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Modeling Radar Scatter from Distributed Targets 
Using a Coupled Scatterer Approach 

Peter J. F. Swart and Paul Snoeij 

Abstract-Radar remote sensing deals with the extraction of 
object information from electromagnetic wave parameters. To 
fully exploit the potential of acquiring quantitative information 
requires a detailed description of the interaction between mi- 
crowaves and objects. For practical reasons a simplified ap- 
proach is preferred where the radar return of a distributed tar- 
get is modeled as a sum of scatterer echoes. 

In this paper, a point scatterer model is given to simulate 
scattering of radar waves by distributed targets. The scatterers 
may have different heights in synthesizing rough surfaces. The 
principle of conservation of energy is used to account for elec- 
tromagnetic coupling between the scatterers in function of tar- 
get sampling density. The predicted coupling between two scat- 
terers is experimentally verified by indoor radar cross section 
measurements. The model is verified through comparison with 
numerically solving the electric field integral equation for lin- 
ear scatterer arrays. Results are given in the form of bistatic 
scatter diagrams to provide insight in the full scattering behav- 
ior. 

I. INTRODUCTION 
HE radar cross section u is defined for a single target T as a hypothetical area intercepting that amount of 

power, which, when scattered isotropically, produces an 
echo with the same power as received from the actual ob- 
ject. A distributed target consists of many point scatterer 
targets whose locations are fairly random. The radar re- 
turn is characterized by the average radar cross section per 
unit area, uo [ 11. The consequences of using the concept 
of uo even in the presence of partial coherency are given 
in [2 ]  based on a discretized representation of the scatter- 
ing process as in [3]. With this a scatterer model is de- 
rived for distributed targets. Coupling between the model 
scatterers is implemented by use of the energy conserva- 
tion requirement. Only the lossless case is considered. 

First a two-dimensional model, based on coupled point 
scatterers, is presented and applied to a flat plate. An ex- 
ample shows the effect of introducing roughness on scat- 
tering angle dependency. Then a one-dimensional version 
of the model, using coupled line scatterers, is given and 
the general behavior of the results and dependence on 
model parameters is discussed. The coupling between two 
line scatterers was experimentally verified and measure- 
ment results are shown. Model verification is supported 

Manuscript received July 20, 1992; revised July 12, 1993. This work 
was supported by the Netherlands Remote Sensing Board. 

The authors are with the Laboratory of Telecommunication and Remote 
Sensing Technology, Department of Electrical Engineering, Delft Univer- 
sity of Technology 2600 GA Delft, The Netherlands. 

IEEE Log Number 92 15 1 13 

by results obtained from solving the electric field integral 
equation using the moment method, examples of which 
are given. 

11. TWO-DIMENSIONAL MODEL 
A distributed target or more specifically a surface is 

represented by a collection of individual so called point 
scatterers, i.e., they have no physical size, which are as- 
sumed to be isotropically scattering as long as the distance 
between them is large compared to the radar wavelength. 
The continuous case however demands that the point scat- 
terers may become infinitesimally closely spaced. The de- 
pendence on spacing distance is related to the electromag- 
netic coupling between the scatterers. The principle of 
conservation of energy is applied to provide for this ~cou- 
pling, where it is assumed that there are no losses. 

The derivation of the point scatterer model is presented 
in Appendix I. Using a square grid of N by N equidistant 
identical point scatterers the monostatic radar cross sec- 
tion normalized with respect to the total point scatterer 
cross section is given, in accordance with (A18) and 8’ = 
8, by 

(1) 
N 2  + 2CC cos 2AI 

ucskfcz,(@ = 
N 2  + 2CC COS A I  ~ 

(si::: ”> 
with 

N 2  = K ,  the total number of point scatterers 

AZ = P ( A x  sin 8 + A z  cos 8) 

A R  = p J ( A x ~  + A Y ~  + AZ’)  

A X  = d,; - do;, 

Ay = dbj - dbjt 

AZ = hk - hk, 

d ,  = db = d = aIN, a = side-length (2 )  
where p = 27rIh with h the radar wavelength, and the 
other variables as defined in Appendix I. The double sum- 
mation in (1) stretches out over all point pair combina- 
tions so that there are i N 2  ( N 2  - 1) summation terms. The 
point scatterers are given different heights in synthesizing 
rough surfaces. 

It is noted that the point scatterer model describes the 
scattering from discretized surfaces, and the transition to 
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Fig. 1. Flat plate simulation result in dB, side-length a = 4 X 

the continuous case is not actually made. The model rather 
focuses on the summation process of supposed scatterer 
contributions into the scattered field. Nevertheless its for- 
mulation is closely related to the numerical presentation 
of the general Kirchhoff solution for a perfectly conduct- 
ing surface given in [3] as becomes clear from the simple 
case in absence of roughness described below. 

A .  Flat Plate 
The radar cross section of a perfectly conducting square 

flat plate is approximately given by Physical Optics (P.O.) 
[4]. The angular dependence follows the well-known dif- 
fraction pattern. Fig. 1 gives the model result for a square 
plate with side-length a = 4 X  sampled with N = 4, resp., 
N = 16. It is noted that the 4 X  side implies P.O. to be 
valid only for 8 < 40". The X/4 sampling suffices for the 
model result to agree with the P.O. result of the contin- 
uous flat plate except for a factor 2 cos2 8. The factor 
cos2 8 is the two-way projection of the incident field on 
the plate surface. The factor 2 is caused by the point scat- 
terer surface being transparent even if the point density 
becomes infinite. The value of c ~ ~ ~ ~ ( ~ )  for 0 = 0 degrees 
increases monotonically for decreasing point spacing d, 
f o r d  < h/2.  towards half the P.O. limit. 

B. Surface Roughness 
If roughness is introduced, average scatter values can 

be determined from repeated simulation for a sufficiently 
large number of statistically independent roughness real- 
izations. Fig. 2 shows the result for uniformly distributed 
point scatterer height variations with standard deviation s 
= A, a = 4h, N = 16 and 32, and averaging over 100 
realizations. The latter value is sufficiently large for the 
results not to change significantly upon further increasing 
the number of averages. In this case the value of s = X 
must be considered already large as it causes the back- 
scatter to become more or less angle independent. Fur- 
thermore Fig. 2 shows that an increase of N results in an 
overall decrease of the backscatter level in this case. 

Decreasing the roughness parameter to s = 0.1 h leads 
to Fig. 3. The decrease of roughness allows for a reduced 
number of averages to suffice, in this case it is over 10 
realizations. Also the case with N = 64 is considered. It 
is clear that the dependency on N is related to the measure 

0 1 5 3 0 4 5 6 0 7 5 9 0  

INCIDENCE ANGLE (degrees) 4 

Fig. 2.  Two-dimensional model result in dB,  a = 4X, roughness s = A, 
averaged 100 realizations. 
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Fig 3 Two-dimensional model result in dB, u = 4h, roughness s = 0.1 A, 

averaged 10 realizations. 

of incoherency of the backscatter signal depending on the 
angle of incidence. This may be generalized by consid- 
ering the bistatic scatter case, see Section 111-B. 

111. ONE-DIMENSIONAL MODEL 
The one-dimensional model geometry is given in Fig. 

4. It consists of a one-dimensional grid containing N 
equally spaced identical line scatterers. In close analogy 
to the two-dimensional model, the monostatic radar cross 
section normalized with respect to the total line scatterer 
cross section that follows from Appendix I1 is given by 

acsM(l)(e) = N + 2CC cos AZ(.l,,(AR))' 

As an example Fig. 1 was reproduced using (3) instead 
of (1) resulting in Fig. 5 where the length L = 4 A and N 
= 4, resp., N = 16. The main difference is that the value 
at normal incidence for large N approaches 7rLlX (=11 
dB) where the two-dimensional case leads to 27ra 2/ X2 
( = 2 0  dB). 

At this point it is recognized that continued simulation 
using (3) and interpretation of results will benefit from 
insight in the general behavior of the model. The angle 
dependence of (3) is found to be mainly due to the nu- 
merator. This is caused by the relatively fast fluctuating 
phasefactor 2AZ as a function of 8 in the numerator com- 
pared to AI in the denominator. Additionally the denom- 
inator its angle dependence is counteracted by J,, ( A  R ) .  In 
the following treating them separately, despite that this is 

(3) 
N + 2CC cos 2AZ 
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Fig. 4 .  One-dimensional, line scatterer, model geometry. 
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Fig. 5 .  One-dimensional simulation result in dB, length L = 4 X ,  no 
roughness. 

an approximation, is pursued since it reveals characteris- 
tics of the model solution. 

A. Statistical Description 
The probability density function of the numerator in (3) 

follows from the rough surface statistics only after the 
model parameters L, N, 8 are given specific settings. This 
already requires numerical calculations to take place over 
a large number of surface realizations. Therefore it is gen- 
erally not feasible to state the outcome for certain surface 
descriptions in terms of the model parameters. An excep- 
tion to this is formed by the average result over a large 
number of realizations where one may write 

(CC COS 2 A Z )  = (cos 2 2 ) C C  cos 2X 

- (sin 2 2  ) CC sin 2X (4) 
in which ( ) denotes the ensemble average which for the 
double summation in the numerator of (3) is written in 
function of stochastic parts with 

2 = DAz cos 8 

X = @Ax sin 8 .  

( 5 )  

(6) 
The deterministic parts in (4) can be rewritten as single 
summations by collecting equal distance differences A x  
between two line scatterers k and k’ where 1 < k < k’ 

and deterministic parts with 

< N ,  it follows: 

N N  c c cos 2 x  
k = l  k ’ = k + l  

N -  1 

= ( N  - (k’ - k))  cos (2pAx sin 8 )  
( k ‘ - k ) =  I 

d ( A  4 
-L f dl2 

= j-d12 - ( N  + 2) cos (2DAx sin 8)  - d 

(7) 
and likewise for sin 2X. The transition to the integral rep- 
resentation above is based on 

A X  = - (k ’  - k)  d 

d ( A x )  = -d  = -L/N 

where N is assumed to be large as it should already be to 
provide sufficient surface sampling. Solving the integral 
in (7) leads to 

cc cos 2~ = ; N ~  {(sin u)/u}* - ;N ,  

with u = pL sin 8 (8) 
and the sine part is likewise found to become 

1 1 
CC sin 2~ = - 2u N~ {(sin 2u)/2u} - - 2u N ~ .  (9) 

For the trivial case in the absence of line scatterer height 
differences it follows from substituting (8) in (3) that the 
numerator of (3) then equals N 2  {(sin u ) / u } ~  with the fac- 
tor N2 due to the coherent summation process and the 
{(sin u)/uI2 part is recognized as the earlier mentioned 
well known diffraction pattern (Fig. 1). In case of large 
roughness the stochastic parts in (4) will be zero on av- 
erage as will become clear from the example in case of 
Gaussian roughness given below. The numerator of (3) 
then equals N due to power summation and the result is 
no longer angle dependent. 

The stochastic parts in (4) require knowledge of the sta- 
tistics. As an example the line height is assumed to be 
Gaussian distributed with zero average and standard de- 
viation s. In this case simply the same distribution yields 
for the height difference A z  between two arbitrary lines 
and if their respective heights are statistically independent 
the standard deviation is s d 2 .  The stochastic variable 2 
follows from ( 5 ) .  Finally the distribution of the cosine 
and sine functions of 22  may be calculated for specific 
values of s. 

Examples are given in Figs. 6(a) and (b) for the cosine 
and sine results for s = 0.03 X and s = 0.3 X with 8 = 45 
degrees. From this it is concluded that here s = 0.03X 
represents relatively small roughness resulting in an 
asymmetric cosine distribution and a near Gaussian sine 
distribution corresponding to their small arguments. On 
the other hand s = 0.3 X represents rather large roughness 
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Fig. 6. (a) Probability density function (PDF) of  cos  ( 2 Z ) ,  with Z = 2 ~ /  
h ( A z  cos 0) and z Gaussian with standard deviation s, (b) idem, sin ( 2 2 ) .  

where cosine and sine distributions both converge to 

and f denotes the cosine, respectively, sine of a variable 
that is uniformly distributed over a 2 r  interval. The latter 
distribution is seen to be symmetrical around the origin 
resulting in zero average. It is concluded that more gen- 
erally given a symmetrical line height distribution the 
right-hand side of (4) is only nonzero by the cosine term 
and large roughness implies (4) to become zero whatever 
the distribution. 

B. Normalization 
It is explained in Appendix I1 that the denominator of 

(3) is in fact a normalizing factor found from the energy 
conservation requirement. The denominator is not easily 
separated into stochastic and deterministic parts. How- 
ever the integration over all possible directions in finding 
the total scattered energy will generally diminish the in- 
fluence of surface statistics. A closer look into the energy 
redistribution follows from the bistatic scatter diagram. 

From Appendix I1 it is known that the general bistatic 
form of ucsM(I) follows from (3) by replacing cos 2 A I  by 
cos ( A I  + AS) where the scatter phase term AS equals 
A I  given in (2) except for 8 being replaced by the scatter 
angle 8’. In the special cases 8 ’ = r f 8 the height de- 
pendent terms of A I  and A S  cancel. For 8’ = r - 8 the 
numerator of ucsM(l) (8, 8’) equals N 2  {(sin u) lu}2  with u 
given in (8). For 8’ = r + 8 also the distance dependent 

I .......... ................. CSM(1) 

(h) 

Fig. 7 .  (a) Bistatic scatter diagram uCsM(,) (8, 0’) in dB for incidence angle 
0 = a/4 with the scatter angle 0 < 8’ < 2a, low roughness: s = O.O3X, 
(b) idem, high roughness: s = 0.3X. 

terms cancel and the numerator equals its maximum value 
N 2  always. 

These coherent scatter contributions are thus found to 
be present only in the half-space below the surface. Vice 
versa, the effect of surface roughness introducing inco- 
herence will generally be strongest in the source half-space 

Examples of the bistatic scatter diagrams aCsM(l) (8, 8‘) 
are given in Figs. 7(a) and (b) for the low, respectively, 
high roughness cases s = 0.03 X and s = 0.3 X, with model 
parameter values 8 = r14, L = 4 A, N = 16 and averaging 
over 100 realizations. The increase of roughness leads to 
a decrease of symmetry with respect to the xy-plane, scat- 
tering on the incident side shows the strongest incoher- 
ence resulting in nearly isotropic behavior for s = 0.3X 
and, as explained before, associated with this the numer- 
ator of uCsM(l) will be nearly equal to N .  

For 8’ = 3r14 the coherence effect does not lead to a 
strong scattering into this direction due to the mentioned 
factor {(sin u) lu}2 .  Also for 8’ = 5r14 both cases show 

+2 < e’ r12. 
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nearly the same scattering intensity which is now maxi- 
mum always. The latter maximum value may be found by 
dividing N 2  by the value of the denominator. The result- 
ing value is seen to be near 10 dB for both the s = 0.03 X 
and the s = 0.3 X case confirming that the effect of surface 
statistics on the denominator is relatively weak. 

It is observed that the main lobe in the scatter diagram 
around 8’ = a + 8, the forward scatter direction, reaches 
a certain limiting shape for N large enough and s constant. 
In this case most of the energy is concentrated in this co- 
herent beam and its associated side lobes where the latter 
are for convenience omitted from this present discussion. 
If s is increased the main lobe narrows down so that it 
would contain less energy if N remains constant. This is 
only partly true because the scatter diagram area is kept 
constant by the denominator normalizing with respect to 
the total scattered energy. The major part of the energy 
will again appear in the main lobe so that its amplitude 
increases. The remaining energy will reinforce incoherent 
parts of the scatter diagram. Due to the latter N may sub- 
sequently be further increased to gather the “lost” energy 
back to the main lobe. 

It is concluded that in case of random roughness with- 
out surface correlation an increase of the number of lines 
N will cause the result of the model to consist of coherent 
contributions only. These coherent contributions will pro- 
gressively add to the forward scatter for increasing rough- 
ness. As a consequence the backscatter will vanish as 
seen, e.g., in Fig. 2 where it is noted that the one-dimen- 
sional, line version of the model essentially works the 
same as the point scatterer model. 

IV. VERIFICATION 
The models introduced above present a simplified ap- 

proach in solving radar surface scattering problems. They 
are to be verified by measurements and compared with 
other theoretical solutions of the scatterers problem. In- 
door Radar Cross Section (RCS) measurements confirm 
the correctness of accounting for electromagnetic cou- 
pling effects between two scatterers in function of the dis- 
tance between them by applying the principle of energy 
conservation. 

The RCS-measurement facility forms part of the Delft 
University of Technology Chamber for Antenna Tests 
(DUCAT) providing an electromagnetically anechoic and 
well-shielded environment of 6 x 3 X 3 m3. The equip- 
ment consists of a HP 85 10B network analyzer controlling 
a synthesizer and sweeper source in combination with a 
test-set developed at Delft University and using a so-called 
external mixer configuration. A laser is used as a refer- 
ence in target positioning. Further details can be found in 
[5], [6]. DUCAT includes the possibility of performing 
bistatic measurements where the transmit antenna remains 
fixed and the receiver antenna is moved in a circle around 
the target. 

For model verification purposes numerically solving the 
electric field integral equation (EFIE) of the scattering 

problem with the Method of Moments (MOM) is used. 
The far zone scattered field and subsequently the power 
can then be computed. Specifically, the EFIE formulation 
of the scattering from a wire object, such as a straight 
needle and an array of parallel needles is numerically 
solved and the CSM model result is compared with the 
MOM solution. 

A .  Coupling Constant 
The model equation given in (3) applied to the case 

with only two lines is rewritten in accordance with Ap- 
pendix I1 into 

where a5 denotes the scattering width or radar cross sec- 
tion per unit length of a combination of two parallel line 
scatterers of infinite length. 

It is noted that (1 1) gives a bistatic form of ( T ~ ~ ~ ( ~ )  for 
the case where the line scatterer heights with respect to 
the xy-plane are zero. 

The model result given in (11) is compared to mea- 
surement in Fig. 8.  The measurements are bistatic due to 
the use of two antennas. Setting the distance between the 
antennas at 0.2 m and their distance to the target plane to 
1.5 m leads to the bistatic situation 8 = -8’ = 4”. In this 
case the right-hand side of (1 1) reduces to 2 C(4”) which 
is given by the upper solid curve in Fig. 8. The bistatic 
angle effect is found to cause a relatively smooth part in 
the otherwise oscillatory coupling factor C in function of 
the line distance d .  

The two lower curves in Fig. 8 present measurement 
results at 10 GHz using two metallic needles in a mea- 
surement setup conform the (infinite length) two line 
model geometry to which (1 1) applies. The needles are 
oriented parallel to the polarization direction. The dis- 
tance d between the needles was varied from 0 to 1OX. 
The dotted curves concern half a wavelength long needles 
and the dashed ones concern one X long needles, with 
diameters of and mm, respectively. 

The two-needle measurements are corrected for the an- 
tenna diagram influence. As a result the two lower curves 
are in close agreement with the upper theoretical one. The 
main conclusion is that these measurements clearly sup- 
port the description of the electromagnetic coupling be- 
tween two line scatterers as given in Appendix I1 using 
the energy conservation principle. As such it is a basic 
step in validating the general model formulation. 

The discussion of the experimental results is however 
not yet complete. The needles have finite length and the- 
ory is based on lines of infinite length. Using longer 
needles presents difficulties in maintaining that their il- 
lumination is essentially that of a plane wave as required. 
Still, deviations of the two-needle measurements from the 
theoretical prediction are relatively small, especially for 
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Fig 9. Radar cross section in dBm2 of a single needle scatterer as a func- 
tion of needle length 1 for length diameter ratio I / @  = 60 and 30 (according 
to Van Vleck el a1 [7, p. 2901). indicated are the differences wlth the 
measured single needle values 

the X length case. Compared to the latter the 3 X  result 
exhibits an offset with respect to both the horizontal and 
the vertical scale. Furthermore both two-needle results are 
found to converge to their respective one-needle back- 
scatter values if the distance becomes close to zero. These 
values are 3 dB lower than theory predicts. But then in 
theory the two lines never reduce to one for d -+ 0, 
whereas in practice the needles will touch and form a one 
' 'needle"-combination. 

The observations mentioned above may to a large ex- 
tent be explained by calculating the needle backscatter in 
function of needle length 1 and needle diameter 0 using 
a method described by Van Vleck et al .  [7]. As a result 
the behavior of the radar cross section versus needle length 
is given in Fig. 9. The solid curve is obtained for the 
length diameter ratio I / @  equal to 60 that is the actual 
values of the needles used. The other curve gives the dou- 
ble diameter case, where I / @  = 30, used to approximate 
the case of two touching needles. Both curves reveal the 
presence of a needle resonance peak around a value 
slightly lower than 1 / X  = 0.5. This explains the vertical 
offset of the IX two-needle curve in Fig. 8 and the reso- 
nance effect probably also causes the noted horizontal off- 
set. The absolute differences between the measured values 
in the one-needle cases at zero position compared to the 
calculation results are found to be 0.3 and 0.4 dB for the 
+A,  respectively, X needles. 

Doubling of the diameter 0 clearly affects the $ X  length 
result much less than the X result, as can be seen in Fig. 
9. This agrees with the behavior of both two-needle curves 
in Fig. 8 around zero distance. The two-needle i X  curve 
was already noticed to be horizontally offset and in com- 
bination with this there is a quite gradual convergence to 
the value that was found for one such a needle, if the 
needle distance reduces to zero. The two-needle X curve 
converges to a 2 dB higher value as found for one h needle 
and only very close to zero distance it rather discontin- 
uously assumes the one-needle A result. From this it may 
be concluded that the mechanical alignment is possibly 
not that perfect to guarantee that, e.g., the needles are 
still exactly next to each other. 

. . . . . . . . . . .  

.............. I ............... DUCAT( 

Fig. IO .  Measured bistatic RCS in dBmZ, N = 16 needles, no roughness. 

B. Measurement and Methods of Moments 
A bistatic measurement result for a target consisting of 

an array of N = 16 parallel metallic needles is presented 
in Fig. 10. The needle lengths equal the wavelength, X = 

3 cm, their diameters are 3 mm, and the needle spacing d 
= 8 mm. Only the flat case is considered, i.e., the needle 
heights are set to zero. The polarization of the transmitter 
and receiver are both parallel to the needle axes. The in- 
cidence angle is fixed at 45 degrees. Measurement sensi- 
tivity mainly depends on the cross-talk level between the 
antennas and is a function of their relative positions. Mea- 
surement reproducibility was found to be typically within 
0.2 dB. 

The scattering from the needles can be calculated by 
numerically solving the electric field integral formulation 
of the problem with the Method of Moments [8]. The bi- 
static RCS result for the flat case considered above is pre- 
sented in Fig. 11 and is in perfect agreement with the 
previously given measurement result in Fig. 10. 

Use of MOM avoids performing measurements that be- 
come laborious in the case of varying needle heights when 
roughness is introduced. On the other hand actually solv- 
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Fig. 11. Bistatic RCS in dBm2 from Method of Moments, N = 16 needles, 
no roughness. 

ing the scatter problem has the disadvantage of relatively 
high computer memory and time requirement. In the next, 
model results are compared with those calculated with 
MOM. 

To enable comparison the MOM result is normalized 
to give the bistatic scatter diagram, aMoM(8, e’), in the 
same way as the model [8, p. 761. The two-dimensional 
model is used to be able to account for the finite length of 
the needles. 

Following the example given in Section 111-B, the bi- 
static scatterdiagrams aMoM(8, 8’) and uCSMQ) (8, 8’) are 
given in Fig. 12(a) for the low roughness case s = 0.03 X 
and likewise for the high roughness case s = 0.3 X in Fig. 
12(b). As before, averaging is performed over 100 real- 
izations, the incidence angle 8 = a/4, and N = 16 needles 
of length X are used with a X/4 grid spacing. 

Figs. 12(a), (b) show that the model (dotted line) be- 
haves quite well for the chosen settings. For’both rough- 
ness cases the modeled backscatter nearly equals the 
MOM result (solid line). The main differences are found 
in the “end-fire” directions, 8‘ = a12 and 8‘ = 3 d 2 ,  
where the model results become too high when roughness 
is increased. This disagreement is caused by the fact that 
the model only accounts for phase differences between the 
scattered field contributions in a given realization depend- 
ing on propagation path length differences. The modeled 
scattered field is similar to that of the method of moments 
expression obtained from the far-zone magnetic vector 
potential after substituting the needle currents. They dif- 
fer however in that MOM accounts for additional phase 
and also amplitude differences between the scattered field 
contributions that is due to the current distributions. 

V. CONCLUSION 
A coupled scatterer model is derived to simulate radar 

scattering from distributed targets. To enable fast evalu- 
ation of model parameter influences a one-dimensional 
version of the model is given. The model formulation is 
straightforward and simple limiting cases show expected 

(b) 
Fig. 12. (a) Bistatic scatter diagrams uMoM and ucsMCz) in dB, N = 16, low 

roughness: s = O.O3X,  (b) idem, high roughness: s = 0 .3h .  

results. The coupling between the scatterers in the model 
is based on the energy conservation requirement assuming 
perfect conductivity. This coupling was experimentally 
verified using a two-needle configuration. In further ver- 
ification the number of scatterers is increased and scat- 
terer height is made variable. Bistatic scatter diagram re- 
sults obtained with the model are found to agree well with 
Method of Moments results. 

APPENDIX I 
TWO-DIMENSIONAL MODEL FORMULATION 

The two-dimensional model geometry is presented in 
Fig. 13. A plane wave is incident on a rectangular surface 
built up of K identical lossless point scatterers that are 
spaced d, in x-direction and db in y-direction. The incident 
propagation direction is given by the angles 8 and 4. In 
the next only the case 4 = 0 will be considered. The point 
scatterers are assumed to scatter isotropically , their 
heights with respect to the plane z = 0 may vary. 

The phase relations between the scatter contributions of 
the different points depend on their relative positions. For 
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i. f 

Fig. 13. Two-dimensional, point scatterer, model geometry 

the total phase difference between the scatter contribution 
of point k and that of reference point 1 we can write 

(‘41) 

(‘42) 

(ok = I k  + sk 
I k  = p(& sin 8 + hk cos 8) 

Sk = p((dai cos 4’ + dbj sin 4’) sin 8’ + hk cos 0’) 

043) 
where = 27r/ h with h the radar wavelength, the angles 
8’ and 4’ give the scattered wave propagation direction 
and (d,;, dbj, hk) is the position vector from point 1 to 
point k. Let the amount of power intercepted by each point 
scatterer be equal. It follows that the scattered electrical 
field on a large distance r can be written as 

(A41 
where Q is a constant that is related to the total scattered 
power. From (A4) it follows that 

K 2 K 2 f = ( c cos p k )  + ( c sin (ok) 
Q 2  k =  1 k =  1 

K K  

= K + 2 cos pkk# 
k = l  k ’ = k + l  

K K  

= K + 2 c COS I M #  COS Skkr 
k = l  k ’ = k + l  

K K  

- 2 C C sin &‘sin skkr (A5) 
k = l  k ’ = k + l  

with 

From (A5) it is concluded that in addition to the term K 
which is due to the points themselves, a summation of 
interaction terms between all possible point pairs is found. 
The total scattered power is calculated by integrating over 
a sphere with radius r: 

K K  \ 

- 2 C C s in Ikkr s s  0.49) 
k = l  k ’ = k + l  

where S; and S; denote even, respectively, odd point 
scatter integration terms, that after integration with re- 

where Jo is the Bessel function of the first kind and zero 
order, H and D are phase differences between point scat- 
terers k and k’: 

furthermore (A10) and ( A l l )  are written as the sum of 
two integrals over the half-space above, respectively, be- 
low the xy-plane, i.e., 8’ = n/2. These two integrals are 
equal in the even, symmetric case whereas they cancel in 
the odd, asymmetric case. The remaining expression 
(A10) can be solved according to Gradshteyn [9] resulting 
in 

With (A9), (A12), and (A13) the total scattered power 
becomes 

K K  sin Rkkp 
K + 2 C C COS I k k # -  

60 k =  1 k ’ = k +  I Rkk‘ 

with &k’ given by 

RkkC = pJ(d,; - d , i ~ ) ~  + (dbj - d b j ~ ) ~  + (hk - hk,)2. 

(A 15) 
The input power is assumed to be fully intercepted by the 
point scatterers. Since there is no loss of energy, the total 
scattered power must be equal to the input power. The 
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input power is given by 

IE' 1' 
P = K u -  

1207r 

where u is the radar cross section of an isolated point scat- 
terer and E' the incident electric field. The radar cross 
section follows as 

up = lim 4nr2  - 'E"2 - - lim K u -  (Es\' (A17) 

and \Es\  is obtained by combining (A5) with (A14) 
through elimination of the constant Q. The radar cross 
section normalized with respect to the total point scatterer 
cross section, Ku, derived from the two-dimensional cou- 
pled scatterer model is given by 

r 2  
r - m  r + c o  6OP 

K K  

n n  Sin Rkkr 
K + 2 cos - 

k = l  k ' = k + l  Rkk' 

APPENDIX I1 
COUPLING BETWEEN Two LINE SCATTERERS, THE 

ONE-DIMENSIONAL MODEL 
The one-dimensional model formulation may be given 

in close analogy in Appendix I. An alternative approach 
however is preferred to accentuate the coupling between 
two-in this case-line scatterers that arises if their mu- 
tual distance becomes small with respect to the radar 
wavelength. The two line case is thereafter easily related 
to the line scatterer model version with N equally spaced 
identical line scatterers placed parallel to each other in- 
cluding possible height differences representing one-di- 
mensionally rough structures. 

A. Two Line Scatterers 
Assuming an incident plane wave with electric field E' 

parallel to an isolated line scatterer the latter will intercept 
power uc S per unit length where 

s = -  
1207r 

is the power density of the incoming wave and 

PSI2 
r - t m  I E ' ( '  u c  = lim 27rr - 

the scattering width or radar cross section per unit length, 
E s  is the scattered electric field. 

An identical second line scatterer placed parallel to the 
first one at distance d will intercept u"S per unit length as 
well. As long as there is no electromagnetic coupling each 

Fig. 14. Two line scatterer bistatic radar geometry. 

line scatterer will scatter isotropically around its axis. It 
can be shown then that, for the general bistatic case given 
in Fig. 14, the scattered electric field component El at 
large distance r of scatterer 1 in the direction 8' can be 
written as 

and that of scatterer 2 by 

where P = 2aIX and 8 represents the incidence angle of 
the illuminating wave. To find the total scattered power 
P per unit length (E"(2 = (E l  + E2I2 is integrated over a 
cylinder. Since the line scatterers are parallel to the y-axis, 
unit length surface elements of width r de' can be used so 
that 

2r lEs12 

P = j -rd8' 
0 1207r 

= 2ucS(1 + cos (pd sin 8 ) J o ( P d ) }  (A23) 
with Jo  the Bessel function of the first kind and zero order. 
This result shows that the total scattered power P may 
become larger as well as smaller than the input power 
2u'S, thus energy conservation has to be set as a require- 
ment. This may be implemented by assuming that, due to 
coupling, the radar cross section of the line scatterers is 
modified by a factor C. As a result the right-hand side of 
(A23) has to be multiplied by the same factor. When sub- 
sequently in the lossless case P is set equal to the input 
power 2u'S it is found that 

C = { 1 + cos (Pd sin O)J,(Pd))- ' .  (A24) 
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20 

(A281 - -_.  -50 = jr cos (H COS 8') cos (D sin 8') de' 
n o  

Sin s k k >  de' 

(A291 = j' sin (H COS 8') cos (D cos 8') de' 
n o  

0 2 4 6 8 IO 

DISTANCE IN WAVELENGTHS -t 

Fig. 15. Coupling factor between two line scatterers for incidence angle 6 
= 0" and 0 = 45". 

The factor C that describes the electromagnetic coupling 
effect is shown in Fig. 15 as a function of the separation 
distance d for two values of the incidence angle 8. The 
factor C approaches unity for large d l h  and is equal to 1 
for dlX = ml2 - 118 (m = 1 ,  2, - - )  whereas dlX = 0 
results in c = 1. 

From a physical point of view (A24) may be interpreted 
as that the line scatterers are no longer scattering isotrop- 
ically around their axes. Consequently also the spatial 
distribution of the power scattered by the combination of 
the two line scatterers will be influenced. Once the mod- 
ified radar cross section CaC of the line scatterers is 
known, one obtains, using (A21) and (A22) 

240a'S 1 + cos { pd(sin 8 + sin e')} 
lE"2 = 1. . (A25) 

Finally using (A19) and (A20) the radar cross section per 
unit length of the combination of the two line scatterers 

1 + cos ( p d  sin 8 ) J o ( p d )  

and 

= p((dk - dk,) Sin 8 + (hk - hk') COS 8) (A30) 

(A31) SM, = p((dk - dk,) Sin 8' + (hk - hk,) COS e')  
H = p(hk - hk,), D = p(dk - dk,). ('432) 

The odd scatter integration term (A29) has an asymmetry 
in the integrand with respect to 8' = 7r12 so that the upper 
and lower half-space contributions cancel out. The re- 
maining expression (A28) is solved by substituting H = 
D tan (a) into 

(A33) Si = 2S2"pp"r = 2S?lower = J o ( w ) .  

The scattered power expression therefore becomes 

) P = NO'S 1 + - C C COS Z M , J O ( R M , )  
N k =  I k ' = k +  1 

(A341 
( 2 N  

= Na'S * C,' 

of which (A23) follows as a special case for N = 2 and 
zero height difference. Furthermore P equals the input 
power Na'S after multiplying a' with the coupling factor 
CN. The far-field scattered electrical field was initially, 
i .e.,  in the absence of coupling, characterized by 

is found: 

1 + cos (pd(sin 8 + sin e')} 
a; = 2aC . (A26) 

1 + cos ( p d  sin 8) Jo (Od)  (A351 
For dlX = 0 the line scatterers are coinciding and in this 
case a; = 2a'. In the other limiting case d l h  -+ 00, a: is 
varying between 0 and 4a' as a function of 8 and 8 ' .  

B. One-Dimensional Model 
The two line case may be generalized to the one-di- 

mensional model, based on N parallel line scatterers (Fig. 
4), by combining the scattered power expression given in 
(A23) and the one given in Appendix I (A9) for the point 
scatterer case into 

where the even and odd scatter integration terms for the 
line target case are given, respectively, by 

1 P 2 *  

The coupling effects are accounted for by replacing a' by 
CNuc in the expression above. Then, using (A19) and 
(A20), the radar cross section per unit length of the com- 
bination of N line scatterers is 

PSI2 a i  = lim 27rr- = lim Nucr  IESl2 (A36) 

and in accordance with Appendix I (A18) the radar cross 
section normalized with respect to the total line scatterer 
cross section, Nu', derived from the one-dimensional 
coupled scatterer model is given by 

r +  m I E ' ~ ~  r + m  1 2 0 ~  

N N  
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