506 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36, NO. 2, MARCH 1998

Detection of Subpixel Anomalies
In Multispectral Infrared Imagery
Using an Adaptive Bayesian Classifier

Edward A. Ashton

Abstract—The detection of subpixel targets with unknown derive a set of background characteristics and to then search
spectral signatures and cluttered backgrounds in multispectral for pixels that appear to be anomalous, with respect to the
imagery is a topic of great interest for remote surveillance pacparound. Clearly, a definitive identification of a target

applications. Because no knowledge of the target is assumed, the t b de th h h f i H
only way to accomplish such a detection is through a search for cannot be made through a search Tor anomalies. However,

anomalous pixels. Two approaches to this problem are examined SUch a search, which requires very low spatial resolution and
in this paper. The first is to separate the image into a number can therefore be conducted over a wide search area, can be
of statistical clusters by using an extension of the well-knowrk- extremely useful as a cuing device for another sensor with

means algorithm. Each bin of resultant residual vectors is then : ; : o ;
decorrelated, and the results are thresholded to provide detection. much_ higher sp_atlal resolution. It is in this role that the
algorithms described here may be useful.

The second approach requires the formation of a probabilistic Lo L .
background model by using an adaptive Bayesian classification ldentification of poorly resolved targets in single-band im-
algorithm. This allows the calculation of a probability for each agery has been demonstrated by Soni through the use of spatial

pixel, with respect to the model. These probabilities are then decorrelation (whitening) followed by energy detection [4].
thresholded to provide detection. Both algorithms are shown to Further work by Reed and Yu with multispectral imagery

provide significant improvement over current filtering techniques h h that binati f tral d lati d
for anomaly detection in experiments using multispectral IR as shown that a combination of spectral decorrelation an

imagery with both simulated and actual subpixel targets. a rotation-invariant-spatial matched filter (MF) [5] provides
improved detection over either algorithm alone when knowl-
edge of target shape is available and that a spatial-spectral MF
provides even greater improvement when the target spectrum
I. INTRODUCTION is known as well [6]. However, in the case of subpixel targets,
g spatial MF kernel reduces to an impulse function and these
gorithms reduce to simple spectral filtering.

Spectral decorrelation filtering has been shown to be an ef-

Index Terms—Classification, multispectral, segmentation, sub-
pixel, target detection.

VERAL recent studies have demonstrated the usefulné%
f taking information from multiple spectral bands wherf

searching for targets that are poorly resolved spatially [1]-[3]. = | for the identificati ¢ lies | i |
The majority of work in this area, however, has focused d ctive tool for the identification of anomalies in multispectra

the detection of targets with known spectral properties. Whild12gery- However, th's_ methoc_i IS based upon the_ assumption
this knowledge simplifies the problem, it also renders it ledd@t all background pixels within some arbitrarily chosen
realistic. It is assumed in these studies that laboratory or fidi?dow about the pixel under consideration should form a
measurements of target spectra may be used as filter vectorStgp!e multivariate Gaussian distribution. While this is true in
target detection. However, there are several factors that m tain situations, it is more generally the case that several

this difficult to put into practice. First, atmospheric interferenc 3 e.rent .terrqln types wil occupy at Ie{;\st some of the pixels
may vary under different weather conditions, changing tﬁlélthln this window unless the window is made unreasonably
Il. Different terrain types usually have different spectral

measured spectral signature of the target. Second, in subpﬁ@ﬁ

targets, the target spectrum is mixed with the spectra Sgnatures and so form at least partially disjoint distributions
random background elements. Third, and most importantf ’spectral space. Clustering or classification algorithms have

in a realistic situation, knowledge of precisely what type ]requently been used to determine terrain types in single-band

paint or camouflage the target is using may not be availabigurveillance imagery [7]. It is possible to extend such clus-
These conditions lead us to seek a solution in which th&fing techniques into the multispectral domain with certain

statistical characterizations are based entirely on the ddigdificationsin the interest of saving computation time. These
under consideration rather than on some previously measuf%d'f'cat'ons are dgtaned ina following sect|on._ If the terrain

spectra. Because targets are assumed to be very spard@§ Of €ach pixel is known, it should be possible to decor-
represented in a scene and their locations are unknown, the{te each of these distributions separately, presumably with

cannot be characterized in this way. However, it is possible f§Proved results. Altematively, it should be possible to find
the spectral means and variances of each distribution. Once

Manuscript received September 3, 1996; revised April 30, 1997. this is done, the probability of each pixel can be calculated,
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DC 20375 USA (e-mail: ashton@dynasun.nrl.navy.mil). with respect to some priori model for pixel and region
Publisher Item Identifier S 0196-2892(98)00735-9. distribution. Each of these approaches is explored in this paper.
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The following section describes in detail the models used ’ .

for pixel and region distribution. Section Ill describes the clique
adaptive clustering algorithm, and Section IV details the val-

idation experiments that were carried out on multispectral IR ‘
data containing both implanted and actual military targets. A
discussion of the results of these experiments is presented in
Section V.

s—-N+1

«ll— clique 2
IIl. BACKGROUND MODELING

A. k-Means Clustering

The first spectral clustering algorithm used here is a simple
extension into multiple dimensions of the well-known  clique 39
means algorithm, nearly identical in form to the so-called

LBG algorithm [8]. We begin with the assumption that each ' ‘
pixel in a multispectral scene will tend to fall into one of

several clusters or bins in spectral space. For example, trees, S+N-1 S*N+1
grasses, and bare soil may form three partially overlapping clique 4

but largely separate bins. The data within each bin is assumed

to take on a multivariate Gaussian distribution. The clusterimgy. 1. Diagram shows the neighborhood of a pixel located atssifEhe

algorithm is able to identify the centroid of each bin operati ixel is a member of four two-pixel cliques, one with each of its nearest
. . S eighbors. It is also a member of a one-pixel clique with itself, but as this

on a training sequence that may consist of the entire imaggis 1o information it is disregarded.

under consideration, or may be limited to some subset of the

available pixels. Once this is done, a residual vector, given BYobabiIity of each pixel, with respect to its classification.

(1) Detection is achieved by thresholding the resultant scalars,
with the least-probable pixels being the most likely targets.
is calculated at each pixel, whege;, is the pixel vector at site  Stochastic relaxation classifiers of this type have rarely been
1, which is assigned to bih, andc; is the centroid vector for applied to multispectral data, primarily because they tend to
bin k. Each bin is then independently decorrelated by usidg extremely computationally intensive. However, in this im-
an adaptive whitening filter of the sort described in [5], anglementation, computation time is reduced greatly by making
the results are thresholded to achieve detection. This relativege of apixelwise stopping ruleas described by Watanabe
simple algorithm was tested on a number of IR data sets with al. in [14] and by achieving stochastic relaxation through
both imaged and implanted targets and has been shownBgsag's iterated conditional modes (ICM) [15]. Dubes and Jain
provide significant improvement over spectral filtering alon6] have reported that the typical ratios of compute time for
in all cases. Detailed results of these experiments are giVéiM, maximum posterior marginals (MPM), and simulated

Ti,k = Yi,k — Ck

in Section IV. annealing (SA) are 1:37:6000. With these maodifications,
processing time on a Silicon Graphics Indigo workstation
B. Bayesian Clustering for a 100 x 100-pixel six-band image is less than 4 min.

Moreover, several further modifications allow a derivative of

The second clustering algorithm that is examined is simil%s algorithm to be applied to a real-time data stream with a
in concept to the one outlined above. However, in this cas Inimal reduction in performance

a_BayeS|an probablll_stlc model for the ba_lckground_|§ fo_rme "In order to optimize the classification of the image under
Given the observed image datathe most likely classification : : A . .
consideration according to the maximuwamposteriori proba-

x at each pixel is found according to the formula bility (MAP) criterion [9], it is necessary to obtain functional
P(z]y) x P(y|z)P(z) (2) forms for bothP(z) and P(y|x). As P(x) has no dependence
upon the observed image dajait must derive entirely from
where P(y|x) is given by a statistical model for pixel distri-somea priori model for region distribution. This term is in-
bution andP(x) is given by a probabilistic model for regiontended to introduce some spatial context into the classification
distribution. In this implementation, the statistical model is process. Bouman [17] and others have accomplished this sort
multivariate Gaussian distribution and the probabilistic modef modeling by using the Markov random field (MRF), which
is a Gibbs random field (GRF) [9], [10]. Initial parameterss derived from the one dimensional Markov chain. However,
for the statistical model are estimated from an LBG clusterirtbis model is defined in terms of local properties, making the
of some training sequence of data, as outlined above. Lodafrivation of a global joint distribution difficult. We therefore
adaptivity is then added through a reestimation of local meamake use of the similar, but more mathematically tractable
and variances by using a shrinking estimation window, in tHeRF.
manner demonstrated for single-band data in [11]-[13]. OnceAssume that a random field is defined over anV x N
the model is formed, it is a simple matter to calculate thattice of sites denoted by, with the individual sites (pixels)
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Fig. 2. (a) Typical single-class two-band data distribution. Distribution does take the form of a multivariate Gaussian, but it cannot be accurately
characterized by the means and variances calculated in bands 1 and 2 because the major axes of the distribution are not aligned with the band axes.
(b) Same distribution, transformed through the Hotelling transform. The variances calculated in bands 1 and 2 now accurately characteriizetite distr
allowing detection of the target.

denoted bys; - - - syz. For the purposes of classification, eachndV(z) is the clique potential, given by g3, if all points in

site on X may take on any integer value from one %o the clique are classified identically, ard3, otherwise 3 is a

wherek is the number of classes (terrain types) into which theeighting factor that determines the relative importance of the

image is classified. Leb be a particular realization ok. In  two terms in the Bayesian formulation, agds a normalizing

order to define the random field, it is necessary first to defigenstant called the partition function, given by

a neighborhood system on the latti®e The neighborhood

system determines which pixels on the lattice will directly Z = ZG_U(“)- ©)

affect the classification of site. In this work, a first-order or w

four-point neighborhood system is used, so that only pixels

that share a side with siteare considered its neighbors.
A clique is defined as a set of sites & such that all

points are mutual neighbors. In a four-point system, there

four two-point cliques, each of which contairsand one of

its four neighbors. This concept is illustrated in Fig. 1.
The GRF provides a global model for the distribution o

regions in an image, specifying a probability-density functio

(pdf) of the form

BecauseZ is the sum of the numerator exponents over
all possible realizations of, it is generally impossible to
compute. This intractability prevents the realization of a GRF
aHSing direct calculation, thus requiring the use of stochastic
relaxation methods, such as ICM. Using the Gibbs formulation,
i{I is possible to calculate the global probability of a given
mage classification based on the clique potentials, which
Hepend solely on the local properties of the pixels. A more
detailed examination of random-field modeling may be found
PX=z)=eY®/z (3) in [15] and [16].
Returning to (2), it is necessary now to find a functional
rm for P(y|z). This is derived from the assumption of
a multivariate Gaussian distribution of each pixel class in
Ulz) = Z Velx) (4) spectral space. Under the additional assumption that each class
c has a slowly varying mean in each band, given at pixbly

where U(z) is the Gibbs potential, given by the summatior];l0
over all cliquesC
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Fig. 3. k-means (LBG) clustering algorithm. Although this algorithm re- .[y(s N — H(z )\)]2

guires some initial estimate of class averages, this estimate need not be overly ’ ’

accurate. Initial accuracy will only affect speed of convergence.
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given the current classification lattieg is given by

P<y|x>«gg{ Y

O(z,5,7) A O—(ac,s,)\)

) [y(s,)\) - N(m,s,)\)]Q' (6)

Substituting into (2) and summing exponents obtains

Plaly) E[E[{ —1

T(w,5,N)

(2,5,

s, n) = B s Y Vc(ﬂf)}-
C
(7)

We wish to maximize this function or, equivalently, to maxi-
mize its natural logarithm, given by

This is accomplished in an iterative fashion by using ICM.
There is one additional minor complication that relates to
the Bayesian model. The major axes of the data distributions
in spectral space tend not to be aligned with the band axes.

This situation is illustrated in Fig. 2(a) for a typical single-
class, two-band data distribution. This data does fall into
a multivariate Gaussian distribution, with a large variance
in the +45° direction and a smaller variance in the45°
direction. However, the variances, as measured in bands 1 and
2, are identical. The probability of each pixel will therefore
be proportional to its Euclidean distance from the spectral
mean, and as a result, the target, which is separable from
the background, will appear to be less improbable than many
background pixels at the extrema of the distribution’s long
axis.

In order to take full advantage of the power of the Bayesian
model, it is necessary to transform the data in such a way that it
takes on the distribution shown in Fig. 2(b), in which the major
and minor axes of the distribution are aligned with the band
axes. This transformation, which may be easily and quickly
accomplished through use of the Hotelling transform [18],
essentially provides separability; i.e., it allows the distribution
to be accurately characterized by an independent mean and
variance in each band. The Hotelling transform maps the

Fig. 4. Flowchart for modified adaptive clustering. Interior loop represen@Pserved data vectos into transformed vectors); through
standard ICM. Note that estimation of the class-variance array is outside ttfige formula

loop.

w; = Ay; —my) (9)

Iz, s, »)» Where refers to spectral wavelength, and a slowly
varying standard deviation in each band, given at pixély where A is a matrix whose rows are formed from the eigen-
0z, s, n) the global probability of the observed image cube vectors of the covariance matrix of, ordered such that
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Fig. 5. (a) 200x 200-pixel section from band 1 of the TIMS Kona image cube. Contains ten targets implanted with a pixel-fill factor of 18%. (b) Smaller
section highlighted in (a), processed using spectral decorrelation filtering and thresholded at 100% detection. FAR is 0.17%. (c) Processadraising sp
clustering followed by bin decorrelation. FAR is 0.07%. (d) Processed using Bayesian clustering. FAR is 0.04%.

the first row is the eigenvector corresponding to the largagbrithm provides alternating estimation of the class averages
eigenvalue and the last row is the eigenvector correspondifoy bin centroids) and pixel classification. A flowchart for
to the smallest eigenvalue and, is the spectral mean vectorthis algorithm is given in Fig. 3. Note that this flowchart
of y. This operation is time consuming only if there are a vergssumes some initial estimate of bin centroids. This estimate
large number of bands under consideration. For the numlggres not need to be accurate for the algorithm to converge
of bands typically seen in IR cameras (6-12), the Hotelling an optimal solution. However, an initial estimate that is
transform adds little to the computation time of the algorithnglose to the final solution will require fewer iterations to
converge than one that is far from the correct answer. Such an
estimate can be found through a modification of the splitting
IIl. A LGORITHMS FOR CLUSTERING AND DETECTION algorithm [8]. The original splitting algorithm reaches an initial
As has been previously mentioned, the algorithm used bin-centroid estimate by beginning with a single bin that
achieve spectral clustering is a simple extension into multiptentains the entire set of training data. Additional bins are
dimensions of the well-knowrk-means algorithm. This al- produced by perturbing all centroids in the current set by some
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T — 1 wherey; is the pixel vector at siteandf is the bin into which
. ':‘ I ] 1; is classified. The matrix can then be thresholded to provide
o8 L\ } — — -spectral clustering |1 ¢ g detection. This transformation provides spectral decorrelation
@ Loy — Bayesian clustering [} followed by energy detection. Use of this type of filter for
g r ' anomaly detection has been proposed previously in [4] and
s 06 -4 0.6 5],
& L ] Alternatively, it is possible to use the calculated bin cen-
& 04 04 troids and cluster matrix as an initial state for a Bayesian
® i ) classification algorithm. The goal of such an algorithm is to
0.2 .. 192 find the most likely classification of each pixel vector in terms
r ~ ] of the MAP criterion. In order to do this, it is necessary to find
0 S the global maximum of (8). This is accomplished by using a
12 24 modification of the adaptive clustering algorithm of Pappas
[11], which was applied previously to single-band data in [12]
@ and [13]. A flowchart for modified adaptive clustering, which
1 ___ 1 is essentially a locally adaptive form of ICM [15], is given
i - : in Fig. 4.
08 L L 1os Local adaptivity is achieved through the use of a shrinking
r - 1 estimation window of sizé¥” for parameter estimation. Each
- ’ : pixel in the image is assumed to have its own mean vector
e 0.6 . -1 0.6 .
@ A 1 and covariance vector for each class. The mean vegtor,
> N is calculated based on all the pixels of classithin a window
A 04 : 04 centered around site which is of sizelt/. The corresponding
o2 :_’/ —— Bayesian clustering Ji variance vectqr is calculated similarly. Clearly, calc;ulatjng
I ; — — -spectral clustering mean and variance vectors for each class at each pixel in an
! ' o RX image is a formidable computational burden. In order to ease
0 : 0 this burden, the class means and variances are calculated at
0 0.005 8.9, 0015 002 a grid of points spaced evenly throughout the image with a

b separation ofi¥/2 pixels. Values at intermediate pixel sites
() are calculated through bilinear interpolation of the grid points.

Fig. 6. (a) Plot of pixel fill versus FAR at 100% target detection for the T"V'Srnitially W is the size of the image so 0n|y one mean and
Kona data set. (b) ROC curves at 14% pixel-fill factd¥(Y |sn) denotes ’ .

probability of detection, whileP(Y|n) denotes probability of false alarm. one variance vector are calculated by using all pixels in the

Note that both clustering algorithms provide significant improvement ovémage. When a stable solution is found at a given window
RX filtering alone. size, W is halved and the process is repeated. This continues
until some final valud¥ ;. is reached.

small valuee, doubling the current number of bins. Optimal The core assumptions of this algorithm are that the data
centroids are then calculated at the new number of bins. TRRNSists of a finite number of clusters in spectral space,
process is repeated until the desired number of bins is reachR@gh of which may be described by a multivariate Gaussian
While splitting by the LBG process is optimal in terms oflistribution, that class means and variances vary slowly with
performance, it is also very time consuming. We save time §patial position, and that pixels of similar composition will
allowing only a limited number of iterations at each level untfiend to cluster spatially as well as spectrally. Once each pixel
the desired number of bins is reached. The algorithm is thB@S been classified and the local means and variances have
allowed to run to its conclusion on the final set of centroid®€en calculated for each class at each pixel site, (8) may be
This modification provides results that are generally identicdfed to calculate the probability of each modeled pixel given
to those achieved by using the full splitting algorithm, witihe observed image data. Those pixels that are least probable,
considerable savings in computation time. i.e., those which are the poorest matches for the image model,
Once clustering is accomplished, a spectral correlation nf€ most likely to be targets.
trix Ry, is calculated for each of the bins. Local adaptivity
may be added by calculating;, using a local estimation
window at a series of grid points evenly spaced through the
image. Values ofR;, at pixels between grid points are then Initial experiments with these algorithms were carried out
obtained through bilinear interpolation of the grid points. Thign data obtained by using the Thermal Infrared Multispectral
technique is used to provide local adaptivity for the Bayesidsensor (TIMS) instrument. This camera measures six spectral
classification algorithm, which will be described shortly. Onckands ranging from 8.0 to 11,8m. Measurement is spectrally
the set of correlation matrices has been calculated, a scanultaneous (the images therefore do not require registration)
matrix z is formed through the transformation and is taken a single line at a time from an airborne platform.
Two TIMS data cubes were used in this study. The first
Zi = y;fR,jlyi (10) was taken over an airfield in Kona, HI, and the second was

IV. EXPERIMENTAL PROCEDURE AND RESULTS
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Fig. 7. (a) 200x 200-pixel section from band 1 of the TIMS White Mountains image cube. Contains five targets implanted with a pixel-fill factor of 72%.
(b) Smaller outlined section of (a), processed using RX filtering and thresholded at 100% detection. FAR is 0.56%. (c) Processed using speuatral cluste
followed by bin decorrelation. FAR is 0.19%. (d) Processed using Bayesian clustering. FAR is 0.10%.

taken over a region of the White Mountains in Californiadecorrelation method (the RX algorithm), which is currently
Neither of these image cubes contained known targets. Spedbeihg used in experimental small target-detection programs,
measurements were taken of military vehicles by using tlsech as the Coastal Battlefield Reconnaissance and Analysis
same sensor. The resultant spectral signatures were scale(COBRA) system [19].

match the local background temperatures and inserted withFig. 5(a) shows a 206 200-pixel section from band 1 of
100% pixel fill into a number of background pixels in theéhe TIMS Kona image cube. This image contains ten targets
image cubes. Linear interpolation between the resultant imagserted with a pixel-fill factor of 18%. Fig. 5(b)—(d) show
cube and the original background cube was then usedth® results of processing this image cube by applying the
produce image cubes with target pixel-fill factors ranging froRX decorrelation filter, by modeling the background using
0 to 100% in 2% increments. This artificial insertion processpectral clustering and applying RX to the individual bins, and
was used because it allowed precise specification of targpggt modeling the background using Bayesian clustering. Each
locations and pixel-fill factors, which made it possible to plamage is thresholded at a level that achieves 100% detection.
false-alarm rates (FAR) versus pixel-fill factors for both oBoth clustering methods show improvement over filtering
the algorithms under consideration as well as for the spectedbne, with Bayesian clustering providing the best results.
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Fig. 8. Top: Scatterplot in three bands of targets (red) and background pixels (green) for the TIMS Kona data cube with 100% pixel-fill factor.thiote that
targets are very distinct from the background. Gains from modeling are modest. Bottom: Scatterplot in three bands of target and background $or the TIM
White Mountains data cube with 100% pixel-fill factor. Modeling produces larger gains due to the increased difficulty of the problem.

A thorough quantitative analysis of algorithm performancghows the receiver operating characteristic (ROC) curves for
on this data set must plot the interactions of three variablesl algorithms operating on the Kona data set, with pixel-
FAR, probability of detection, and percent pixel fill. In ordefill factor fixed at 14%. Note that both plots show that the
to plot these variables in two dimensions, it is necessary ttustering algorithms provide significant improvement over
assign one a fixed value and examine the other two. Fig. 6@X filtering alone.
shows a plot of percent pixel fill versus FAR for the Kona data Fig. 7(a) shows a 200x 200-pixel section from band
set, with probability of detection fixed at 100%. Note that all of the TIMS White Mountains image cube. This image
three algorithms fail catastrophically at pixel-fill factors of lessontains five targets inserted with a pixel-fill factor of 72%.
than 14%. The reason for this is that, at this point, the targeig. 7(b)—(d) show the results of processing this cube in the
signatures are sufficiently mixed with the background pixetame manner as the Kona cube in Fig. 5. It should be noted
to cause them to be drawn into the background distributioin. this case that first, the relative algorithm performances are
An alternate view of this data is given in Fig. 6(b), whicltonsistent with those seen in the Kona data, i.e., that both
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1 - 1 Once algorithm performance was quantified by using im-

r . 1 planted targets, it was next. necessary to ensure thflit. simi.lar

08 [ \ :':':?Xectral clustorin perfo_rmance could bg obtained unqer realistic COI’]dI.tIOFIS in

T \ —Bgyesian cluste:ingg the_ fleld_. Data_l _for this set of experlments_ was _obtamed by
N using Night Vision Laboratory’s linear variable filter (LVF)
0.6 106 IR camera, which obtains 256 spectral bands ranging from 3
) to 5 um. Through elimination of redundant information and

0.4 atmospheric absorption bands, this number can be reduced
1 to 15 relevant spectral images. Because this instrument does
~.doo2 not take images with spectral simultaneity, registration is an
1 issue. This may be expected to degrade algorithm performance
somewhat. The images under consideration were taken at
75 80 night from high points overlooking the Shenandoah National
% pixel fil Park near Luray, VA. Military vehicles were deployed in a

@) realistic fashion along roadways in the Shenandoah Valley, at
ranges sufficient to make them subpixel in extent. These image
1 cubes are not very useful for quantitative study of algorithm
performance because it is impossible to tell precisely what
fraction of a pixel each target filled. However, as long as the
locations of the targets are known, they are useful for relative
comparisons.

Fig. 10(a) shows one band of an LVF data cube taken from
the Hogback Overlook in Shenandoah National Park. There
are two targets present in this image cube. Both are military
vehicles painted camouflage, and both are at subpixel range.
Fig. 10(b)—(d) shows the results of processing this cube. The
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0 L | ———— 1o were observed in the TIMS data with implanted targets. Both
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results obtained using RX alone. Similar results are seen in

(b) Fig. 11, which gives the results of processing an LVF data cube

Fig. 9. (a) Plot of pixel fill versus FAR at 100% target detection for théaken from the Mount Marshall Overlook. In this case, there
TIMS White Mountains data set. (b) ROC curves at a pixel-fill factor of 72%gre three targets, again all with subpixel extent. Although these

P(Y|sn) denotes probability of detection, whilé(Y'|n) denotes probability oyneriments are less controlled than those involving the TIMS
of false alarm. Note that the relative performances of the algorithms aée . . . .
consistent with those seen in the Kona data set, although the requireddfta, the reduction in false alarms that is obtained through

factor for comparable performance is higher. the use of the clustering techniques appears to be reasonably
consistent across all data sets.

modeling algorithms provide improvements over RX filtering
alone, second, that the amount of improvement is greater for V. Discussion

both algorithms in this case than in the Kona data set, andThe results of the experiments described in the previous
third, that in this case a much higher pixel-fill factor is requiregection appear to indicate significant utility for both cluster-
to achieve similar levels of detection. The reasons for the® algorithms. In all cases, the number of false alarms is
observations are apparent upon examination of Fig. 8, whitgfuced without loss of sensitivity to the targets. However,
shows a scatterplot of background and target pixels for bdfiere are two areas that these experiments do not address.
data sets. In the Kona data, the targets are very spectrdil} first is sensitivity to parameter variation. The spectral

distinct from the background. This is a relatively easy detecti§i'Stering algorithm has one variable parameiethe num-
problem. RX performs adequately, and the gains from t r of classes. Vector quantization theory suggests that the

modeling algorithms are modest. In the White Mountain%ggrith.m’S ability tq model the background should approach
otlmallty asymptotically ag increases. We would therefore
data, however, the targets are very close to the backgroung, o ; :
pect the algorithm’s performance to increase asymptotically

This makes for a much more difficult detection problem arkegward some maximum dsincreases. Fig. 12 shows a plot of

allows greater gains through use of the modeling algorithnﬁobability of detection at a fixed FAR of 0.10% fér= 1 to

Fig. 9(a) shows a plot of percent pixel fill versus FAR fol, _ o4 for hoth TIMS data sets. The Kona image cube in this
the White Mountains data set, with probability of detectioase has a pixel-fill factor of 18%. The White Mountains image
fixed at 100%. Fig. 9(b) shows ROC curves for all algorithmsype has a pixel-fill factor of 74%. In general, the algorithm’s
operating on the White Mountains data set, with pixel fill fixe@ehavior is as expected. Probability of detection increases
at 72%. The relative performance of the three algorithms {ith k. However, both data sets display significant jitter.
this case is consistent with what was seen for the Kona dafais occurs because, asincreases, the spectral means shift,
with the exception that, as expected, much higher values mbving closer to or farther away from the target-background
pixel fill are required for equivalent levels of detection. mixtures in spectral space in a more or less random fashion.
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Fig. 10. (a) One band of the Hogback LVF data cube. Contains two targets that are of subpixel extent. (b) Processed using the RX filter followed by
thresholding at the highest level, such that both targets were preserved. FAR is 0.33%. (c) Processed using spectral clustering followed tafationdecor
FAR is 0.11%. (d) Processed using Bayesian clustering. FAR is 0.16%.

These experiments indicate that it will be difficult to ensureariance, is a factor in algorithm performance only insofar as
optimality for this algorithm, particularly for the detectionsuch local adaptivity is needed. In an image in which local
of targets with low pler-fIII factors. However, near—optimah]eans and variances Change rap|d|y and by a |arge amount, a
performance appears to be attainable, so long as the valgRtively small value foi¥ ,;,,, on the order of 8-16, would
of & is kept relatively high. All experiments described in thee required. However, such conditions have not been observed
previous sect_|on were (_:arned Ol_Jt W'kh_: 24. in any of the data sets examined in this study. Our experiments
The Bayesian clustering algorithm discussed here has thige, consistent results for values ranging from 8 to 64.
variable parameterg;, /3, the weighting factor associated with |1 .an pe expected that the Bayesian algorithm’s sensitivity
the GRF, andV,,;,,, the minimum window size. Fortunately, g j; il be somewhat similar to that of the spectral clustering
previous work with GRF modeling [10]-{13], [20] suggestggorithm. Algorithm performance should increase with the
that this algorithm is quite stable, with regard to small variglymber of classes. However, the random-field model should
tions in/. Although this paper describes a novel application @ferve to prevent some of the jitter seen in Fig. 12 because,
the model, experiments indicate that stability is present in this order for a target pixel to be lost, it must be not only
case as well. All experiments described in the previous sectigpectrally proximal to a class mean, but also spatially proximal
were carried out with3 = 1.0. W,;,, which determines to other pixels of that class. This observation is confirmed
the extent of local adaptivity in the estimations of mean and Fig. 13, which plots algorithm performance verstudor
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(b)

() (d)

Fig. 11. (a) One band from the Mount Marshall LVF data cube. Contains three targets that are of subpixel extent. (b) Processed using the RX filter
followed by thresholding at a level such that all three targets were preserved. FAR is 0.40%. (c) Processed using spectral clustering followed by bin
decorrelation. FAR is 0.17%. (d) Processed using Bayesian clustering. FAR is 0.19%. As in Fig. 10, the reduction in false alarms with the addition of
both modeling algorithms is consistent with that seen in the TIMS data.

both TIMS data sets. Note that performance increases quickliya 10000 pixel training sequence for initial estimates of
to near-optimality and remains fairly stable thereafter. Thidass means and variances. This process requires approx-
property allows Bayesian classification to operate efficientignately 1 min of processing time on a Silicon Graphics
with a lower & value than the spectral clustering algorithmindigo workstation. Once the initial estimates are obtained,
and therefore saves a great deal of computation time. Afle Bayesian algorithm is able to process a steady data stream
experiments described in the previous section were carrigda rate of approximately 500 pixels/s, including window
out with k = 6. management time. In this sort of implementation, it is of course
The second issue not addressed in the previous sectiorinpossible to make use of an iteratively shrinking estimation
speed of implementation. Clustering techniques, particulasyindow, but means and variances are updated on a line-by-line
Bayesian clustering techniques, which require stochastic tesis, so some measure of local adaptivity is retained. Initial
laxation solutions, have frequently been avoided in the pastperiments have shown that the drop off in performance
for applications involving multispectral imaging because akquired by real-time implementation is minor. Initialization
this issue. However, with certain minor modifications (sucfor the spectral clustering algorithm requires approximately
as the use of a causal neighborhood system), it is possiélemin, due to the higher value of. Sensitivity of this
to implement both of the clustering algorithms described @mgorithm’s real-time implementation is virtually identical to
this paper in real time. Our real-time processor makes utet described in the previous section.
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of bins) for the Kona TIMS data with a pixel-fill factor of 18% and the White [6]
Mountains TIMS data with a pixel-fill factor of 74%. Detection algorithm

is spectral clustering followed by bin decorrelation. Although algorithm
performance does increase with there is considerable irregularity in both
data sets. Near-optimality may only be assured by making use of a large
value for k. (8]
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Fig. 13. Plot of probability of detection at a FAR of 0.10% versus

for the Kona TIMS data with a pixel-fill factor of 18% and the White[15]
Mountains TIMS data with a pixel-fill factor of 74%. Detection algorithm

is Bayesian classification. As in Fig. 12, probability of detection increase¢sgg)
with k. However, this algorithm shows much more stability. Near-optimality
may therefore be achieved with lower valueskofallowing improved speed [17]
of implementation.

One final result from the experiments described in theg
previous section bears mentioning. It may already have been
noted during examination of Figs. 5, 7, 10, and 11 that tHe?!
false alarms produced by the three algorithms examined here
are only very weakly spatially correlated. It may therefor&0l
be possible to achieve results that are superior to any of
those presented here through parallel processing of data using
multiple algorithms followed by data fusion using a logical
AND. This is one topic for future examination.

The generally consistent results obtained for different data
sets and sensor types using both of the novel algorithms
described in this paper indicate that either might be usef@
as a cuing processor for long-range surveillance applicatio
However, the Bayesian algorithm’s higher implementatic
speed and greater stability, with respect to parameter v
ations, indicate that it probably provides the best solutid
to this problem. Future work in this area will include cod
optimization for both algorithms and verification of thei
efficacy in the field.
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