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Detection of Subpixel Anomalies
in Multispectral Infrared Imagery

Using an Adaptive Bayesian Classifier
Edward A. Ashton

Abstract—The detection of subpixel targets with unknown
spectral signatures and cluttered backgrounds in multispectral
imagery is a topic of great interest for remote surveillance
applications. Because no knowledge of the target is assumed, the
only way to accomplish such a detection is through a search for
anomalous pixels. Two approaches to this problem are examined
in this paper. The first is to separate the image into a number
of statistical clusters by using an extension of the well-knownk-
means algorithm. Each bin of resultant residual vectors is then
decorrelated, and the results are thresholded to provide detection.
The second approach requires the formation of a probabilistic
background model by using an adaptive Bayesian classification
algorithm. This allows the calculation of a probability for each
pixel, with respect to the model. These probabilities are then
thresholded to provide detection. Both algorithms are shown to
provide significant improvement over current filtering techniques
for anomaly detection in experiments using multispectral IR
imagery with both simulated and actual subpixel targets.

Index Terms—Classification, multispectral, segmentation, sub-
pixel, target detection.

I. INTRODUCTION

SEVERAL recent studies have demonstrated the usefulness
of taking information from multiple spectral bands when

searching for targets that are poorly resolved spatially [1]–[3].
The majority of work in this area, however, has focused on
the detection of targets with known spectral properties. While
this knowledge simplifies the problem, it also renders it less
realistic. It is assumed in these studies that laboratory or field
measurements of target spectra may be used as filter vectors for
target detection. However, there are several factors that make
this difficult to put into practice. First, atmospheric interference
may vary under different weather conditions, changing the
measured spectral signature of the target. Second, in subpixel
targets, the target spectrum is mixed with the spectra of
random background elements. Third, and most importantly,
in a realistic situation, knowledge of precisely what type of
paint or camouflage the target is using may not be available.

These conditions lead us to seek a solution in which the
statistical characterizations are based entirely on the data
under consideration rather than on some previously measured
spectra. Because targets are assumed to be very sparsely
represented in a scene and their locations are unknown, they
cannot be characterized in this way. However, it is possible to
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derive a set of background characteristics and to then search
for pixels that appear to be anomalous, with respect to the
background. Clearly, a definitive identification of a target
cannot be made through a search for anomalies. However,
such a search, which requires very low spatial resolution and
can therefore be conducted over a wide search area, can be
extremely useful as a cuing device for another sensor with
much higher spatial resolution. It is in this role that the
algorithms described here may be useful.

Identification of poorly resolved targets in single-band im-
agery has been demonstrated by Soni through the use of spatial
decorrelation (whitening) followed by energy detection [4].
Further work by Reed and Yu with multispectral imagery
has shown that a combination of spectral decorrelation and
a rotation-invariant-spatial matched filter (MF) [5] provides
improved detection over either algorithm alone when knowl-
edge of target shape is available and that a spatial-spectral MF
provides even greater improvement when the target spectrum
is known as well [6]. However, in the case of subpixel targets,
the spatial MF kernel reduces to an impulse function and these
algorithms reduce to simple spectral filtering.

Spectral decorrelation filtering has been shown to be an ef-
fective tool for the identification of anomalies in multispectral
imagery. However, this method is based upon the assumption
that all background pixels within some arbitrarily chosen
window about the pixel under consideration should form a
single multivariate Gaussian distribution. While this is true in
certain situations, it is more generally the case that several
different terrain types will occupy at least some of the pixels
within this window unless the window is made unreasonably
small. Different terrain types usually have different spectral
signatures and so form at least partially disjoint distributions
in spectral space. Clustering or classification algorithms have
frequently been used to determine terrain types in single-band
surveillance imagery [7]. It is possible to extend such clus-
tering techniques into the multispectral domain with certain
modifications in the interest of saving computation time. These
modifications are detailed in a following section. If the terrain
type of each pixel is known, it should be possible to decor-
relate each of these distributions separately, presumably with
improved results. Alternatively, it should be possible to find
the spectral means and variances of each distribution. Once
this is done, the probability of each pixel can be calculated,
with respect to somea priori model for pixel and region
distribution. Each of these approaches is explored in this paper.
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The following section describes in detail the models used
for pixel and region distribution. Section III describes the
adaptive clustering algorithm, and Section IV details the val-
idation experiments that were carried out on multispectral IR
data containing both implanted and actual military targets. A
discussion of the results of these experiments is presented in
Section V.

II. BACKGROUND MODELING

A. -Means Clustering

The first spectral clustering algorithm used here is a simple
extension into multiple dimensions of the well-known-
means algorithm, nearly identical in form to the so-called
LBG algorithm [8]. We begin with the assumption that each
pixel in a multispectral scene will tend to fall into one of
several clusters or bins in spectral space. For example, trees,
grasses, and bare soil may form three partially overlapping
but largely separate bins. The data within each bin is assumed
to take on a multivariate Gaussian distribution. The clustering
algorithm is able to identify the centroid of each bin, operating
on a training sequence that may consist of the entire image
under consideration, or may be limited to some subset of the
available pixels. Once this is done, a residual vector, given by

(1)

is calculated at each pixel, where is the pixel vector at site
, which is assigned to bin, and is the centroid vector for

bin . Each bin is then independently decorrelated by using
an adaptive whitening filter of the sort described in [5], and
the results are thresholded to achieve detection. This relatively
simple algorithm was tested on a number of IR data sets with
both imaged and implanted targets and has been shown to
provide significant improvement over spectral filtering alone
in all cases. Detailed results of these experiments are given
in Section IV.

B. Bayesian Clustering

The second clustering algorithm that is examined is similar
in concept to the one outlined above. However, in this case,
a Bayesian probabilistic model for the background is formed.
Given the observed image data, the most likely classification

at each pixel is found according to the formula

(2)

where is given by a statistical model for pixel distri-
bution and is given by a probabilistic model for region
distribution. In this implementation, the statistical model is a
multivariate Gaussian distribution and the probabilistic model
is a Gibbs random field (GRF) [9], [10]. Initial parameters
for the statistical model are estimated from an LBG clustering
of some training sequence of data, as outlined above. Local
adaptivity is then added through a reestimation of local means
and variances by using a shrinking estimation window, in the
manner demonstrated for single-band data in [11]–[13]. Once
the model is formed, it is a simple matter to calculate the

Fig. 1. Diagram shows the neighborhood of a pixel located at sites. The
pixel is a member of four two-pixel cliques, one with each of its nearest
neighbors. It is also a member of a one-pixel clique with itself, but as this
adds no information it is disregarded.

probability of each pixel, with respect to its classification.
Detection is achieved by thresholding the resultant scalars,
with the least-probable pixels being the most likely targets.

Stochastic relaxation classifiers of this type have rarely been
applied to multispectral data, primarily because they tend to
be extremely computationally intensive. However, in this im-
plementation, computation time is reduced greatly by making
use of apixelwise stopping rule, as described by Watanabe
et al. in [14] and by achieving stochastic relaxation through
Besag’s iterated conditional modes (ICM) [15]. Dubes and Jain
[16] have reported that the typical ratios of compute time for
ICM, maximum posterior marginals (MPM), and simulated
annealing (SA) are 1 : 37 : 6000. With these modifications,
processing time on a Silicon Graphics Indigo workstation
for a 100 100-pixel six-band image is less than 4 min.
Moreover, several further modifications allow a derivative of
this algorithm to be applied to a real-time data stream with a
minimal reduction in performance.

In order to optimize the classification of the image under
consideration according to the maximuma posteriori proba-
bility (MAP) criterion [9], it is necessary to obtain functional
forms for both and . As has no dependence
upon the observed image data, it must derive entirely from
somea priori model for region distribution. This term is in-
tended to introduce some spatial context into the classification
process. Bouman [17] and others have accomplished this sort
of modeling by using the Markov random field (MRF), which
is derived from the one dimensional Markov chain. However,
this model is defined in terms of local properties, making the
derivation of a global joint distribution difficult. We therefore
make use of the similar, but more mathematically tractable
GRF.

Assume that a random field is defined over an
lattice of sites denoted by, with the individual sites (pixels)
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(a)

(b)

Fig. 2. (a) Typical single-class two-band data distribution. Distribution does take the form of a multivariate Gaussian, but it cannot be accurately
characterized by the means and variances calculated in bands 1 and 2 because the major axes of the distribution are not aligned with the band axes.
(b) Same distribution, transformed through the Hotelling transform. The variances calculated in bands 1 and 2 now accurately characterize the distribution,
allowing detection of the target.

denoted by . For the purposes of classification, each
site on may take on any integer value from one to,
where is the number of classes (terrain types) into which the
image is classified. Let be a particular realization of . In
order to define the random field, it is necessary first to define
a neighborhood system on the lattice. The neighborhood
system determines which pixels on the lattice will directly
affect the classification of site. In this work, a first-order or
four-point neighborhood system is used, so that only pixels
that share a side with siteare considered its neighbors.

A clique is defined as a set of sites on, such that all
points are mutual neighbors. In a four-point system, there are
four two-point cliques, each of which containsand one of
its four neighbors. This concept is illustrated in Fig. 1.

The GRF provides a global model for the distribution of
regions in an image, specifying a probability-density function
(pdf) of the form

(3)

where is the Gibbs potential, given by the summation
over all cliques

(4)

and is the clique potential, given by , if all points in
the clique are classified identically, and , otherwise. is a
weighting factor that determines the relative importance of the
two terms in the Bayesian formulation, andis a normalizing
constant called the partition function, given by

(5)

Because is the sum of the numerator exponents over
all possible realizations of , it is generally impossible to
compute. This intractability prevents the realization of a GRF
using direct calculation, thus requiring the use of stochastic
relaxation methods, such as ICM. Using the Gibbs formulation,
it is possible to calculate the global probability of a given
image classification based on the clique potentials, which
depend solely on the local properties of the pixels. A more
detailed examination of random-field modeling may be found
in [15] and [16].

Returning to (2), it is necessary now to find a functional
form for . This is derived from the assumption of
a multivariate Gaussian distribution of each pixel class in
spectral space. Under the additional assumption that each class
has a slowly varying mean in each band, given at pixelby
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Fig. 3. k-means (LBG) clustering algorithm. Although this algorithm re-
quires some initial estimate of class averages, this estimate need not be overly
accurate. Initial accuracy will only affect speed of convergence.

Fig. 4. Flowchart for modified adaptive clustering. Interior loop represents
standard ICM. Note that estimation of the class-variance array is outside this
loop.

, where refers to spectral wavelength, and a slowly
varying standard deviation in each band, given at pixelby

, the global probability of the observed image cube,

given the current classification lattice, is given by

(6)

Substituting into (2) and summing exponents obtains

(7)

We wish to maximize this function or, equivalently, to maxi-
mize its natural logarithm, given by

(8)

This is accomplished in an iterative fashion by using ICM.
There is one additional minor complication that relates to

the Bayesian model. The major axes of the data distributions
in spectral space tend not to be aligned with the band axes.
This situation is illustrated in Fig. 2(a) for a typical single-
class, two-band data distribution. This data does fall into
a multivariate Gaussian distribution, with a large variance
in the 45 direction and a smaller variance in the45
direction. However, the variances, as measured in bands 1 and
2, are identical. The probability of each pixel will therefore
be proportional to its Euclidean distance from the spectral
mean, and as a result, the target, which is separable from
the background, will appear to be less improbable than many
background pixels at the extrema of the distribution’s long
axis.

In order to take full advantage of the power of the Bayesian
model, it is necessary to transform the data in such a way that it
takes on the distribution shown in Fig. 2(b), in which the major
and minor axes of the distribution are aligned with the band
axes. This transformation, which may be easily and quickly
accomplished through use of the Hotelling transform [18],
essentially provides separability; i.e., it allows the distribution
to be accurately characterized by an independent mean and
variance in each band. The Hotelling transform maps the
observed data vectors into transformed vectors through
the formula

(9)

where is a matrix whose rows are formed from the eigen-
vectors of the covariance matrix of, ordered such that
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(a) (b)

(c) (d)

Fig. 5. (a) 200� 200-pixel section from band 1 of the TIMS Kona image cube. Contains ten targets implanted with a pixel-fill factor of 18%. (b) Smaller
section highlighted in (a), processed using spectral decorrelation filtering and thresholded at 100% detection. FAR is 0.17%. (c) Processed using spectral
clustering followed by bin decorrelation. FAR is 0.07%. (d) Processed using Bayesian clustering. FAR is 0.04%.

the first row is the eigenvector corresponding to the largest
eigenvalue and the last row is the eigenvector corresponding
to the smallest eigenvalue and is the spectral mean vector
of . This operation is time consuming only if there are a very
large number of bands under consideration. For the number
of bands typically seen in IR cameras (6–12), the Hotelling
transform adds little to the computation time of the algorithm.

III. A LGORITHMS FOR CLUSTERING AND DETECTION

As has been previously mentioned, the algorithm used to
achieve spectral clustering is a simple extension into multiple
dimensions of the well-known -means algorithm. This al-

gorithm provides alternating estimation of the class averages
(or bin centroids) and pixel classification. A flowchart for
this algorithm is given in Fig. 3. Note that this flowchart
assumes some initial estimate of bin centroids. This estimate
does not need to be accurate for the algorithm to converge
to an optimal solution. However, an initial estimate that is
close to the final solution will require fewer iterations to
converge than one that is far from the correct answer. Such an
estimate can be found through a modification of the splitting
algorithm [8]. The original splitting algorithm reaches an initial
bin-centroid estimate by beginning with a single bin that
contains the entire set of training data. Additional bins are
produced by perturbing all centroids in the current set by some
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(a)

(b)

Fig. 6. (a) Plot of pixel fill versus FAR at 100% target detection for the TIMS
Kona data set. (b) ROC curves at 14% pixel-fill factor.P (Y jsn) denotes
probability of detection, whileP (Y jn) denotes probability of false alarm.
Note that both clustering algorithms provide significant improvement over
RX filtering alone.

small value , doubling the current number of bins. Optimal
centroids are then calculated at the new number of bins. This
process is repeated until the desired number of bins is reached.
While splitting by the LBG process is optimal in terms of
performance, it is also very time consuming. We save time by
allowing only a limited number of iterations at each level until
the desired number of bins is reached. The algorithm is then
allowed to run to its conclusion on the final set of centroids.
This modification provides results that are generally identical
to those achieved by using the full splitting algorithm, with
considerable savings in computation time.

Once clustering is accomplished, a spectral correlation ma-
trix is calculated for each of the bins. Local adaptivity
may be added by calculating using a local estimation
window at a series of grid points evenly spaced through the
image. Values of at pixels between grid points are then
obtained through bilinear interpolation of the grid points. This
technique is used to provide local adaptivity for the Bayesian
classification algorithm, which will be described shortly. Once
the set of correlation matrices has been calculated, a scalar
matrix is formed through the transformation

(10)

where is the pixel vector at siteand is the bin into which
is classified. The matrix can then be thresholded to provide

detection. This transformation provides spectral decorrelation
followed by energy detection. Use of this type of filter for
anomaly detection has been proposed previously in [4] and
[5].

Alternatively, it is possible to use the calculated bin cen-
troids and cluster matrix as an initial state for a Bayesian
classification algorithm. The goal of such an algorithm is to
find the most likely classification of each pixel vector in terms
of the MAP criterion. In order to do this, it is necessary to find
the global maximum of (8). This is accomplished by using a
modification of the adaptive clustering algorithm of Pappas
[11], which was applied previously to single-band data in [12]
and [13]. A flowchart for modified adaptive clustering, which
is essentially a locally adaptive form of ICM [15], is given
in Fig. 4.

Local adaptivity is achieved through the use of a shrinking
estimation window of size for parameter estimation. Each
pixel in the image is assumed to have its own mean vector
and covariance vector for each class. The mean vector
is calculated based on all the pixels of classwithin a window
centered around site, which is of size . The corresponding
variance vector is calculated similarly. Clearly, calculating
mean and variance vectors for each class at each pixel in an
image is a formidable computational burden. In order to ease
this burden, the class means and variances are calculated at
a grid of points spaced evenly throughout the image with a
separation of pixels. Values at intermediate pixel sites
are calculated through bilinear interpolation of the grid points.
Initially, is the size of the image, so only one mean and
one variance vector are calculated by using all pixels in the
image. When a stable solution is found at a given window
size, is halved and the process is repeated. This continues
until some final value is reached.

The core assumptions of this algorithm are that the data
consists of a finite number of clusters in spectral space,
each of which may be described by a multivariate Gaussian
distribution, that class means and variances vary slowly with
spatial position, and that pixels of similar composition will
tend to cluster spatially as well as spectrally. Once each pixel
has been classified and the local means and variances have
been calculated for each class at each pixel site, (8) may be
used to calculate the probability of each modeled pixel given
the observed image data. Those pixels that are least probable,
i.e., those which are the poorest matches for the image model,
are most likely to be targets.

IV. EXPERIMENTAL PROCEDURE AND RESULTS

Initial experiments with these algorithms were carried out
on data obtained by using the Thermal Infrared Multispectral
Sensor (TIMS) instrument. This camera measures six spectral
bands ranging from 8.0 to 11.9m. Measurement is spectrally
simultaneous (the images therefore do not require registration)
and is taken a single line at a time from an airborne platform.
Two TIMS data cubes were used in this study. The first
was taken over an airfield in Kona, HI, and the second was
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(a) (b)

(c) (d)

Fig. 7. (a) 200� 200-pixel section from band 1 of the TIMS White Mountains image cube. Contains five targets implanted with a pixel-fill factor of 72%.
(b) Smaller outlined section of (a), processed using RX filtering and thresholded at 100% detection. FAR is 0.56%. (c) Processed using spectral clustering
followed by bin decorrelation. FAR is 0.19%. (d) Processed using Bayesian clustering. FAR is 0.10%.

taken over a region of the White Mountains in California.
Neither of these image cubes contained known targets. Spectral
measurements were taken of military vehicles by using the
same sensor. The resultant spectral signatures were scaled to
match the local background temperatures and inserted with
100% pixel fill into a number of background pixels in the
image cubes. Linear interpolation between the resultant image
cube and the original background cube was then used to
produce image cubes with target pixel-fill factors ranging from
0 to 100% in 2% increments. This artificial insertion process
was used because it allowed precise specification of target
locations and pixel-fill factors, which made it possible to plot
false-alarm rates (FAR) versus pixel-fill factors for both of
the algorithms under consideration as well as for the spectral

decorrelation method (the RX algorithm), which is currently
being used in experimental small target-detection programs,
such as the Coastal Battlefield Reconnaissance and Analysis
(COBRA) system [19].

Fig. 5(a) shows a 200 200-pixel section from band 1 of
the TIMS Kona image cube. This image contains ten targets
inserted with a pixel-fill factor of 18%. Fig. 5(b)–(d) show
the results of processing this image cube by applying the
RX decorrelation filter, by modeling the background using
spectral clustering and applying RX to the individual bins, and
by modeling the background using Bayesian clustering. Each
image is thresholded at a level that achieves 100% detection.
Both clustering methods show improvement over filtering
alone, with Bayesian clustering providing the best results.
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Fig. 8. Top: Scatterplot in three bands of targets (red) and background pixels (green) for the TIMS Kona data cube with 100% pixel-fill factor. Note thatthe
targets are very distinct from the background. Gains from modeling are modest. Bottom: Scatterplot in three bands of target and background for the TIMS
White Mountains data cube with 100% pixel-fill factor. Modeling produces larger gains due to the increased difficulty of the problem.

A thorough quantitative analysis of algorithm performance
on this data set must plot the interactions of three variables:
FAR, probability of detection, and percent pixel fill. In order
to plot these variables in two dimensions, it is necessary to
assign one a fixed value and examine the other two. Fig. 6(a)
shows a plot of percent pixel fill versus FAR for the Kona data
set, with probability of detection fixed at 100%. Note that all
three algorithms fail catastrophically at pixel-fill factors of less
than 14%. The reason for this is that, at this point, the target
signatures are sufficiently mixed with the background pixels
to cause them to be drawn into the background distribution.
An alternate view of this data is given in Fig. 6(b), which

shows the receiver operating characteristic (ROC) curves for
all algorithms operating on the Kona data set, with pixel-
fill factor fixed at 14%. Note that both plots show that the
clustering algorithms provide significant improvement over
RX filtering alone.

Fig. 7(a) shows a 200 200-pixel section from band
1 of the TIMS White Mountains image cube. This image
contains five targets inserted with a pixel-fill factor of 72%.
Fig. 7(b)–(d) show the results of processing this cube in the
same manner as the Kona cube in Fig. 5. It should be noted
in this case that first, the relative algorithm performances are
consistent with those seen in the Kona data, i.e., that both
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(a)

(b)

Fig. 9. (a) Plot of pixel fill versus FAR at 100% target detection for the
TIMS White Mountains data set. (b) ROC curves at a pixel-fill factor of 72%.
P (Y jsn) denotes probability of detection, whileP (Y jn) denotes probability
of false alarm. Note that the relative performances of the algorithms are
consistent with those seen in the Kona data set, although the required fill
factor for comparable performance is higher.

modeling algorithms provide improvements over RX filtering
alone, second, that the amount of improvement is greater for
both algorithms in this case than in the Kona data set, and
third, that in this case a much higher pixel-fill factor is required
to achieve similar levels of detection. The reasons for these
observations are apparent upon examination of Fig. 8, which
shows a scatterplot of background and target pixels for both
data sets. In the Kona data, the targets are very spectrally
distinct from the background. This is a relatively easy detection
problem. RX performs adequately, and the gains from the
modeling algorithms are modest. In the White Mountains
data, however, the targets are very close to the background.
This makes for a much more difficult detection problem and
allows greater gains through use of the modeling algorithms.
Fig. 9(a) shows a plot of percent pixel fill versus FAR for
the White Mountains data set, with probability of detection
fixed at 100%. Fig. 9(b) shows ROC curves for all algorithms
operating on the White Mountains data set, with pixel fill fixed
at 72%. The relative performance of the three algorithms in
this case is consistent with what was seen for the Kona data,
with the exception that, as expected, much higher values of
pixel fill are required for equivalent levels of detection.

Once algorithm performance was quantified by using im-
planted targets, it was next necessary to ensure that similar
performance could be obtained under realistic conditions in
the field. Data for this set of experiments was obtained by
using Night Vision Laboratory’s linear variable filter (LVF)
IR camera, which obtains 256 spectral bands ranging from 3
to 5 m. Through elimination of redundant information and
atmospheric absorption bands, this number can be reduced
to 15 relevant spectral images. Because this instrument does
not take images with spectral simultaneity, registration is an
issue. This may be expected to degrade algorithm performance
somewhat. The images under consideration were taken at
night from high points overlooking the Shenandoah National
Park near Luray, VA. Military vehicles were deployed in a
realistic fashion along roadways in the Shenandoah Valley, at
ranges sufficient to make them subpixel in extent. These image
cubes are not very useful for quantitative study of algorithm
performance because it is impossible to tell precisely what
fraction of a pixel each target filled. However, as long as the
locations of the targets are known, they are useful for relative
comparisons.

Fig. 10(a) shows one band of an LVF data cube taken from
the Hogback Overlook in Shenandoah National Park. There
are two targets present in this image cube. Both are military
vehicles painted camouflage, and both are at subpixel range.
Fig. 10(b)–(d) shows the results of processing this cube. The
results obtained in this case are consistent with those that
were observed in the TIMS data with implanted targets. Both
clustering algorithms provide marked improvement over the
results obtained using RX alone. Similar results are seen in
Fig. 11, which gives the results of processing an LVF data cube
taken from the Mount Marshall Overlook. In this case, there
are three targets, again all with subpixel extent. Although these
experiments are less controlled than those involving the TIMS
data, the reduction in false alarms that is obtained through
the use of the clustering techniques appears to be reasonably
consistent across all data sets.

V. DISCUSSION

The results of the experiments described in the previous
section appear to indicate significant utility for both cluster-
ing algorithms. In all cases, the number of false alarms is
reduced without loss of sensitivity to the targets. However,
there are two areas that these experiments do not address.
The first is sensitivity to parameter variation. The spectral
clustering algorithm has one variable parameter, the num-
ber of classes. Vector quantization theory suggests that the
algorithm’s ability to model the background should approach
optimality asymptotically as increases. We would therefore
expect the algorithm’s performance to increase asymptotically
toward some maximum asincreases. Fig. 12 shows a plot of
probability of detection at a fixed FAR of 0.10% for to

for both TIMS data sets. The Kona image cube in this
case has a pixel-fill factor of 18%. The White Mountains image
cube has a pixel-fill factor of 74%. In general, the algorithm’s
behavior is as expected. Probability of detection increases
with . However, both data sets display significant jitter.
This occurs because, asincreases, the spectral means shift,
moving closer to or farther away from the target-background
mixtures in spectral space in a more or less random fashion.
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(a) (b)

(c) (d)

Fig. 10. (a) One band of the Hogback LVF data cube. Contains two targets that are of subpixel extent. (b) Processed using the RX filter followed by
thresholding at the highest level, such that both targets were preserved. FAR is 0.33%. (c) Processed using spectral clustering followed by bin decorrelation.
FAR is 0.11%. (d) Processed using Bayesian clustering. FAR is 0.16%.

These experiments indicate that it will be difficult to ensure
optimality for this algorithm, particularly for the detection
of targets with low pixel-fill factors. However, near-optimal
performance appears to be attainable, so long as the value
of is kept relatively high. All experiments described in the
previous section were carried out with .

The Bayesian clustering algorithm discussed here has three
variable parameters:, , the weighting factor associated with
the GRF, and , the minimum window size. Fortunately,
previous work with GRF modeling [10]–[13], [20] suggests
that this algorithm is quite stable, with regard to small varia-
tions in . Although this paper describes a novel application of
the model, experiments indicate that stability is present in this
case as well. All experiments described in the previous section
were carried out with . , which determines
the extent of local adaptivity in the estimations of mean and

variance, is a factor in algorithm performance only insofar as
such local adaptivity is needed. In an image in which local
means and variances change rapidly and by a large amount, a
relatively small value for , on the order of 8–16, would
be required. However, such conditions have not been observed
in any of the data sets examined in this study. Our experiments
show consistent results for values ranging from 8 to 64.

It can be expected that the Bayesian algorithm’s sensitivity
to will be somewhat similar to that of the spectral clustering
algorithm. Algorithm performance should increase with the
number of classes. However, the random-field model should
serve to prevent some of the jitter seen in Fig. 12 because,
in order for a target pixel to be lost, it must be not only
spectrally proximal to a class mean, but also spatially proximal
to other pixels of that class. This observation is confirmed
in Fig. 13, which plots algorithm performance versusfor
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(a) (b)

(c) (d)

Fig. 11. (a) One band from the Mount Marshall LVF data cube. Contains three targets that are of subpixel extent. (b) Processed using the RX filter
followed by thresholding at a level such that all three targets were preserved. FAR is 0.40%. (c) Processed using spectral clustering followed by bin
decorrelation. FAR is 0.17%. (d) Processed using Bayesian clustering. FAR is 0.19%. As in Fig. 10, the reduction in false alarms with the addition of
both modeling algorithms is consistent with that seen in the TIMS data.

both TIMS data sets. Note that performance increases quickly
to near-optimality and remains fairly stable thereafter. This
property allows Bayesian classification to operate efficiently
with a lower value than the spectral clustering algorithm,
and therefore saves a great deal of computation time. All
experiments described in the previous section were carried
out with .

The second issue not addressed in the previous section is
speed of implementation. Clustering techniques, particularly
Bayesian clustering techniques, which require stochastic re-
laxation solutions, have frequently been avoided in the past
for applications involving multispectral imaging because of
this issue. However, with certain minor modifications (such
as the use of a causal neighborhood system), it is possible
to implement both of the clustering algorithms described in
this paper in real time. Our real-time processor makes use

of a 10 000 pixel training sequence for initial estimates of
class means and variances. This process requires approx-
imately 1 min of processing time on a Silicon Graphics
Indigo workstation. Once the initial estimates are obtained,
the Bayesian algorithm is able to process a steady data stream
at a rate of approximately 500 pixels/s, including window
management time. In this sort of implementation, it is of course
impossible to make use of an iteratively shrinking estimation
window, but means and variances are updated on a line-by-line
basis, so some measure of local adaptivity is retained. Initial
experiments have shown that the drop off in performance
required by real-time implementation is minor. Initialization
for the spectral clustering algorithm requires approximately
4 min, due to the higher value of . Sensitivity of this
algorithm’s real-time implementation is virtually identical to
that described in the previous section.
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Fig. 12. Plot of probability of detection at a FAR of 0.10% versusk (number
of bins) for the Kona TIMS data with a pixel-fill factor of 18% and the White
Mountains TIMS data with a pixel-fill factor of 74%. Detection algorithm
is spectral clustering followed by bin decorrelation. Although algorithm
performance does increase withk, there is considerable irregularity in both
data sets. Near-optimality may only be assured by making use of a large
value for k.

Fig. 13. Plot of probability of detection at a FAR of 0.10% versusk
for the Kona TIMS data with a pixel-fill factor of 18% and the White
Mountains TIMS data with a pixel-fill factor of 74%. Detection algorithm
is Bayesian classification. As in Fig. 12, probability of detection increases
with k. However, this algorithm shows much more stability. Near-optimality
may therefore be achieved with lower values ofk, allowing improved speed
of implementation.

One final result from the experiments described in the
previous section bears mentioning. It may already have been
noted during examination of Figs. 5, 7, 10, and 11 that the
false alarms produced by the three algorithms examined here
are only very weakly spatially correlated. It may therefore
be possible to achieve results that are superior to any of
those presented here through parallel processing of data using
multiple algorithms followed by data fusion using a logical
AND. This is one topic for future examination.

The generally consistent results obtained for different data
sets and sensor types using both of the novel algorithms
described in this paper indicate that either might be useful
as a cuing processor for long-range surveillance applications.
However, the Bayesian algorithm’s higher implementation
speed and greater stability, with respect to parameter vari-
ations, indicate that it probably provides the best solution
to this problem. Future work in this area will include code
optimization for both algorithms and verification of their
efficacy in the field.
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