of the estimates, although with small
persistent differences. We attribute this to the
presence of spatial dependence (i.c., dependence
between probe losses and delays on different
links}). This can arise through correlations in the
background traffic duc to correlation arising
from TCP dypamics, such as synchronization
between flows as a result of siow stast after pack-
et loss, We have shown in [1] that small devia-
tions from the spatial independence assumption
lead to only small errors in inference.

We aiso [ound that background tralfic intro-
duces temporal dependence in probe behavior (e.g.,
its burstiness can cause back-to-back probe losses).
We have shown that while temporal dependence
¢an decrease the rate of convergence of the estima-
tors, consistency is unaffected. In the experimens
the inferred values converged within 2000 probes
despite the presence of temporal dependence.

While there is understanding of mechanisms
by which temporal and spatial dependence can
oceur, as far as we know there are no experi-
mental results concerning its magnitude, We
believe that large or long-lasting dependence is
unlikely in the Internet beeause of traffic and
link diversity, Morecver, we expect loss correla-
tion o be reduced by the introduction of RED.

We also compared the inferred probe loss
rales with the background loss rates, The cxperi-
ments showed these to be quite close, although
not as close as inferred and actual probe loss
rates, We attribute this to the inherent differ-
ence in the statistical properties of probe traffic
and background traffic.

3. Inferved vs. actual loss rates on the link between the University of
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W Figure 4 Inferred and sample deluy cedf for a leaf link in the topology of Fig. 2.

To illustrate the distribution of delay infer-
ence results, we simulated the topelogy of the
multicast routing tree shown in Fig, 2. In order
to capture the heteropgencity between the
cdges and core of a network, interior links
have higher capacity (5§ Mb/s) and propagation
delay (50 ms) than those at the edge (1 Mb/s
and 10 ms). Background traffic comprises infi-
nite FTP sessions and exponential on-off UDP
sources. Each link is modeled as a FIFO queue
with 4-packet capucity, Real buffers are nsual-
ly much larger; the capacity of 4 is used to

reduce the time required to simulate the net-

work. The discard policy is Drop Tail. In Fig.
4 we plot the inferred vs. sample complemen-
tary cumulative distribution function (dis-
cretized in 1-ms bins) for one of the leaf links,
using about 18,000 Poisson probes, The esti-
mated distribution closely follows the sample

“distribution and is quite accarate for tail prob-

abilities greater than 102, Note that the esti-
mated distribution is not always monotonically
decreasing. This is because negative probabili-
tics arc cceasionally estimated in the 18il due
to an insuflficient number ol samples. It is
worth pointing out that, given the irregular
shape of the sample distribution, the same
level of accuracy wonld not be possible using a
parametric model.

DEPLOYMENT EFFORTS

1t was obscrved in the previous section that MINC
is a very promising methodology for providing
detailed internal nelwork performance characier-
istics. Tn this section we describe our cfforts in
deploying this methodology and making it avaii-
able on the Internet. Our elforts are threefold.
First, we are continuing the development of
NIMI to support multicast-based measurement
experiments. This is described next. Sccond, we
have identilicd RTP and its associated control
protacol, RTCP, as promising mechanisms for
generating and collecting end-to-end multicast
measurement traces, Our cfforts to develop an
RTP-bascd tool are deseribed later. A descrip-
tion ol an analysis and visualization 1ool, MINT,
currently under development is included.

DEPLOYMENT ON NIMI

A major difficulty with characterizing Internet
dynamics comes from the network's immense
heterogencity [9]. Load patierns, congestion lev-
cls, link bandwidths, loss rates, protocol mixes,
the patterns of use of parlicular protocols — all
of these exhibir great variation both at different
points in the network, and over time as the net-
wark evalves, Accordingly, the sound characteri-
zation of Internet behavior requires measuring a
diverse collection of network paths. It is not ade-
quate to measure between just a few points,
regardless of how carelully done.

The same preblem atises in assessing the accu-
racy of measuremeni techniques such as MINC.,
To address this concern, we are deploying MINC
measurement utilities within NIMI [5]. NIMI con-
sists of a number of measurement “platforms”
deployed at various locations around the Tnternet.
Each plattorm is capable of sourcing and sinking
active measurement traffic, and recording the
timing of the traffic at both sender and receiver,
Measurcment “clients” that wish to usc the infra-
structure make authenticated requests to the plat-
forms to schedule future measurement activity.

A key properly of such an infrastructure is its
N2 gealing: il the infrastructure consists of N
platforms, they together can measure network
traffic along O(N?) distinct paths through the
network, Consequently, with a fairly modest N,
one can obtain a wide cross-section of the net-
work’s diverse behavior, (The NIMI infra-
structure currently consists of 31 sites.)

Using NIMI for MINC measuremenis
required several extensions to NIMI. The first
was modifying the standard NIMT packet genera-

tor, zing, to send and receive multicast traffic, and

the corresponding analysis program, natefie, to
incorporate the notion that a single packet might
arrive at several places (and fail to arzive at oth-
ers). MINC also required the generalization of
NIMI control mechanisms in order (o allow for a
single measurcment run spanning multiple
scnders and reeeivers. A possible future change
will be to use multicast itself for both scheduling
measurements and disseminating the results.

Our experiences with using NTMT to date
have been guite frostrating, not due fo the infra-
structure itself, but becavse of the poor quality
of multicast connectivity between the different
platforms. Until recently, at best only 1/3 of the
NIMI platforms had motticast connectivity
between them. We gather anccdotally that prob-
lems with poor interdomain multicast conncetivi-
1y have been endemic 1o the Internet. Recenily,
cannectivity has begun to improve, and it
appears likely that over the next several years it
will continue to do so, as agreement is reached
on the proper sct of intradomain and interdo-
main routing protocols and the intereperation
between them. We arce also attempting to
address this problem in two ways:

* To grow the NIMT infrastructure by adding
sites with high-quality multicast connectivity
* To investigale theoretical work on inferring
network characteristics using correlated
unicast traffic, where, instead of exploiting
the perfect correlaticns inherent in multi-
cast packet reception, we send back-to-hack
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unicast packels and attempt fo exploit the
considerably weaker correlations in their
loss and delay patterns

INTEGRATION WITH RTCP

Woa are developing tools to apply MINC in real
time so that MINC can be vsed by applications
to respond to ¢hanging network conditions in
new and more sophisticated ways, For example,
a managemaent program might adaptively adjust
its probes to home in on a problem router.

Our tools transmit network information using
RTCP, the centrol protocol [or RTP [10]. By
sharing their traces using RTCP, they benctit
from RTCP’s built-in scaling mechanisms,

The approach is based on threc tools: mgen,
mflect, and muerge (Fig. 5). mgen generates a
stream of data (and may be replaced by any
other application that multicasts data over RTP),
A copy of mElect at cach receiver maintaing
traces of the packets it docs and does not receive
from mgen, It periodically multicasts these (in a
sense reflecting the data stream; hence,
‘mflect”). mmerge collects the traces sent by
mfleet, collates those from the different data
receivers, and makes them available to a tool
such ag MINT flor infercnce.

mflect and mmerge are designed so that they
may be incorporated directly into cxisting and
future muolticast applications. Their joint func-
lionality is available as an extension ta the RTP
common code library from University Callege
London, called Extended Reporting (RTPXR),
An application using RTTXR wauld be in a posi-
tion to respond adaptively to information on the
topology of its data distribution tree.

Ongoing research rciated to these tools con-
cerns the scalability of trace sharing. For exam-
ple, a raw bit vector loss trace for 3000 packets
would consumc 375 octets, tar more than the
four octets allecated for summary loss informa-
tion in a standard RTCP packet. To limil the
traces to an acceptable intermediate size we are
investigating the use of compression techniques
such as run length encoding, as well as distribut-
ed methods by which all copies of mflect ina
single session agree on which portians of the
trace to share in place of the whole trace,

MULTICAST INFERENCE METWORK TGOL

MINT is intended to facilitate multicast-bascd
inference. Tt takes as inputs all the traces callected
[rom the end hosts, These traces may or may not
include mtrace outputs. Currently, MINT compris-
es three components: & Web-based user interface, a
topology discovery algorithm, and an inference
engine. Users interact with MINT to manipulate
the inference, such as by choosing number of sam-
ples, visualizing the multicast tree with losses, or
shawing the performance evolutjon over speeific
links. Depending on the availability of mtrace out-
put, MINT discavers the topology by cither parsing
mtrace inputs or inferring the muylticast tree from
the loss traces, The in(erence engine takes topology
information and loss traces to infer the network
internal loss and then provides this to the user. The
user can then view the results in one of several
wiys, One way is to lay out the logical multicast
ttee and display the links in different colors to dis-
tinguish dilferent average loss rates (Fig. 6). The

Loifleet ; ;
o S mmerge

e mftécf—_ mflect .

o mflect - mflect . flect

user can also focus on a single link and observe
how the loss rate cvolves over Lime for that link.

Our future plans for MINT are to include
support lor delay inference and to test it thor-
oughly by fecding il with daily traces collected
from NIMI,

RELATED VWORK

A growing numher of measurement infra-
structure projeets (¢.g., AMP, Telix, IPMA,
NIMI, Surveyor, and Test Tratfic [11]} aim to
calleet and analyze end-to-cnd performance data
for a mesh of unicast paths between a set of par-
ticipating hosts. We believe our multicast-basced
inference techniques would be a valuable addi-
tion (o these measurcment platforms, We arce
continuing to work on jncorporating MINC
capabilities into NIML

Recent experimental work has sought to
understand internal nctwork behavior from end-
point performance measurements (c.g., TReno
[L2]). T particular, pathehar [13] is under evalu-
ation as & toal for inferring link-level statistics
from end-to-end unicast measurements, Much
work remains to be done in this arca; MINC con-
tributes a novel multicast-hased methodelogy.

Rogarding multicast-based measurements, we
have already described mtrace. This forms the
basis [or several tools [or performing topology
discovery (tracer [14]) and visnalizing loss on
the multieast distribulion tree of an application
(M1lealth [7]). However, mtrace suffers from
performance and applicability problems in the
context of large-scale fnternct measurcments,
First, mtrace needs to run once for each receiver
in order 1o cover a complete muliicast tree, which
docs not scale well to large numbers of receivers.
In contrast, MINC covers the complete tree in g
single pass, Sccond, mtxace relies on multicast
routers to respond to cxplicit measurement
querics. Although current routers support these
queries, providers may choose Lo disable this foa-
ture since it gives anyone access to detailed delay
and loss information about paths inside their net-
works. In contrast, MINC does not rely on coop-
eration from any internal network clements,

CONCLUSIONS

We deseribe a new approach to identifying inter-
nul network charucteristics hased on the use of
cnd-to-end multicast measurements. This
methedalogy is rigoreusly based in cstimation

M Figure 5, An RTCP-based tool dep!oymeﬁ! example on the smﬁe topology as
shown in Fig. 2, with inference performed ai UMass.
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theory. A preliminary evaluation for identifying
loss rates based on measurements made over the
MBone indicates thal it is accurate and readily
able to track dynamic flucluations thal occur
ovet lime. More detailed investigations based on
simulation further corraborate this conclusion,
not only for the case of losses, but for delays as
well. Finally, we describe our current efforts to
deploy this methodology on the Internet and
make it available to the community at farge.

We believe MINC is an important new
methodology for nelwork measurement, particu-
larly Internet. measurement. Tt does not rely on
network cooperation and should scale to very
large networks, MINC is firmly grounded in sta-
tistical analysis backed up by packet-level simu-
lations, and now experiments under real network
conditions, We arc continuing to extend MINC
aleng both analytical and experimental fronts,
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