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A Hybrid Experimental/Theoretical
Scattering Model for Dense Random Media
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Abstract—The subject of scattering of electromagnetic waves by
dense media has been one of intense interest in recent years. The
present paper describes polarimetric backscatter measurements
made at Ku-band on layers of a dense medium under very
carefully controlled circumstances. The experiments have a dual
purpose: 1) to evaluate the degree to which the experimental
observations are predicted by theoretical, particle-based, random
media models and 2) to test a proposed hybrid model by which
the scattering and extinction properties of a dense medium
are characterized experimentally, allowing future modeling of
the polarimetric response for any arbitrary configuration of
the medium. The hybrid model assumes that first-order vec-
tor radiative transfer (RT) is a suitable theoretical structure,
providing that the extinction and phase matrix components are
appropriately specified; the specification is accomplished through
an inversion algorithm involving polarimetric backscatter mea-
surements. The major conclusions of the study are the following:

1) hybrid model is an adequate description of the dense
medium scattering behavior;

2) conventional RT appears to give a reasonable estimate of
the observed radar response, but dense medium RT gives
a very low estimate;

3) phase function of the effective volume scattering element
of the medium, obtainedvia the hybrid model, suggests a
larger effective scatterer than the physical ones.

Index Terms—Random media, scattering and propagation,
scattering model.

I. INTRODUCTION

EVIDENCE has recently been presented [1], [2] which
suggests that existing particle-based theories are inade-

quate for modeling very dense random media. This raises the
very fundamental question of what recourse exists for simu-
lating the effects of a dense medium, for example, for the case
of a snow layer over sea ice or on a forest floor. The ability to
generate realistic predictions is an essential prerequisite to any
scheme for retrieving physical characteristics about a target
from remotely sensed data.

If the behavior of densely packed discrete particles is
difficult to model, it is evident that the issue is only ex-
acerbated when dealing with materials of a very complex
physical character, for example, the amorphous interconnected
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form that snowpacks can often—or even usually—take. There
are of course theoretical techniques that could be applied
to such cases; these are field-based techniques in which the
medium is described as a fluctuating dielectric constant. To
obtain a solution, the Born approximation or the distorted
Born approximation is usually applied. In practice, however,
although some studies have investigated this technique [3],
the particular material characteristic that is required as an
input, thecorrelation functionof the medium, is exceedingly
difficult to obtain. The standard technique for its measurement
is the “thin sections” technique. In this technique [3], [4],
a supercooled liquid is allowed to fill the pore spaces of a
snow sample. After freezing the samples, they are shaved on
a microtome, polished, treated with a contrast enhancer, and
digitized. Not only is this a very arduous process, but it has
been recently shown [5] that the correlation function must be
known with high accuracy, including its tail region, to obtain
accurate prediction of scattering; that is, it is not sufficient
to know that the function approximates, say, a Gaussian or
exponential function. In addition to these obstacles, it is also
true that the distorted Born approximation does not account
for multiple scattering of the incoherent wave [6].

Apart from the theoretical approaches addressed above,
purely empirical approaches may be considered; these, how-
ever, have the obvious limitation that the entire parameter
space of the target cannot be sufficiently well known to allow
estimation of more specific target properties.

To circumvent the difficulties associated with the above-
mentioned techniques and to offer some means by which
realistic modeling of dense media might be accomplished,
a new hybrid experimental/theoretical modeling scheme is
introduced in this paper. In the sections that follow, we will
describe the hybrid model and address its validity with actual
polarimetric backscatter measurements on a dense medium.
The measured results will also be compared with certain
discrete particle-based random media theories.

II. HYBRID MODEL CONCEPT

The hybrid model involves two major assumptions. The first
is that radiative transfer (RT) theory is applicable. That is, that
the flow of electromagnetic energy through any dense medium
obeys the fundamental equation of transfer

(1)
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where is the 4 1 Stokes vector, is the 4 4
extinction matrix, and is the 4 4 phase matrix. The
phase and extinction matrices for a medium may be for-
mulated in terms of the characteristics of a single particle
if the medium consists of uniform particles or a weighted
average of the individual characteristics of various particles
if the medium is heterogeneous [7]. This type of formulation,
known asconventionalradiative transfer (CRT), contains two
simplifying assumptions: 1) that all particles are in the far-
field of one another and 2) that the particle positions are
completely uncorrelated with one another, thereby eliminating
any coherence effects.

It has also been shown [8] that for Rayleigh particles, a
rigorous field-based approach to scattering in a dense medium,
where particle correlations are considered and exact wave
transformations from one particle to another are employed,
yields a solution that may be couched in exactly the same form
as (1). It was found from this analysis that the phase function
is the Rayleigh phase function, similar to CRT. However,
the scale of the phase function, which is provided by the
scattering albedo, and the extinction differ from CRT. Thus,
the assumption that such an equation describes the mechanism
is reasonable, although it has not been shown to hold for
the case of a rigorous field-based analysis ofnon-Rayleigh
particles [9].

We have already mentioned above studies in which evidence
is provided suggesting that the available techniques by which

and are computed do not appear to be adequate.
In addition, for complex or amorphous materials, in which
a “particle” cannot be unambiguously identified, it is not
possible to formulate these quantities. Therefore, in the present
hybrid model, no attempt is made to specify them based
on the physical characteristics of the medium. Instead, a
direct measurement process will be carried out, effectively
interrogating the medium, and from these measurements, an
inversion process will be used to retrieve and .

In order to make this approach tractable, a second major
assumption is required, which is that, not only does RT apply,
but that thefirst-order evaluation of it is sufficient. The first-
order solution to the RT equation for the case of an isotropic
layer with smooth surfaces above and below has been derived
in [7]. For

(2)

where is transformation matrix related to the Mueller
matrix [7] by

(3)

where is the illuminated area and is the angle of incidence,
we have

(4)

Fig. 1. First-order volume scattering mechanisms in a layer of scatterers.

where

(5)

(6)

where is the extinction (a scalar quantity) and and
are thebackscatterandbistatic components of the phase

matrix, respectively; and are the respective Fresnel
reflectivity and transmissivity matrices associated with inten-
sity propagating in medium toward medium , and is the
cosine of the refracted angle in the medium.

The four scattering mechanisms described by (4) are shown
in Fig. 1. The scattering event depicted in terms (A) and (B)
are associated with the backscatter component of the phase
function ; terms (C) and (D) are associated with the bistatic
component of the phase function . In the figure, we have
intentionally represented the scattering elements as clusters to
underscore the point that, in this treatment, we are considering
effectiveparticles, which may comprise correlated groups of
individual physical particles and/or multiple scattering effects.

III. RAYLEIGH MODEL FOR PHASE

AND EXTINCTION MATRICES

In this section, we examine, as an aid to inversion of
the hybrid model, the essential character of the extinction
matrix ,1 and the two components of the phase matrix

and , for the special case of scattering by a layer of
Rayleigh particles. This scenario corresponds to the isotropic
case mentioned above, in which and are constant
matrices, but is a function of angle.

The analysis is motivated by the intuition that the number
of measurements required and the complexity of the ensuing
inversion operation could be reduced through knowledge of
the general form of the unknown matrices; that is, knowledge
of which elements are nonzero, which are independent, and
the nature of the dependencies between elements.

As a starting point, we consider the effective particles of
the layer (as depicted in Fig. 1) to be Rayleigh particles. As
we will show in the following sections, this will allow us
to derive symbolically the specific mathematical structure of
the quantities of interest—the extinction matrix and certain
components of the phase matrix consistent with a first-order

1The analysis begins with the most general case of a matrix extinction, as
derived in [10].
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approach—in terms of the elements of thepolarizability tensor
of the particles. This derivation follows closely that found in
[11], except that in that case only symmetric particles were
considered, whereas, in the present case, no assumptions are
made about the particle’s symmetry properties.

A. Rayleigh Theory: Scattering Matrix Element Representation

For particles with small dimensions relative to the wave-
length, scattering may be described in terms of a polarizability
tensor. A scattered electric field vector is given by [12]

(7)

where is the unit vector in the direction of propagation
of the scattered wave and is the induced dipole moment
determined from the solution of the Laplace equation. If the
induced dipole moments are derived for
polarized incident fields, the scattered field may be expressed
as

(8)

where is the 3 3 polarizability tensor, having as its
columns the vectors and , and is the incident
field vector . The polarizability tensor is
a function of the geometry and dielectric constant of the
Rayleigh particle. In general, will be a function of the
orientation of the particle.

Since

(9)

where

(10)

it can be shown [13] that the scattering matrix elements
corresponding to the scattered polarizationand the incident
polarization such that and are
given by

(11)

B. Derivation of Extinction and Phase Matrix Elements

The extinction and phase matrix elements are expressed
in terms of the ensemble-averaged quantities [10] and

[7], respectively. In this section, we present the
derivation of the forms of these elements in terms of the
elements of the polarizability tensor in global coordinates.

1) Extinction Matrix Elements:We consider first terms of
the form . From (11)

(12)

Since the polarization vectors themselves are not a function
of the particle orientation, the averaging process is performed
only on itself

(13)

The form of in local coordinates is transformed from
that in global coordinates ( ) through the application of
transformation matrices involving the Eulerian rotation angles

and (see, for example, [14, pp. 158–160])

(14)

where the elements of the 3 3 transformation matrix are
trigonometric functions of and , e.g.,

... (15)

Therefore, for each element of, the polarizability tensor in
local coordinates is

(16)

It is seen from (16) that the symmetry property of is
preserved across a coordinate transformation.

For extinction, the quantity is computed in the forward
direction only. Because of the assumption of classical RT that
the positions of particles are uncorrelated, will be zero
for every direction but forward scattering.

Since we have assumed there is no orientation dependence,
we can assign the simplest possible forms to the vertical
and horizontal polarization vectors, incident and scattered,
and compute from (13). Considering an incident direc-
tion along the positive -axis, using the forward scattering
convention (FSA) [7], we have,

(17)

Ignoring the factor and applying (13)

(18)

From (16)

(19)

where, for completely uniform orientation, the respective
probability density functions are

(20)
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over the limits indicated on the integrals in (19). These
integrals may be evaluated without difficulty, and the results
are

(21)

Thus, for the scenario under consideration, the extinction
is found to be a scalar [as was already assumed in (4)]
and—when the result above is used in the definition [7] for
the extinction elements—we obtain the following expression:

Re (22)

where is the particle-number density.
2) Phase Matrix Elements:The derivation of the phase

matrix elements involves evaluation of quantities of the form
. Referring back to (11), we have

(23)

The derivation is similar to that performed for the extinction
matrix elements, but it is considerably more involved. The
problem of evaluating (23) essentially reduces to evaluating
the spatial ensemble average of the Kronecker tensor product

(24)

where is the polarizability tensor in local coordinates whose
elements are given by (16). The Kronecker tensor product,
however, inflates the formulation greatly since each element

in is composed of approximately 12 terms (since some of
the elements in the transformation matrixhave two terms),
each element in , a 9 9 matrix, has on the order of
144 terms, each requiring analytical integration with respect
to the three Eulerian rotation angles and . The details
of this derivation are given in [13]. The result of the analysis
is the extremely simple form in (25) and (26), shown at the
bottom of the page, where

Re

Thus, an analytical evaluation of the theoretical problem of
backscattering from a layer of general Rayleigh particles re-
veals that scattering and extinction within the layer is described
by just three parameters: a scalar extinctionand the two
scalar parameters and . This extremely simple form can
potentially be exploited in the inversion process associated
with the hybrid model concept.

This completes the theoretical framework of the hybrid
model concept. The remaining elements are an experimen-
tal process and a numerical inversion algorithm. These are
described in the following sections.

IV. EXPERIMENTAL PROCESS

An experimental effort was carried out to test the validity of
the hybrid model concept. A photograph of the experimental
setup is shown in Fig. 2. The experimental process was
straightforward. Polarimetric backscatter measurements of a
dense material were made with a -band network-analyzer-
based radar. Details of the specific material examined are given
in Section VI. The material examined was contained inside a
large 1.8- 1.8-m wooden “sandbox.” The sandbox itself
was mounted on top of a turntable to allow for independent
spatial measurements. The sides of the sandbox were two
tiered with the top tier removable so that it could have a
maximum depth of either 23 or 43 cm. This was useful to
prevent an excessive amount of “shadowing” of the surface
of the layer for shallow depths. The radar was mounted on
a manually adjustable, telescoping mechanical lift. The radar
mount was such that manual adjustment of the incidence angle
could be accomplished by simply tilting it and locking it into
place. The range from the aperture of the radar antenna to
the layer surface, along the boresight direction of the antenna
was always 3 m. This distance corresponds to approximately

, where is the dimension of the square aperture of the
antenna, which was sufficiently small to allow a full range of
incidence angles to be observed in an indoor setting.

As is described fully in [13], the radar consists of upcon-
version, downconversion, and polarization selection circuitry
attached to a square horn antennavia an orthomode transducer.
A coherent IF signal at 1–3 GHz is provided by the network
analyzer and mixed with a local oscillator at the radar box to
produce a 15–17-GHz RF. The design and operation of the
radar follows closely that of the LCX POLARSCAT system

(25)

(26)
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Fig. 2. Photograph of experimental setup. Radar mounted on a mechanical lift overlooking a sandbox filled with the test material. (Additional equipment
is part of an unrelated bistatic facility.)

described in [15]. A compact geometry for the antenna is
enabled through the use of a dielectric lens to correct the
phase error at the aperture. The final beamwidth for the lens-
corrected antenna (one-way, HPBW) was 5.3for both E- and
H-plane.

Two target parameters were varied in the experimental
process for each of the materials examined: 1) layer depth
and 2) the nature of the underlying “halfspace.” The
layer depth was varied between 2 cm and about 40 cm.
For the underlying surface, either an aluminum sheet
( at 16 GHz) or a flat absorber was used.
The flat absorber was composed of 60- 60-cm slabs of
5-cm thick flat absorber. These slabs were then arranged to
cover the bottom of the sandbox. The dielectric constant of the
absorber ( ) was measured by comparing the
nadir-viewing reflectivity relative to the conducting sheet. The
imaginary part was estimated (a lower limit) by considering
the minimum amount that the reflection from a conducting
sheet under the absorber had been attenuated.

Both the radar operation and the movement of the turntable
were under computer control. To reduce the variance in the
estimate of the mean backscatter, independent measurements
were realized by rotating the sandbox. It was found that the
signal was sufficiently decorrelated for a rotation of 5. Thus,
for each target scenario examined (incidence angle, depth,
underlying dielectric), 72 independent spatial samples were
collected, one every 5for one complete revolution of the
sandbox. Additional averaging was obtained using frequency
averaging, normally using the responses from 21 frequency
points equally spaced throughout the 2-GHz bandwidth. The
gating capability of the network analyzer was used to isolate
the backscatter response of the layer. The footprint of the
antenna at 3 meters—even at 60, the highest incidence angle

examined—was sufficiently small (0.56 m) so that scattering
from the wooden sides of the sandbox constituted a negligible
interference.

Since the primary goal of this investigation is to study
volume scattering, great care was taken to make the surface
of the layers as smooth as possible to minimize surface
backscatter. The smoothing technique employed a sled whose
skids rode along two opposite sides of the sandbox and
from which was suspended, spanning the entire width of the
sandbox, a metal blade. The metal blade was lowered to the
appropriate depth and leveled. The sled was then pulled across
the box multiple times. After each pass, excess material was
removed manually or additional material added in which the
level was perceived to be low. In this fashion, an optimally
smooth andreproducible surface, with roughness dictated
mainly by the particle size of the test material, was achieved.
The roughness of the surface was accurately characterized by
measurement with a laser profiler.

For calibration of the radar, the isolated antenna calibra-
tion technique (IACT) was used [16], which requires the
measurement of a sphere (a 6-in sphere, in this case) and
an arbitrary depolarizing target (we used a length of wire
oriented at roughly 45). This technique, as the name implies,
requires a radar system with excellent polarization isolation.
The -band system has polarization isolation on the order
of 30 dB.

V. INVERSION ALGORITHM

In general, the inversion process consists of two steps, as
follows.

1) Assume some form of the unknown matrices, ,
and . A logical starting point is for example, an
isotropic model using the three parameters, , and

from the Rayleigh derivation above.
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2) Use an optimization algorithm to minimize the least-
squares function given by

(27)
where and are the measured and predicted
Mueller matrices, respectively, corresponding to all of
the different experimental variables—incidence angle,
depth, and dielectric of underlying surface—indexed up
to , , and .

The formulation of is nonlinear, even for the simple case
of a scalar extinction, due to the presence of the exponential
functions of the extinction. Initially, a conjugate gradient
procedure was attempted but was found to be unsatisfactory
because of the absence of a means for enforcing upper and
lower limits on the parameters being estimated. It is, for exam-
ple, a physical requirement that the parameters corresponding
to , , and be strictly positive. We
eventually settled upon a very robust algorithm written by
the Institute for Systems Research, University of Maryland,
College Park [17], called FSQPD (Fortran sequential quadratic
programming double precision). The algorithm allows upper
and lower bounds to be set for the parameters and provides
for the imposition of linear and nonlinear constraints, though
none were used in this case.

VI. M ATERIAL EXAMINED

The most interesting application of the hybrid modeling con-
cept would be snow. However, in this development stage, the
handling requirements of snow for the purpose of a (possible
lengthy) set of controlled experiments are too prohibitive. In
this initial development stage, therefore, we opted to use a
“stable” material, for which material characteristics are static
and unchanging throughout the layer.

The dense medium was a sized silica gravel, henceforth
referred to as “8–12 gravel,” based on its being produced in
a sieving process as the material retained on standard sieves
8–12. Some characteristics of this material are given in Fig. 3,
which shows the particle size distribution obtained from sieve
analyses; also given in the figure are some pertinent physical
and electrical properties of the material. The material has
a high volume fraction that indicates a maximum packing
density of particles. The particle-size distribution of the 8–12
gravel has been rendered as a probability density function (pdf)
to facilitate, as will be discussed below, its comparison with
theoretical scattering predictions.

The effective dielectric constant of the 8–12 material was
measured in two different ways: 1) a coaxial waveguide com-
plex reflection coefficient technique at 9.5 GHz and 2) using
the snow probe [18] at about 1.5 GHz. While the 9.5-GHz
result would seem to be most pertinent to the present effort,
which is conducted at 15–17 GHz, there are questions about
the accuracy of the estimate of the imaginary part of the
dielectric constant, which is frequency dependent, as measured
by the waveguide technique. The issue of determiningfor
the materials is addressed further in Section IX. For now, we

Fig. 3. Characteristics of the test material, 8–12 gravel. (�i denotes volume
fraction.)

TABLE I
MATERIAL CHARACTERISTIC OF 8–12 GRAVEL

show in Fig. 3 only the real part of the dielectric constants of
the materials, , which is essentially the same at both of the
frequencies at which it was measured.

A detailed description of the 8–12 gravel, provided by the
supplier (AGSCO Corp., Wheeling, IL) is given in Table I. As
shown in Fig. 3, this material has a relatively narrow particle-
size distribution, which corresponds to a Gaussian pdf having
mean diameter mm and variance mm.
The particles themselves have a high degree of sphericity.
Such factors make it an excellent candidate for testing against
theoretical RT models. At -band ( cm at mid-
band), the associated size parameter, where is the
wavenumber in the particle andis its radius, is just beyond
the Rayleigh limit, for which the criterion has been given
as [19] (present case: ). Although
the DMRT model [6] is intended specifically for Rayleigh
particles, applications have been demonstrated by its authors
for cases having as high as unit 1 [20]; thus, a meaningful
comparison should be permissible with the 8–12 material. One
obstacle to theoretical comparisons is the problem of precisely
ascertaining the precise complex dielectric constant of the
particles themselves at -band. The issue of a theoretical
comparison with measurements is taken up in Section IX.

VII. SURFACE CONTRIBUTIONS

In Section IV, a means by which the top surface of the
layer was made as smooth as possible was presented. In order
to carefully analyze the scattering behavior of the volume, the
effect of the surface must be either 1) very well understood
or 2) negligible. Since the physics of rough surface scattering
is in itself a very challenging problem, and doubly so when
integrated with volume scatter, we have attempted to achieve
option 2).
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Fig. 4. Predictions of surface scattering for 8–12 gravel, generated using the
SPM.

The importance of the influence of the surface backscatter
on the measurements may be gauged to some degree by the
variability of the signal with different target parameters. If, for
example, at a given incidence angle, backscatter changes very
little with changing depth, or with changes in the underlying
“halfspace” material, it may be suspected that the dominant
source of the backscatter is the surface term. As will be shown
in the following sections, this was not found to be the case in
our measurements. However, even for the case in which the
signal is seen to be quite responsive to changes in the target
configuration, it is possible that the small surface term may
represent a substantial contribution for the cases involving
the very lowest backscatter levels, and so introduce errors
into an analysis based on volume scattering exclusively. For
this reason, an attempt was made to calculate the expected
backscatter based on measured parameters of the surface.

The surface parameters consist of the effective dielectric
constant, given in Fig. 3, and the roughness parameters, rms
height, and correlation length, which can be obtained through
the measurement of the surface height profile. Accordingly,
the surface height profiles were measured with a laser profiler.
The rms height was found to be 0.66 mm, corresponding to
a value . The autocorrelation functionwas seen to
be essentially exponential, with a correlation length of about
2 mm, for which .

A suitable theoretical solution for these parameters is given
by the small perturbation method (SPM) (see, for example,
[19]). The estimated backscatter as a function of angle is
presented in Fig. 4. As anticipated, the backscattering level
predicted is quite low for this smooth surface. The relative
contribution of this surface scattering component may be
evaluated with respect to the measurements that are presented
next.

VIII. I NTERPRETATION OFRESULTS

In the following sections, we present the results of our
controlled experiments and analyze them in the context of

the hybrid modeling approach outlined in Section II. It is our
intent to investigate whether the Rayleigh approach described
in Section III constitutes an appropriate polarimetric model for
the test material being considered.

Before proceeding further, however, it will first be in-
structive to state explicitly what constitutes a comprehensive
comparison between a polarimetric model and measurements.
For an azimuthally symmetric medium, there are normally
considered to be five independent quantities contained in the
measured Mueller matrix in the backscatter direction. These
are the copol responses and , the cross-pol
response ( for backscatter), and two parameters
that together specify the statistics of the copolarized phase
difference . The pdf governing this random variable
has been shown to be [21]

(28)

which is specified by the two parameters—the degree of
correlation—and —the copolarized phase difference.The
quantities are defined in terms of the elements of the Mueller
matrix as

(29)

where

(30)

(31)

where are elements of the Mueller matrix. Therefore,
a comprehensive comparison will examine the agreement
between the model and the data with respect to these five
elements.

Extensive data were collected for the 8–12 material in-
troduced above, using the experimental procedure described
in Section IV. The 8–12 gravel was examined for ten total
layer depths—four over a conductor and six over an absorbing
layer (except at 30, for which it was only two depths over
an absorbing layer and five over a conductor)—for incidence
angles ranging from 20 to 60. There was some indication in
the results, however, not predicted by the surface scattering
analysis done in the previous section, that at 20there was
some surface contribution to the backscatter that was not
negligible. Therefore, the 8–12 gravel is analyzed using only
the data corresponding to 30, 40, and 60.

A. Comparison with Rayleigh Model

The Rayleigh model derived in Section III utilized a scalar
extinction and phase matrix components and given by
(25) and (26). As mentioned, these phase matrix components



28 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 1, JANUARY 1999

(a)

(b)

Fig. 5. Application of Rayleigh model to measured data. Comparison for
copolarized and cross-polarized response, over both (a) absorber and (b)
conductor for 8–12 gravel.

were entirely specified by just two parameters, which are them-
selves functions of the elements of the polarizability tensor of
the arbitrary Rayleigh particles. This theoretical framework
was used along with the results from the measurements in
the inversion algorithm described in Section V. Some selected
results of this analysis are shown in Figs. 5 and 6. These results
are representative of the degree of success that was achieved
generally in comparing the Rayleigh model to the measured
data. Fig. 5 shows the angular variation of the copol and cross-
pol responses, examined over both a conductor and an absorber
at the depths specified in the figures. In general, the angular
variation built into the Rayleigh model does not agree with
the observed behavior very well.

Fig. 6 presents the results with respect to the phase statistics.
Only the degree of correlation () is shown at specific layer
depths over both absorber and conductor. It is clear that the
Rayleigh model is inadequate for explaining the observed
behavior for these materials. The lack of success of this model

Fig. 6. Application of Rayleigh model to measured data. Comparison for
degree of correlation (�). Layers over absorber and conductor are 14.3 and
16.5 cm, respectively.

is not too surprising. As mentioned, the individual particles in
the medium are for the most part pushing the limit of Rayleigh
particles for the wavelength being used. When consideration
is made of some “effective” aggregate particle, which might
comprise many individual particles, the hypothesis becomes
even more doubtful. Still it is possible that such a model might
be valid for smaller particles and where the volume fraction
is not quite so high.

The angular variation in the Rayleigh model is controlled
by two factors: 1) the Fresnel transmissivity of the surface and
2) the explicit dependence shown in (26). It is possible that a
general isotropicmodel could work if the explicit constraints
of the Rayleigh model are relaxed.

B. General Isotropic Model

For the general isotropic model, the quantities of interest
take the following forms.

• Diagonal elements of the extinction matrix are required
to be identical. This is easily understood from the very
definition of isotropic media. The propagation character-
istics of the medium are insensitive to the polarization
of the intensity. Thus, the extinction for vertical po-
larization must be the same as for horizontal. For the
nondiagonal elements of the extinction matrix, which
for general nonspherical particles is given in [10], we
assume the cross coupling betweenand polarizations
is zero for forward scattering, making these off-diagonal
elements zero. Thus, for the general isotropic model we
are considering, the extinction becomes a scalar ,
as in the Rayleigh model.

• The form of also resembles that of the
Rayleigh model. The isotropic constraint requires
that . Reciprocity requires that

[in the backscattering alignment (BSA); in
the forward scattering alignment, ]. From
arguments of azimuthal symmetry and experimental
evidence, the copol and the cross-pol terms have been
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found to be statistically uncorrelated; thus, all terms of
the form are zero. The resulting form of the
matrix, which is independent of incidence angle, is

(32)

• For the matrix, there is less that can be specified
in advance. Reciprocity does not require the and
terms to be identical, and the like- and cross-pol terms are
not necessarily uncorrelated. For the latter point, we will
borrow from the findings of the Rayleigh analysis, which
showed these covariance terms to be zero, but relieve
generally the other constraints placed on the elements of
this matrix. In particular, we will allow the matrix as a
whole to be a function of the incidence angle, as specified
by ( ). The structure is

(33)

Mathematically, the resulting model is identical to that
given in (4), using and as given above. There are
13 parameters to be specified for a complete polarimetric
description for a single angle. Of these, the extinctionand
the matrix (comparing five parameters) will be common to
all angles. A separate bistatic matrix must be determined
for each angle.

Thirteen parameters is a considerable space to explore
for an algorithm for nonlinear optimization. Given the task
of optimizing all 13 parameters at once, the algorithm will
generally not produce a very satisfactory result, and it will tend
to arrive at different solutions depending on the initial guess.
Fortunately, it is not necessary to optimize all parameters
simultaneously. The following option exists for a much more
limited optimization process.

First, it is recognized that, if a “quadrant” is defined by
a 2 2 submatrix, proceeding clockwise from the top left
of the 4 4 matrices in this formulation, the first and third
quadrants are decoupled from one another since the second
and fourth quadrants are identically zero. The zero status of
these latter two quadrants holds for all of the matrices involved
in the first-order solution, including the transmissivity and
reflectivity matrices. Thus, it is possible to optimize initially
only the seven parameters affecting the copol and cross-pol
responses. After these have been found, the remaining six
may be found, using the value for obtained in the initial
process. Additional iterations may be performed to improve
the overall result. In general, it is found that, due to a model
that is only an approximation and data that contains errors, no
absolute convergence is observed from an iterative process,
and degradation of the perceived “goodness” of the solution
occurs with many iterations.

A complete comparison of the isotropic modeling approach
with the measured data is shown in Figs. 7–9 for the 8–12
gravel, for incidence angles 30, 40, and 60. All of the

available data were used in the inversion process suggested
by (27) to find the optimal parameters for the first-order
polarimetric model given by (4). Each of the figures consti-
tutes a comprehensive comparison of the five aforementioned
independent elements of the measured Mueller matrix with the
model predictions for the angle specified.

The agreement with the 8–12 gravel is seen to be generally
very good. The copolarized and cross-polarized response for
layers over a conducting surface [(a) in Figs. 7–9] is very well
modeled. There is some small disagreement for the case of
the copol response over an absorber layer, at all three angles.
The response is somewhat underpredicted (by 1–2 dB) at 30
and over predicted by about this amount at 60. This is an
interesting and important case to examine since the bistatic
component of the phase function, which can be individually
tailored for each incidence angle in the inversion process,
is not involved. Since the backscatter component is a
constant quantity, the angular variation is governed solely by
the Fresnel transmissivity of the surface. Angular behavior that
is in agreement with this Fresnel variation, for a “halfspace,”
which our layer-over-absorber approximates, is a necessary
requirement for scattering that is truly first order and isotropic.

The behavior of the phase statistics of the measurements
appears to be a very simple function of all of the parameters
varied (angle, depth, underlying “halfspace”), and it is modeled
fairly well by this first-order hybrid model. The parameter,
the copolarized phase difference is, in particular, explained by
the model quite well at all three angles.

IX. COMPARISON OFRESULTS WITH THEORY

In Section VI, we stated that the characteristics of the 8–12
gravel made it especially suitable for comparison with theory.
One impediment, however, to such a comparison is the task
of determining the precise dielectric constant of the particles
themselves ( ) at the frequency of interest, in this case, our
center frequency of 16 GHz.

One approach by which this might be accomplished is to
measure by some means the effective dielectric constantof
the medium and then invert a dielectric mixing formula like the
Polder–Van Santen mixing model [19] to get the dielectric of
the inclusions (particles). The fact that the particles have a high
degree of sphericity removes the ambiguity associated with
assigning the three shape factors for that model. If, however,

is measured at the test frequency (16 GHz was the center
frequency), the imaginary part may comprise the effects of
the scattering losses as well as the dielectric conducting losses,
depending on the measurement technique. If the scattering
losses are included in the measurement of, inversion of
a dielectric mixing model will not lead to the proper result
for the particle dielectric . A complex reflection coefficient
waveguide technique might be employed at this frequency
(16 GHz) in which (it may be argued) scattering losses are
prevented due to the boundaries (i.e., modal requirements) of
the guide; this point, however, is at this time still something of
a research question, and in any event, the technique is prone to
error when the loss tangent of the test material is very small.

A more appropriate procedure is to measure at low
frequency, in which scattering is negligible, independent of
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(a) (b)

(c) (d)

Fig. 7. Results of application of hybrid RT model to measured data: 8–12 gravel, 30� incidence [(a) conductor and (b) absorber underlying layer].

the measurement technique used. The variation of the dielectric
constant of dry rocks with frequency in the microwave region
has been studied [22]. The real partis essentially constant
from 1 to 16 GHz. The imaginary part has been found
to decrease with frequency, in a manner dependent on the
particular rock class. The material in the 8–12 gravel appears
to be either a sedimentary, plutonic, or volcanic silicate. The
frequency dependance of for each one of these classes is
given in [22].

In this case, for the 8–12 gravel was measured at about
1.5 GHz using the Snow Probe (described in [18]) and found
to be . The Polder–Van Santen mixing
formula for spherical particles (shape factors:

) is

where , , and are the effective dielectric constants of
the medium, the host (air), and the inclusions (or particles),
respectively, and is the volume fraction. This equation may
be easily solved for ( ), yielding .

This value of is already considerably lower than the
average for all of the silicate classes mentioned above (see
Fig. 13 in [22]), although still within the appreciable scatter
of the data. Therefore, instead of applying the frequency
dependance associated with the much higher values of the

quantity measured for the various silicate classes in [22],
we will simply use the low-frequency value of as our
estimate at the frequency of interest, 16 GHz. Since, in general,
the study found that decreases with frequency, the use of
this low-frequency result will lead to a maximum attenuation
calculation and a minimum scattering calculation.

This result completes the information required to examine
the correspondence between the measurements of this ma-
terial and the predictions of certain discrete particle-based
theories. A pertinent quantity for comparison is the effective
propagation constant in the medium

from which may be obtained the real and imaginary parts of
the effective index of refraction

(34)

with the extinction specified as .
The theories we compare with are the effective field ap-

proximation (EFA), the quasicrystalline approximation (QCA),
and the quasicrystalline approximation with coherent potential
(QCA-CP). We present here a very brief description of each
technique.

The EFA (also known as Foldy’s approximation) can be
considered a special case of QCA [14], in that the particles are
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(a) (b)

(c) (d)

Fig. 8. Results of application of hybrid RT model to measured data: 8–12 gravel, 40� incidence [(a) conductor and (b) absorber underlying layer].

considered as acting completely independent of one another
with zero correlation. It leads to an attenuation rate that is
very similar to that of independent scattering [14, p. 427].
The solution for the effective propagation constant is formally
given by [23]

where is the complex far-field scattering amplitude,is
the wavenumber of the surrounding medium, andis the
number density of the scatterers.

A detailed description of QCA theory is outside the scope of
this presentation. A detailed derivation may be found in [14].
In general, QCA takes into account interactions between parti-
cles, using exact wave transformations, a “T-matrix” approach,
for computing this interparticle interaction rather than far-
field phase functions. The particle correlation is specified by
the pair-distribution function, which describes the conditional
probability of a particle location relative to another particle’s
position. The Percus–Yevick approximation is most often used
to derive the pair-distribution function for a medium. This
approximation assumes noninterpenetrability of particles and
zero forces between the particles. This assumption, which
has, in some specific experiments [23], been found to agree
with experimental observations, removes the requirement of
characterizing by more direct means the exact configuration
of particles in a dense medium. In more recent studies [24],

this assumption has been shown to breakdown outside of its
intended domain of validity, which comprises mainly liquids
or gases.

QCA-CP constitutes an improvement on QCA in that it
provides for energy conservation in the formulation. Essen-
tially, it amounts to employing the effective wavenumber
in the Green’s functions of the QCA formulation instead of
the background wavenumber. The formulation is valid for
Rayleigh particles only.

The results produced by each one of these methods are
summarized in Table II. Shown are estimates for, the real
part of the effective index of refraction and . Shown for
comparison are the snow probe measuredand obtained
from the hybrid model analysis of the 8–12 gravel. The cor-
related particle treatments represented by QCA and QCA-CP
produce estimates of , which are in close agreement with
the measured value. EFA gives a considerably lower estimate.
While the QCA result for is very low, the QCA-CP
and EFA estimates bracket, below and above, respectively,
the experimentally determined value for. This bracketing
scenario resembles previous findings [23] for glass spheres in
styrofoam at much lower volume fractions (10%).

Fig. 10 shows a comparison between measurements and
scattering computations from a numerical CRT model that
employs the EFA theory, using Mie calculations for the phase
function and extinction and the discrete ordinate solution
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(a) (b)

(c) (d)

Fig. 9. Results of application of hybrid RT model to measured data: 8–12 gravel, 60� incidence [(a) conductor and (b) absorber underlying layer].

TABLE II
PROPAGATION PARAMETERS FOR 8–12 GRAVEL

method [25]. The inputs to the model consisted of the physical
characteristics of the 8–12 gravel, as they have been described
in the preceding sections, including particle size distribution,
volume fraction, effective dielectric constant of the medium,
and dielectric constant of the individual particles. Though the
trends with respect to polarization and depth are similar, the
CRT model overestimates the scattering level by typically
3–4 dB. Recalling that the value of the imaginary part of the
particle dielectric used is a maximum value, this discrepancy
would be expected to increase with a more accurate estimation
of , as the single scattering albedo of the particle would
increase.

A comparison between measurements and predictions from
a dense medium radiative transfer (DMRT) model, described in
Section II, as shown in Fig. 11. The theoretical predictions are

seen to be extremely low—on the order of 15–20 dB—relative
to the measured results. This very serious disagreement can be
explained in terms of the behavior of the scattering albedo,
which scales the phase matrix (as described in Section II),
and hence the scattering production of a collection of scatters.
The value of computed (from [8]) for the DMRT model is
similar to the CRT computation for very low volume fractions
(e.g., 5%) but diminishes rapidly with increasing volume
fraction. For this scenario, with a volume fraction of 0.63,
the scattering albedo computed from DMRT is 5.110 ,
about 250 times smaller than that computed by CRT. Since the
values of extinction given in Table II for EFA and QCA-CP are
fairly similar, this means that the difference in the respective
albedos pertains to the scattering (recall, ). In
short, at these volume fractions, the DMRT predicts negligible
scattering production from the medium. The value for the
extinction computed from QCA-CP given in Table II is almost
entirely associated with the absorptive losses in the particles.
That the QCA result is smaller than this value is apparently
symptomatic of that technique’s failure to obey energy conser-
vation. We note also that the issue of an extremely diminished
scattering albedo makes noncritical the question of a more
precise determination of the particle dielectric.

The diminishment of the scattering albedo in the DMRT
formulation stems from the nature of the pair distribution
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(a) (b)

(c) (d)

Fig. 10. Comparison of measurements of 8–12 gravel with CRT simulations. Discrete marks are CRT simulations; continuous lines are from hybrid model
developed from analysis of measured data, which very closely approximates the actual data [(a) 30� incidence over conductor, (b) 30� incidence over
absorber, (c) 60� incidence over conductor, and (d) 60� incidence over absorber].

(a) (b)

Fig. 11. Comparison of measurements of 8–12 gravel with DMRT simulations at 30� incidence. Discrete marks are DMRT simulations; continuous lines are
from hybrid model developed from analysis of measured data, which very closely approximates the actual data [(a) over conductor and (b) over absorber].

function as computed under the Percus–Yevick approximation.
For a volume fraction as high as that of the material under test,
0.63, the Percus–Yevick pair distribution function predicts a
great deal of order in the system of particles. This is depicted
in Fig. 12, where the function is shown for the current volume
fraction (0.63) as well as for a much smaller volume fraction

. At the 0.63 volume fraction, near the maximum

packing density for spheres, it is seen that a fairly orderly,
crystal-like system is predicted with alternating regions of
very high and low probability of neighbor particles. The
formulation itself appears to begin to breakdown at this point,
as evidenced by certain irregular-looking features, in contrast
with the appearance of the function at , also shown
in the figure.
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Fig. 12. Percus–Yevick pair distribution function for volume fractions
v = 0:63, v = 0:5, and v = 0:25.

For a final comparison, we note that in the hybrid model,
finding independently for various incidence angles
amounts to mapping out some portion of the scattering phase
function of the particle (refer, for example, to Fig. 1). Fig. 13
shows these experimentally derived phase functions. Shown
for comparison are Mie calculations made for the cases of
1) a particle having the same characteristics as the 8–12
gravel particles and 2) a particle having the same dielectric
but three times as large. All results are normalized to the
backscatter level. The obvious implication, consistent with
the assumptions of the hybrid model concept, is that multiple
particles combine to form an effective scattering element that
is amenable to a first-order RT approach.

X. SUMMARY AND CONCLUSIONS

This paper has described a hybrid experimental/theoretical
technique by which dense medium scattering may be mod-
eled. Specifically, we have demonstrated that the complete
polarimetric backscatter response from a very dense medium
consisting of discrete particles can be adequately explained in
terms of a vector first-order RT model.

Very simple forms of the phase matrix components involved
in the first-order formulation have been derived using Rayleigh
theory. While these specific formulations were not observed
to correctly model the experimentally observed results in the
present case, it is possible they may still be valid if applied to
a somewhat less dense medium with smaller particles.

The dense medium backscatter measurements were com-
pared against predictions from conventional and dense medium
RT. While the CRT results were reasonably close, the scatter-
ing predicted by DMRT for this high volume fraction material
( ) was 15–20 dB below the measured levels.

Finally, application of the hybrid technique to direct mea-
surements though a numerical optimization algorithm also
yields a partial mapping of the scattering phase function of
the effective volume scattering element in the medium. An
analysis has been presented that suggests that this element is
considerably larger than the physical particles of which the
medium is comprised.

(a)

(b)

Fig. 13. Portion of the scattering phase function obtainedvia isotropic RT
analysis of 8–12 gravel compared with Mie phase function for a particle (a)
identical to an 8–12 gravel particle and (b) three times larger than an 8–12
gravel particle.
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