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Segmentation of Satellite Imagery of
Natural Scenes Using Data Mining

Leen-Kiat Soh,Member, IEEE and Costas TsatsouliSenior Member, IEEE

Abstract—in this paper, we describe a segmentation technique of the polar regions is affected by factors such as snowfall
that integrates traditional image processing algorithms with tech- and wind velocity [1]-[3]. The backscatter of forest images
nigues adapted from knowledge discovery in databases (KDD) can be affected by chemical pollution [4], soil erosion [5],

and data mining to analyze and segment unstructured satellite . - . . .
images of natural scenes. We have divided our segmentation rainfall and soil moisture [6], [7], drought [8] or disruption of

task into three major steps. First, an initial segmentation is hydrological regimes [9], burning [10], and extensive grazing
achieved using dynamic local thresholding, producing a set of [11]. To illustrate further, researchers working on mapping
regions. Then, spectral, spatial, and textural features for each gnd understanding mountainous ecology and geology have

region are generated from the thresholded image. Finally, given , yoa) \with different spectral results of satellite imagery of
these features as attributes, an unsupervised machine learning

methodology called conceptual clustering is used to cluster the Mountainous regions, caused by shading [12], snowcover [13]
regions found in the image intoN classes—thus, determining the Or snowmelt [14], or volcanic activities [15], to list a few.
numbgr of classes in the image automatigally. We have appliedthe  All of these peculiarities of natural scenes coupled with
}_eCh(?'q“ehSUCC‘?SSf“”y to '(555)'1 syénwgiiapderture raadar (ShA'?]): the requirement for automated or semiautomated analysis of
andsat thematic mapper , an advanced very hig . . . . . . .
resolution radiometer (AVHRR) data of natural scenes. satellltg |r.nagery,. along W'th philosophical Issues_ pertinent
_ _ _ to designing a single algorithm capable of handling many
l'”dex Termsl_q”Ste““g methods, image segmentation, natu- sjtations within a same domain, have led to the need for
fal scene anayss. new approaches to the segmentation and analysis of satel-
lite imagery of natural scenes. In this paper, we present
|. INTRODUCTION a methodology that integrates traditional image processing
HE IMPROVEMENT in the resolution of satellite im- _algorlthms with techniques adapted from knowledge discovery

agery and the increase in the number of satellites that 4 databases (KDD) and data mining [16] to ge'nerate a
used for remote sensing and monitoring of the environmeRfStem that successfully segments natural scene images. In
have led to a dramatic increase in the volume of the daf4" Methodology, we first analyze the natural scene using tra-
available to scientists. Full exploitation of these data requirdional image segmentation and analysis techniques, namely,
that analysis approaches be as fully automated as possigbé‘?am'c' multilevel thresr_]oldmg and generation of texture
while allowing for critical, but limited, user interaction. values. These preprocessing steps generate data that, together

The analysis of satellite imagery of natural scenes preseih the original image, are viewed as the contents of a
many unique problems, and it differs from the analysis arfiftabase that needs to bg mined. The goal of data mining is
segmentation of urban, commercial, or agricultural ared8 extract cohe_rent, describable cluster_s of d_ata that represent
Natural scenes (forests, mountains, the sea, clouds, etc.) e natural objects and classes of objects in the scene. For
not structured and cannot be represented easily by regif@i@ mining, we use conceptual clustering, which identifies
rules or grammars. In contrast to artificial structures, natuiggmantically coherent clusters, representing the objects in
objects do not obey strict positioning rules (for exampldhe scene.
harbor structures will always be next to water, while conif- Note that we propose aegmentationtechnique in this
erous forests can be found in very large geographical aR@Per which serves as a preprocessor to classification. We
elevation ranges, and their positioning rules are much weakdl§lieve that an image processing task on satellite imagery
Finally, the appearance of natural objects can vary grea'ﬂ;y incremental and that each previous step influences the
based on the geographic area, the season, the current weadtkegution of the next. Hence, a good segmentation is required
conditions, or the past weather conditions. For example, tifeobtain a good classification result. Further, we argue that,
backscatter of synthetic aperture radar (SAR) sea ice imagése we obtain the segmentation classes of an image, it is

possible to use heuristics or other domain-specific approaches
to further classify, interpret, understand, register, or extract
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ice classification, which is based on spectral segmentation [19];
ancillary data have been integrated to improve classification
[20].

Original raw imagf%

Dynamic Local Thresholding

y A set of thresholds

. METHODOLOGY Threshold Selection

A reduced set of thresholds
and a thresholded image

Our underlying methodology is to first use image segmenta-
tion to provide features to describe a preliminary segmentation
of the image and, given this information, perform conceptual
clustering to refine and produce the final segmentation. This
methodology is similar to that of data mining [16] in that the
image, viewed as data, is preprocessed, transformed, mined,
and evaluated to arrive at the end result, which is the segmen-
tation. The segmented image, thus, is the knowledge that we
learn from the raw image. In addition, this two-stage approach
allows modularity and flexibility in its implementation. The
initial segmentation allows conceptual clustering to focus its
analysis only on selected information from the image, reducing
the amount of computational work and preventing irrelevant * Final segmented image
information from influencing the outcome of the clustering
process. On the other hand, the conceptual clustering modkite 1. Block diagram of our segmentation technique.
relieves the burden of determining the number of classes from
the preliminary segmentation process. Hence, the segmentapooposed a fully automated segmentation procedure using a
process itself can concentrate on low-level, syntactic imagpeckle reduction filter to iteratively smooth SAR imagery as
manipulation, leaving higher order tasks, such as semardig@reprocessor and then examine each pixel to determine to
interpretation, to conceptual clustering. The task of imagehich peak, if any, in the now smoothed histogram it was
segmentation has been defined [21], [22] as a processcofverging. The number of peaks determined the number of
detecting maximally homogeneous regions in the image; a@tasses in the image, and pixels converging to each peak were
this paper, we consider that thgragmatic task of image assigned to the same class. As the author pointed out, this
segmentation is to segment an image into different regiopsocedure would fail to detect small classes in some cases.
such that each region, while satisfying the criteria of [21]n addition, the technique was shown to be successful in
[22], can be further analyzed using domain and applicati@@gmenting 100x 100 pixel images, which are relatively
knowledge, as we have indicated above. For example, in tmall in size and do not necessarily exhibit histograms with
work by Li [18], reservoirs and fish ponds were initially ofcomplexities found in larger images.
the same class after segmentation, but later distinguished usingig. 1 shows the block diagram of our implementation.
shape information during classification. Of course, the closBynamic local thresholding produces a set of thresholds,
the image regions are to the eventual classes, the easier frdgsn which a set ofsignificant thresholds are extracted by
to assign classifications to the segmented regions. comparing their dominance measures over neighboring values.

In general, image segmentation comes in three majbhis significant thresholds set is reduced in size and more
branches: thresholding or clustering, edge detection, argpresentative since trivial threshold values have now been
region extraction [23]. The clustering technique in imageeeded out. A preliminary segmentation of the image is
segmentation is basically the multidimensional extension pfoduced using this set of thresholds. From this transformed
the concept of thresholding. Instead of a single dimensidmage, higher order information is mined and serves as the
two or more characteristic features are used, and each clksg ingredient for our feature generation module. In this
of regions is assumed to form a distinct cluster in thparticular application, two sets of features that describe the
multidimensional space. Clustering is necessary in casessjatial and textural characteristics of each significant threshold
which there are problems not resolvable with one feature, sucdlue are generated. Then conceptual clustering is performed
as intensity, but with two or more (with the incorporatiorto group the thresholds into different clusters based on their
of statistics or textures). Traditionally, clustering in imagattached spatial attributes. This results in two concept hier-
segmentation is supervised or manually assisted by usarehies, depending on the order of presentation of the data
specifying the thresholds or the number of clusters [24], [25[direct or reverse). To resolve the conflicts between these two
Several unsupervised image segmentation techniques have hisarchies, textural attributes of the thresholds are compared
been proposed, such as iterative dominance clustering [28]score the conflicting clusters. Clusters with better scores are
random field models [27], fuzzy clustering [28], and maximurpreserved; those with worse scores are replaced. Finally, given
likelihood [29]. Some of these techniques deal with ledke resolved hierarchy, we process the preliminarily segmented
complex scenes and others with highly textured regions, aimlage by merging within cluster classes. In the following
they are not readily extensible to complex satellite imagergection, we discuss the dynamic local thresholding and, within
A technique similar to ours was discussed in [30], whichis scope, the threshold selection procedure. Second, we for-
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mulate the data preparation, preclustering module that is thbere
feature generation stage. Then we present the application of

_ _ 2
conceptual cIustering. Finally, we Qescribe a conflict resolutiqn ®(x; pu, on) = 1 exp[ (352 21%) } @)
strategy that examines the clustering result as a postclustering V2maoy Ok
module.

is the Gaussian distribution with mean. and standard de-
viation o3,. The set of mixture coefficientéc, } must satisfy

ll. DYNAMIC LOCAL THRESHOLDING the constraints

We have adapted the dynamic local thresholding technique .
from [19]. The following subsections describe our implemen- o 20, Z cr =1 (3)
tation of the technique. For more detalil, refer to [19]. b=l
To estimate from the samplesy, 3, -, xn,, [OF
A. Regional Histogram Computation and Selection 9(p), p € R;, whereg(p) is the gray-level value of pixep
inside regionk;] requires the maximization of the regression

The image is divided into overlapping regions such th nction over the expected value of the log-likelihood function

) 0 X ; . t
ea_ch region sha_res 50% of the same pl_xels with each of its f.%"fr f(z). This occurs when the partial derivatives of the
neighboring regions and the intensity histogram of each regi

. lculated. F ) denot el belonai ction are zero. We solve for these partial derivatives
IS calcuiated. =or convenience, we denote a pixet belonging; 8ratively. Hence, we obtain the following estimation steps.
region R; asp,;. Note that this pixel could belong to at mostAt the (i + 1)th step, update
four different regions. Then, the variance of every histogram '

and only histograms with variance greater than the variance ) N N
thresholdV; are selected for further processirig. is image pr(i 1) = pu(4) + p(l)@ In f(@)|o=e; (4)
dependent and set so that at least 25% of all histograms pass aru(i) @ R
the variance test, providing the technique with a sufficient wx(i + 1) =wx(4) + p(%) { S o 1 f(x)} (5)
number of regions such that each region can be constrained ) kOO =T
adequately by other regions. This implicitly helps preserve . . s . = I (i) 0 .
global information from the image. S(i + 1) = & (0) + p(2) L 9y, e In f(x) 6)
B. Gaussian Curve Approximation where

The objective of this step is to provide the basis for optimal B 1 1 0 @
threshold extraction from each histogram. Strategies proposed % =7k = == 5~ 7% < TR < 00
in histogram-based segmentation and binarization, such as 1 1 2
entropy [31], minimum error [32], _relaxati(_)n-ba_sed [33_], and Tk = o 5 <wk +y/wpt+ 4) (8)
so on, have shown robust results in handling bimodal images. 2 — (1 — dy)
These methodologies could be used as a direct process of locat- 6 = % 0<c <1—dy (9)
ing the optimal threshold or as a precursor process of providing er(1 = di — ca)
initial guesses for the Gaussian curve approximation. In our . _ L [(1 — )6k — 2+ /(1 — di)262 + 4} (10)
design, however, we assume the local intensity distribution is a 26k

binormal Gaussian mixture, paving the theoretical backgroun

for the maximum likelihood derivation when solving for theW%erep(Z) is a sequence of positive numbers satisfying

optimal threshold. o0 oo

Before the approximation process can be performed, initial,z p(i) = o0, Z p*(i) < oo, and lim p(i) = 0.
good guesses must be obtained for the parameters of the twe=1 i=1 e
Gaussiansjii, p2, o1, ando,. To estimate the initial values (11)
for these four parameters, the histogram is divided at its mean
1 and the mean values of the histograms in the rang@sour implementation, we define
0, ;) and [, K] are computed, respectivel (is the . . .
£naxim)um int[ensity }evel, usually 255). The corresponding p(0) =05, p(i) =05p(i —1) 1=1,2,3,---. (12)

ando are computed over those same ranges. The approximation process is completed when either the
Using the stochastic estimation method in [44], the fol-_ . pproxim P P
artial derivatives are zero or when

lowing procedure is derived to find a curve fitting binorma?
mixture f(z), wherez = H,; and H,; is the histogram for
regions. The goal of the curve fitting is to approximafézx)

by a set ofn Gaussians with

pre (i 4 1) = pu(4)
wr(t+ 1) =wi (%)

f(a:) = Z en®(x; px, o) (1) Note that other approaches, such as those proposed by [34],
k=1 may also be used to curve fit normal distributions.
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C. Bimodality Filtering and Optimal Threshold DeterminatiorNote that our algorithm favors threshold values that situate
Given the parameters of the approximation process, a B massive structures (plateaus, slopes: domes,' valleys) rather
modality measure is computed than acu_te structures (gorges, peak_s) in the _h|stogram. This
. strategy is analogous to edge detection techniques that locate
_oming—p,, ] f(9) 14 true edge pixels at the middle of edge ramps (or the zero
(7 ¢ ) (14) crossings of second derivatives). We assume that sudden drops
min(f(x1), f(p2)) >SS . \ ,
_ _ _ _ or rises in the histogram curve are not reliable and due to either
A region with j,; greater than the bimodality thresholdhoise effects in the original image or occasionally inaccurate
B (currently set at 0.8) will be filtered out from furtherbinormal approximations (performed upon local, multimodal
processing. Note that a small valdg indicates that the valley distributions) during the dynamic local thresholding process.
separating the two modes is significant. For those regiogspposel™ is the initial threshold set ands the significant

allowed through by the low-pass filter, a single threshigld threshold set, initially. The extraction steps of significant
is computed. This value minimizes the probability of misclashresholds at:th iteration are as follows:

sification, derived from the maximum likelihood method. 1) pick#; such thatC(t;) > C(t;), for all ¢; # 0, t; € T*;
2) updatel*+1 = T* /t; wherei— E(t;) < j < i+E(t;);
D. Significant Threshold Selection and Assignment 3) updateTs = Ts Ut;;
After the optimal threshold determination, we obtain a set4) if 7% # 0 and3(¢; € T*+|C(¢;) # 0), then go back
of thresholdsT’ = {t,1, t;2, -+, tyn,,} and0 < t.; < 255, to step 1); otherwise exit.

wherel,, is the number of regions with a computed threshol@ihis procedure guarantees that from each structure, only the
value. The objective of this threshold selection module is tost dominant threshold value will become the significant
extract a set o$ignificantthresholdsl’s from 7'. In an image, threshold.

each class of areas could have a range of intensities sucl®iven the complete set dfs = {Ts1, Ts2, - -, Tsng s

that the representative (or significant) thresholds found frowhereNs is the number of significant thresholds, every region
these areas could be far apart from each other. Occupyingh a computed threshold value is assigned a label

the interval between each pair of these thresholds are other )
threshold values compromising the intensity difference. By Utri) =3 | |Ts; = Tnil < [Tsp = T

eliminating these values, we provide the clustering module k=0,---, Ns, Tsy € Ts. (18)

with only the significant thresholds and without the residuals, . : . .
. : is assignment scheme uses one-dimensional (1-D) Eu-
Otherwise, the clustering module would have grouped eacf . L -
clidean distance as the criterion to statistically cluster nearest

§|gnlf|cant threshold ar_1d its residual nel_gr_lporlng valu_es as r?gighbors [35] centered at every memberlaf As a result,
individual cluster and ignored the possibility of treating two )

- we define the support df’sy
significant threshold values as members of a same cluster.

To obtainTs, a sequential histogram-tracking scheme is  ~(Ts;) = {r;|l(t;;) = k}, i=0,-, Nyi. (29)
used to follow the histogram of thresholds ) ) ) ) _ o

This support will be used in our regional interpolation imple-
Hr(t)y= # (t=+t;) t=0,--,255 (15) mentation and textural attributes generation.
t; CT

where#;(e) denotes the number of occurrences of its predk. Regional Interpolation

cate over the domain A significantthreshold is a threshold  pit| now, regions with histograms failing the variance and
value'of supstantlal frequency and possesses a higiverage pimodality tests have no thresholds. To fill in the missing
than its neighbors. The scheme computes what we call #gesholds, we interpolatd’s throughout the entire image.
extent of#;, E(#;), such thatE(#;) is the maximum number Thjs regional interpolation allows the global information to
that satisfies be propagated, thereby imposing an implicit constraint on
N ‘ N ‘ dramatic segmentation changes. The interpolation scheme is
[ Hr(ti) = Hr(ti-pao)| + [Hr(ts) = Hr(tiesa ) a concentric, weighted average of neighbors. Suppose that the
region r; resides at{r;) = (m, n), denoting a region that

E(t;) is a key indicator that says how far we can wallis on themth row and thenth column. The neighbors of;

from Hy(#;) without great changes in frequency or altitug&including itself) are

|Hr(t;)|, wherej # 4. E(t;) is large whenHy(¢;) is in the 8(r;) = {6(r;, d)} d=0,---,D (20)

middle of a flat surface. The attenuateiis limited to0- - - 2.

If we set« high, we are looking for large structures in thevhered is the square distance addlis the maximum square

histogram and vice versa. Tlwverageof ¢;, C(#;), is thus distance allowed (i.e., the shortest dimension of the image

defined as minus two). Note thaf(r;, 0) = r,. The immediate neighbors
of r, are in (21), shown at the bottom of the next page. The

C(t;) =2B(t:) + 1. (17)  weighting function used is a function of

D—-d
wd:T'

< aHrp(t). (16)

A t; that has highC(¢;) and is not shadowed by other, more

: ; S 22
dominant threshold values will become a significant threshold. (22)
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In addition, we define the utility function at region A a l-a B
Ups = {Um‘l, Upi2, ", U'riNs} (23) "
1
such that b E
. i
Fupim =1, m=1Uty), Yi#m, u.; =0 (24) Pt
Hf--------= T EEEEE F
Regardless of whether a region has been assigned a threshold, 1-b '
we compute the confidence that the threshold assigned to H
that region is correct. This confidence at each distahde D ! C
measured by Fig. 2. Bilinear interpolation. The pixP is assigned a value of a weighted
) sum of four corners A, B, C, and D.
QTij,d = Z Wdlrmy J= 17 Ty NS- (25)
meo(rs, d) G. N-ary Decision

When the accumulated confidencggi1 Qrij,4, €xceeds  Until now, every pixel in the image has a set of interpolated

the confidence threshol®, (set at 1.25), the interpolationthresholdsxpi. A pixel is assigned a classification lah€p;)

terminates a¥(r;, dg). This confidence measure allows an — .
v -1 for A, i) < Apik, =0, -, k—1.

isolated threshold value to be influenced by other spauall'f/ ’ pi < 9(Pi) = Apik J

distant threshold values while preserving the threshold value (30)

of a tlghtly clustered thresholds. In effect, all thresholds fOUf'[dote that, for pract|ca| convemencﬁ i0 IS a|Way3 zero. So,

in the sety(Z’sx) will be interpolated such that the smoothinghe |mage will be segmented infds + 1 classes, with labels
effect is global for thresholds of the same support but not 80... Ng.

across the supports. The set of interpolated thresholds for a
region r; is IV. FEATURE GENERATION

Ari = { i1y Arizy - AriNg b (26) The objective of this module is to generate descriptors
or attributes for the classes generated by the dynamic local
thresholding technique. These attributes will then be attached

o to each significant threshold and examined by our conceptual
Z Z Watm clustering process. In our design, we utilize two sets of

My = d=1 meb(r;,d) ' 27) attributes. The first set is called the spatial attributes, derived

from all ¢(p;). The second set is called the textural attributes,
Z Qrij,d derived from a quantized version of al(p;).

such that

L . A. Spatial Attributes Generation
F. Pointwise Interpolation

T tinuit the bound ¢ The spatial generator computesvariety curve of each
th obendsure fcct)n inuity Lnb € bounadary pomts on 8r| neqs ignificant threshold, by examining every pixel and its neigh-
e border of two neighboring regions, pointwise M€Y 5rhood—how a class label behaves spatially in relation to

mte_rpolatllon 'i tpi:o:me_dta_lr_rrl]ong ttht;:_ctenterl 'ioénttﬁ th“lis eight immediate neighbors. Note that each class label is
regions closest to that point. The set ot interpolated treShoSs ociated with a single significant threshold. To ensure one-to-

for a pixel p; is one and complete matching, we create a simulated significant
Api = { Api1s Apizs * s Aping b (28) threshold,Ts(x11), such that class label 0 maps 1@, 1

maps to7’sz, - - -, and Ns maps to7s(n+1)- Ts(ng+1) IS Set

to the maximum intensity value found in the image. Suppose a

Mpij = (1= 0)[(1 — a)A+ aB] +b[(1 — a)D +aC] (29) pixel p; is located atp;) = (m, n) and has class labelp;).

] The variety curve ofls;. is defined as
such thatA, B, C, D € A.,;, wherem is the four closest

such that (referring to Fig. 2)

regions to the pixel. The points at the borders of the image Vie, = Vet Vrsess -5 Visuve+n ) (31)
are not surrounded by four regional centers. Hence, a pixglch that
of each corner region is assigned the threshold value of the 4 pizels
closest region center, or the region located in that corner. Z Z ), Tsi) % E(c(q), 1)
Pixels in the top and bottom border regions are assigned 1€, 1)
the threshold values vertically nearest to them; pixels in the Vrsii = F pizels (32)
left and right border regions are projected from the threshold Z &(clps), Tsr)
values horizontally nearest to them. =
m,n+1),m+L,n+1),(m+1,n),(m+1,n-1
O(ri, 1) =m;l(rs) € {Em, n — 1;, Em —1,n— 1;, Em —1, ng, Em -1, n+ 1; } (21)
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TABLE | the set®. Second, we use a range of distance valbies
EXAMPLE OF OUR SPATIAL MATRIX, GENERATED BY THE SPATIAL MODULE OF A = {0 -.-. 32with step4}. The use of different ranges is
THE FEATURE GENERATOR THE FIRST Row AND COLUMN CARRY THE ) ’ . .
LABELS OF THE THRESHOLDS AND THEIR VALUES. To INTERPRET FOR to obtain both local and global textural information. The use
EXAMPLE, THE PROBABILITY THAT T'sq IS A NEIGHBOR OF T'sz IS 0.7924 of the step function is to speed up the computation process.

Third, we define the size of each textural region to bex64

el ey ] D 64, with the dimension twice the maximum sizedfFinally,
T,=18 08617 0.1035 00044 .. 0.0000 we use straight, uniform quantization scheme to quantize the
T,=23 07924 0.1199 00343 ... 0.0000 image intoV, = 64 intensity levels.
T =34 05871 03315 0.0550 0.0001 In addition, we use eight second-order statistical, textural
Em— ' ' ' features in our study: energy, contrast, correlation, homo-
TN geneity, entropy, auto-correlation, dissimilarity, and maximum
Tswyn= 172 [0.0000  0.0002 00002 ... 0.9035 probability [38]. Thus, a region will have a textural vector
Jri= {fv}iv 1?1‘7 T i;f} (33)
where
) whereN; = 8. Eachf represents one of the textural features.
(a, b) = { 1, !f a=b We use a multidisplacement co-occurrence matrix, called the
0, ifa#b mean displacement and mean orientation (MDMO) matrix,

By observing the variety curve, we can tell how frequeﬁ’f’here feature measures are averaged over all orientation and

two threshold values are in spatial proximity with each otheflistance values. Formally

hinting that such two values should be merged as one. Table | w 1 w
shows an example of a spatial matrix. As we can see, the first i X Z Z Fri(8.9)
two threshold values are highly related to each other in terms
of spatial proximity. In addition, we can see thB§; occurs where y = |A||©] is the normalizing factor./e| is the

at more compact regions (its high autovariety pdiipt, 7.,), cardinality or the number of elements in the set. The MDMO
and that7’s; actually resides around the fringes B;. This implementation assumes that every matrix of a spedific
suggests a high confidence that the two thresholds shoulddpgl ¢ is partially and accumulatively representative for the
grouped together, witlls; as the core of the region arfk, sample. Thus, averaging the features over a range of such

(34)

SEA €O

the pixels of the transition between different regions. values, although inevitably smoothing some spatial features,
it does incorporate both local and global textural information
B. Textural Attributes Generation constructively. To generate textural attributes, the raw, original

Since gray-level co-occurrence matrices have been stronfjljA9€ i quantized and divided into 64 64 regions. For
theorized, widely used as a transformation of textural infoF2Ch region, co-occurrence matrices of a combinatiom of
mation from intensity values, and experimentally shown {3"d ¢ are computed, yielding a to“?\-, of = |A]|©]. From
be a superior method in texture discrimination [36], [37fhese matricesf.; = {fiiv_ 3;‘7_ -+, f,;} are generated. To
we use them here to characterize these textures and sétygPciate eaclhi; with a significant threshold’s;, we do the
as discriminants. The definition of gray-level co-occurrendgllowing. Using (18) and (19), all textural features from the
matrices is as follows [38]. Suppose an image to be analyZ&@ions with the same labé(t.;) are averaged. The set of

is rectangular and had’, pixels in the horizontal direction labels is a one-to-one mapping to the seflgf such that

and N, pixels in the vertical direction. Suppose that the ol 2 Ny

gray tgne appearing in each pixel is quantized\Mp levels. Fro. =Abrg, Froo oo Iy} (35)
Let L, = {1, 2, ---, N,.} be the horizontal spatial domain,where

L, ={1,2,---, N,} be the vertical spatial domain, and 1

G ={1,2,---, N,} be the set ofV, quantized intensity. The Py, = > (36)

setL, x L, is the set of pixels of the image ordered by their (Tl

row—column designations. The imagean be represented as
function that assigns some intensity@hto each pixel or pair
of coordinates inLy x Ly; I: Ly x L, — G. The texture- assigned to it. Table Il shows an example matrix rgsfallt%ng from
context information is specified by the matrix of relative : :
. ; . . i our textural attributes generation.
frequenciesP;; with two neighboring pixels separated by
distanceé occur on the image, one with intensityand the
other with intensity;. Such matrices of intensity co-occurrence
frequencies are a function of the angular relationship andTo classify the set of significant thresholds into groups, we
distance between the neighboring pixels. To implement thise an incremental concept formation strategy [39]. According
matrices, we have defined several parameters. First, we ude 9], much of human learning can be viewed as a succession
quantized angular interval of 45corresponding to a pixel's of events from which we induce a hierarchy of concepts that
right neighbor (0), upper right neighbor (49, top neighbor summarize and organize our experience. In supervised exem-
(90°), and upper left neighbor (18p each a member of plar learning, the sets of examples and counter-examples (or

iCy(Ts)

aSimilarly to the process of spatial attributes generation, a
simulated significant threshold is created aﬁﬁs( is

V. CONCEPTUAL CLUSTERING
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TABLE I P(ND=3/3[P(VIC)
EXAMPLE OF OUR TEXTURAL MATRIX. EACH SIGNIFICANT color blue| 033
THRESHOLD HAS A VECTOR OF EIGHT FEATURE MEASURES red 0'67
1 2 - .
Fr . Is ENERGY, Fi_ |s CONTRAST, ETC. size glgan 12.33
B, lm e (e Jm [m |6 e Dl 0
T, 0.02311 | 412.058 |-1.60890|0.17759 | 1.82018 |894.052 | 15.4747 [0.06670
T P(N2)=1/31P(VIC) P(N3)=2/3|P(VIC)
o 0.02789 [327.036 |-2.18634[0.19152 | 1.76583 | 763.403 | 13.5586 | 0.08134 color blue| 1.00 color blue| 0.00
T, 0.03274 [349.111 |-2.54839]0.20636 | 1.71759 | 988.996 | 13.9753 |0.09618 . red | 0.00 . red | 1.00
size mean| 6.00 size mean| 15.50
std.devi 0.10 std.dev| 0.50
Tsnen 013931 |211.771 | 10.0216]0.39053 | 1.19845 | 2495.15 | 9.65390 | 0.32651

P(N4)=1/3|P(VIC)| |P(N5)=1/3|P(VIC)
color blue| .00 color blue| 0.00

positive and negative samples) are used to characterize what red | 100 red | 1.00
i i i size mean | 15.00 size mean | 16.00
a class is and what a class is not, respectively. In conceptual | 1590 s on [ 1600

clustering, the learning process is unsupervised. The identity
of each instance is not knovanpriori to the program. Thus, in Fig. 3. Concept hierarchy generated by COBWEB/3. The attribater is
order to cluster the instances into different groups or concemgminfil, and the attributsizeis assumed to be normaV; is the root node.
conceptual clustering derives concepts from the behaviotg *V¢: @1d Vs are terminal nodes or instances.
of the events, or characteristics of the objects. With this
knowledge, the process clusters these instances by optimizing . . _
a measure of goodness criterion on the clusters of concepts. itself and its attnb_ute values. .F_or example, the r_oot
In the incremental concept formation strategy, this learnifpde (Vi) has an associated probability of one. lts nominal
practice is incremental—every instance encountered triggéiéfibutecolor has a probability 0.33 of beinglue and 0.67
an evaluation of the current hierarchy of concepts. SpecificalBf, being red. Its normal attributesize has a mean of 12.33
this task is defined as follows. Given a sequential presentatigith a standard deviation of 4.50. Nodéé,, N, and N;
of instances and their associated attributes, find the followirgye terminal nodes, representing one single instance each.
1) clusterings that group those instances in concepts; ConceptN3; consists of two instances, with the summary:
2) summary of each concept; 1) its children have a&olor of value red with a certainty of
3) hierarchical organization for these concepts. one and 2) its children have sizedistribution with mean of
Note that incremental conceptual clustering has been usefi50 and standard deviation of 0.50. Note that the standard
as a descriptive and predictive tool (e.g.,, COBWEB [4Qjeviation value for single instances is initialized to the value of
and LABRYINTH [41]). In this paper, we use conceptual,.;t; = 0.1, which is a user-adjustable parameter to avoid
clustering as a classification tool. Each image is processed %%putation error.
described (with the spatial and textural attributes), presented]-he main algorithm and operational algorithms of COB-

o the clustering program, and a concept hierarchy is bUi\IIVEBB are as shown in Figs. 4 and 5, respectively. Given

The hierarchy is refined, and it becomes the end result of our . X d th t hi hv. it first checks wheth
segmentation task. an instance and the current hierarchy, it first checks whether

The ability of conceptual clustering to perform unsupervise_tae hlerarch.y consists Of_ only the.root node. If so, the new
classification is particularly attractive. SAR images of naturd#Stance is incorporated into the hierarchy as a new terminal
scenes come in a great variety of compositions. With thigode. Otherwise, the algorithm exhausts all alternatives of
self-organizing ability of conceptual clustering, we are abl@corporating the new instance into the hierarchy by placing

to highly automate the image segmentation process. the new instance as a stand-alone node and by merging
the instance with every child of hierarchy, and assigning an
A. COBWEB/3 evaluation score to each situation. In addition, the algorithm

In our work, we use COBWEB/3 [42] that uses a probabilignerges the two highest-scoring nodes and scores the merger;
tic concept formation algorithm: an instance beloriggzily splits the highest-scoring nodes into two and scores the split.
to a concept with a degree of certainty. Unlike deterministhe configuration yielding the best score will be picked, and
tic approaches, such as decision trees, this fuzziness allqws concept hierarchy will be updated accordingly.
smoother separations among clusters and easier associatiogsog\WEB/3 uses an evaluation function called category

among concepts within each cluster. There are two Importafifiv o score its configuration of concept hierarchy, favoring

conditional probabilities involved. First, the predictiveness of_ ... - : : o .
. " - partitions that maximize the potential for inferring information
a valuew for categoryc is the conditional probability that an

instancei will be a member ofc, given thati has valuev, arld attempts to maximi;e intraclags §imilarity and interclass
or P(cla = v). Second, the predictability of a value for dlffer_erjces. It also prov_ldes_g principled tradeoff_ between
categoryc is the conditional probability that an instanceill ~ Predictiveness and predictability. For any set of instances,
have valuev, given that: is a member of:, or P(a = v|c). any attribute-value paitd; = V;; and any classCy, we
Fig. 3 shows one example of a COBWEB/3 concept hierarchgan compute the predictability’(4; = V;;|Cy) and the
Each concept (or node) includes the probabilities associa@dictivenessP(Cyx|A; = V;;). These two probabilities can
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Input: The current node N of the concept hierarchy.

An unclassified (attribute-value) instance 1.
Results: A concept hierarchy that classifies the instance.
Top-Level Call: Cobweb(Top-node, ).
Variables: C, P, Q, and R arc nodes in the hierarchy.

U, V, W, and X are clustering scores
Cobweb(N,I)

If N is a terminal node Then

Create-new-terminals(N, 7).
Incorporate(N,1).

Else

Incorporate(N,]).
For each child C of node N
Compute the score for placing I in C.
Let P be the node with the highest score W.
Let R be the node with the second highest score.
Let X be the score for placing [ in a new node Q.
Let Y be the score for merging P and R into one node.
Let Z be the score for splitting P into its children.
If W is the best score Then
Cobweb(P,l) ; place I in category P.
Else If X is the best score Then
Initialize Q's probabilities using I's values; place / by itself.
Else If Y is the best score Then
Let O be Mcrge(P,R,N).
Cobweb(0,1).
Else If Z is the best score Then
Split(P,N).
Cobweb(N,I).

Fig. 4. Main COBWEB algorithm.

Variables: N, O, P, and R are nodes in the hierarchy.
1 is an unclassified instance.
A is a normal attribute.
Vis a value of an attribute.
Incorporate(N,1)

Update the probability of category N.
For cach attribute A in instance /
For each value Vor A
Update the probability of V given category N.

Create-new-terminals(V,[)

Create a new child M of node N.

Initialize M's probabilities to thosc for N.
Create a new child O of node N.

Initialize O's probabilities using I's valucs.

Merge(P,R,N)

Make O a new child of N.

Set O's probabilities to be P and R's average.
Remove P and R as children of node N.

Add P and R as children of node O.

Return O.

Split(P,N)

Remove the child P of node N.,
Promote the children of P to be children of N.

Fig. 5. Algorithms of auxiliary COBWEB operations.
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This measure represents a tradeoff between predictability and
predictiveness over the ranges of all clasggs dttributes 4),

and values f), where P(A; = V;;) serves as a probability-
based weighting function. Using Bayes’ rule, (37) can be
expressed as

ST P(CR) DY PA = V|G
k i g

In [40], the authors showed that the subexpression
> 2 P(Ai = Vi|Gy)* is the expected number of
attribute values of possible correct guesses given the
knowledge of clas<’. This number assumes a probability
matching strategy, in which we guess an attribute value with
a probability equal to its probability of occurring, as found in
psychological experiments. Derived from (38), [43] defined
category utility as the increase in the expected number of
attribute values that can be correctly guessed, given a set of
n categories, over the expected number of correct guesses
without such knowledge, which i3, Ej P(4; = V)2,
Subtracting this expression from (38) yields the complete
formula for category utility in (39), shown at the bottom of
the page, wherd{ is the number of categories. When the
terms need to be generalized for real-valued attributes, the
revised evaluation function becomes

(38)

K I I
Fnormal = b : K J (40)

where I is the number of attributesy;; is the standard
deviation for a given attribute in a given class, ang is the
standard deviation for a given attribute in the parent node.
COBWEB/3 uses both nominal and continuous evaluation
functions. Applying COBWEB/3 to our imagery, each instance
¢ has the intensity attributeZ%;) and the Ns + 1 spatial
attributes {'r,,). Note that the textural attributes are not used
until the conflict resolution step.

B. Modifications

We have imposed a constraint on two operations in COB-
WEB/3: placement of an instance into an existing cluster
[algorithm Cobwehp, I)] and the merging process [algorithm
Merge P, R, N)]. This constraint is necessary such that only
thresholds in successive order are allowed to be grouped
together to avoid merging a high-intensity threshold value
with a low-intensity threshold value. When the set of signif-
icant threshold€s is generated, its members are completely

then be combined into an overall measure of clustering qualiydered. Thus, a new instanéewith Ts; is allowed to be

D303 P(A = Vi)P(CrlAs = Vij)P(A; = Vi |Ch).
ki
@37)

placed into an existing cluster only if that cluster has already
incorporated an instance with a valug;_1) or Ts(t1);
similarly for merging two existing clusters. To accomplish
this task, we labeled each instance with an integer. We then

K

STPC)YT ST PA = VG2 = >0 ST P(A; = V)2

k=1 i

iy

r nominal =

e (39)
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Result 1 [10][11][12] ' [13][14][15]

@ Result 2 [10] 11 d2 R2I13||14{ 15 16|17

® OO [
Fig. 7. Conflict that occurs between two clustering results. Result 1 is the

flattened hierarchy of directly ordered instances; Result 2 is the reversely
ordered. The instancé; is the cause of the conflict. To determine which
clusterI> belongs to, we compute the intercluster differencés &nd ds).

Fig. 6. Process of flattening a hierarchy tree: circles are cluster nodes; bok8€ Partition yielding a higher difference is favored.
are instances.

; sLov i "'x e
modified the program by inserting a condition in the category ; ;«' y 'J‘ﬁ‘-” ! N : j_ .;4 A

utility evaluation process: if the labels are not numerically* ‘ A
FL) ,a’l .

successive, then assign the lowest score to the merger. E 4 ’ PN
-~ Al Y . y
C. Direct and Reverse Orders 1 B 7 PO . :,-_ ¥ 8
COBWEB/3 examines its instances sequentially and learn . 7 - : 3

the concepts incrementally. Thus, the order of the inpum - » 3 P

instances is important in affecting the final structure of the con e iy o ; 5154

cept hierarchy tree. Although COBWEB/3 provides merging o -__.M'{ ¥ N ey e

and splitting operations to repartition previous hierarchy upor= = = Y o gt LT N

receiving new instances, it cannot fully eliminate the effects o” . . & Lo o

early commitment of an instance to a cluster, especially if the 4 - { - SO . T

number of instances is small. To provide a more consister , i P &z

clustering result, we arrange the data in two orders: direc : g ; P S W

and reverse. The results are then merged using a confli L g f #‘

elimination mechanism. ' g Y 6y . e
VI. CONFLICT ELIMINATION ' Al o P e “.:;7 N

This module is necessary to combine the clustering result : ‘ g, 7ol \ bt A j"ﬁ, !
and resolve any discrepancy. Due to the sequential treatment . ' <7 CCF . ~
instances, COBWEB/3 does not produce the same conceptriy: 8. original ERS-1 SAR sea ice image (March 27, 1992, 73.46 N, 156.19
erarchy, given the same set but differently ordered of instancgs.0 ESA.

Our conflict eliminator first takes the two hierarchies and

flattensthem. By flattening, the higher levels of the hierarchy, |usters to find any conflict in their grouping of members.
are discarded and only clusters are preserved. It can be viewed 7 <hows an example of a conflict. The instargds as-

as a projection strategy that eliminates thierarchy axis. gqciated with two different clusters generated by COBWEB/3
Fig. 6 shows the process of flattening a hierarchy tree. given the directly and reversely ordered data sets.
Here, the nodeV, is at level 0,V, and Vs at level 1, ™ 14 regqlve this inconsistency, the eliminator computes the

and N, at level 2. First, the nodéV; is promoted to a higher 5\ erage textural vector for all clusters involved in the conflict:
level and separated from being a child nodeNaf Next, the for this example,Jo-I;-I> and Is-I,-I5 for Result 1, andly-

terminal nodel; is demoted such that it becomes a COUSIP and [,-I,-I,-I; for Result 2. The eliminator computes a

to all other terminal nodes. As a result, the hierarchy of foyfeignted average of all instances within a cluster based on the
levels is flattened to two. To implement this flattening schemg, mber of occurrences of the instances in the image. Suppose

we use a prefix tree traversal algorithm: the parent is ViSit%ﬁJstersCl and C, have average textural vectors of, and
and the subtrees are visited in order of their parents, i.e., fr ;
P 9522, respectively, where

left to right. Denote a node a&; and its set of children as
x(N;). The flattening scheme starts by initializing a basket
B; = ® andj = 0. For every nodeV, encountered:
1) if x(IV;) # @ and B; # @, incrementj by one and
continue,;
2) if k(N;) = 0, updateB; = B; U N;;
3) after all nodes have been visited, collect all baskets, and

ﬁk:{FICkvﬁékv 7F%k} (41)

is a vector of eight textural features, such that, with reference
to the support definition of (19)

they are now flattened clusters. S W Tsm)l B
Note that the hierarchies are flattened such that they are Fy, = meClusterk . (42)
comparable as necessary during the conflict resolution phase. > (Tsm)l

Once the two hierarchies are flattened, the eliminator inspects meCluster k
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Fig. 9. Final segmentation of the image in Fig. 8. There are four classes: black, red, blue, and white.

The intercluster difference is our design are tabulated in (44), shown at the bottom of the
N, E— 5 next page.
FC B FC
D(C, Co) = |> | —%—=—] . 43
i \max(Fe,, Fe,) VIl. RESULTS
Thus, a hierarchy that has a larger valuel®fC,, C>) will We have successfully applied the technique to several types

be preferred to maximize the difference between clustedd. satellite imagery—ERS-1 SAR, Landsat thematic mapper
Other conflict situations may involve more clusters in whicfirM), and NOAA advanced very high resolution radiometer

more computation is required, but the basic mechanism (B&VHRR). For all examples, we used the same parameter
the same. Therefore, our technique is able to resolve thettings for the algorithm in (44), shown at the bottom of

conflicts and generate a consistent final clustering. Note thié page.

textural features are not used together with the spatial matrixFig. 8 shows an original SAR sea ice image that consists
in the first tier conceptual clustering because they woutif packed ice with very dark, cutting linear structures (leads)
be overdiscriminatory and COBWEB/3 usually would fail tand grayish regions (new ice or open water). Moreover, there
establish multi-instance clusters. Various thresholds usedaire brighter, silky structures (possibly deformed first year ice)

Parameter Meaning Value
Vi Variance threshold for the first filtering of regions (see Sect. 11I-A) 25%
B Bimodality threshold for filtering nonbimodal regions (see Sect. 111-C)0.8 (44)
o Attenuator for selection of the significant threshold [see (16)] 0.75
Qr Confidence threshold for regional interpolation (see Sect. IlI-E) 1.25

Accuity value for COBWEB/3 algorithm 0.1
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Fig. 10. (a) Portion of an original ERS-1 SAR sea ice image, taken October
11, 1995. 0 ESA 1995). Classified by sea ice geophysicist to have three
classes. (b) The segmentation result, with three classes: black, gray, and white.

straining within the grayish regions. So, there are essentially
four classes in the image. After the preclustering module,

we obtained 19 significant thresholds. The final, resolvéd itk (@ Fotion of an origng ERS-1 AR sea ce iage, aken October
clustering, as shown in Fig. 9, consists of four class@s: (b) The segmentation result, with two classes: black and gray.

I1-1r-13-1, (black), I5-1g-17-1g-19 (red), Tio-I11-112 (b'UE),

and Iy3-I14-I15-Ti-I17-11s (White), which corresponds to thejce and about 10% of new ice, essentially having only two
human interpretation of the image. Note that the SAR image classes. Fig. 11(b) shows our segmentation result that has
is taken by ERS-1 satellite, ofi-band, with a resolution of correctly identified only two classes. The gray class covers
100 m/pixel. 93.89% of the image, the black 6.11%.

Before we explore the application of our technique to other Based on discussions with the National Ice Center, the
remotely sensed imagery, we present a quantitative discussi@@uracy of manual sea ice classification is approximately
of our technique in sea ice analysis by comparing the result%, In the examples of Figs. 10 and 11, our classification
to human classification provided by sea ice experts of the well within this margin. This evaluation provides only
National Ice Center, Washington, DC. Fig. 10(a) shows @ coverage metric for the segmentation accuracy; spatial
region of an original SAR sea ice image that has been classifigturacy cannot be determined as easily since the classified
by a sea ice expert to have more than 90% of ice coveragea ice images are expressed only in terms of ice class
which includes about 80% of old ice, about 10% of youngoncentration for an area. A visual evaluation of the spatial
ice, and less than 10% of new ice. Fig. 10(b) shows outcuracy of the segmentation indicated that the algorithm had
segmentation result that has found three classes. The whiterectly identified spatial features, but a quantitative accuracy
class covers 81.45% of the image, the gray 13.33%, and theasurement was not possible.
black 5.23%. Fig. 11(a) shows a strip of a SAR sea ice imageThe top of Fig. 12 shows Clinton Lake, a location of the
that has been classified to have more than about 90% of aloithwest Douglas County in Kansas. It is the TM Band 4,

@ (b)
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Fig. 12. (Top) Original Landsat TM image. (Bottom) The result of our
segmentation: seven classes.

. . . . Fig. 13. (a) Original AVHRR image. (b) The result of our segmentation: six
0.7-0.90um (near-infrared) image, with a resolution of 30 Mglasses.

There are woodlands, grasslands, and other vegetation/crop
land cover types. The bottom of Fig. 12 shows the segmentar,

tion results. The black class is water, identifying the body of 6) red—possibly broad-leaved deciduous forest
water of Clinton Lake. The white class consists of woodla . ' .
. 14(a) shows the Gobi desert to the west and mountain

areas. The blue class pixels are grasslands. The green, , .
P 9 g % ges to the east. Note also the crescent-shaped region to the

) yellow—scrub (mountains);

orange, and yellow classes are different types of crop lal : -
covers or artificial grass fields, as can be inferred from th yver-mlddle area of the image _cau_sed by the nearby Yellqw
iver. Indeed, under close examination, we can see the curving

geometric shapes. . : . . .
Fig. 13(a) shows the Yellow River plain, Shandong Penil%{ellow River portion. The image is processed as the ratio of

sula, and the delta of Yangtze River at the south in Chintgl".’lnd 2 (0.725—.1.1q_km) over band 1 (0.58-0.68m) values .

It is the infrared band (0.725-1.16m) of AVHRR, with a as the vegetation index. Fig. 14(b) sh(?ws the segmentation

resolution of 1500 m/pixel. The image was a composite B?Suns' The class labels are as follows:

a ten-day series, taken during September 1-10, 1992. In thd) black—water;

image, the dark regions are bodies of water (sea, rivers, and) Yellow—desert;

lakes). To the west of the region lies the mountain range of3) dark green—steppe grassland;

Taihang. To the south of the region lies the mountain range#) light blue and orange—a mixture of meadow steppe and

of Dabie. Fig. 13(b) shows the segmentation results. The class Mountain scrub.

labels are as follows:
1) black—water;
2) bright green—saline meadow; We have developed and implemented an image segmen-
3) orange—temperate coniferous forest and grassland; tation methodology that utilizes data mining techniques. We
4) dark green—warm temperate crops (rice) and decidudw@ve used data preprocessing and transformation strategies

coniferous forest; to extract effective abstractions of the data. These strategies

VIIl. CONCLUSION
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Fig. 14. (a) Original AVHRR image. (b) The result of our segmentation: five classes.

reduce the amount of data that we have to mine and implicittpectrum similarly to extract abstractions, link all abstractions
reduce the noise effects since we are now looking at a higlier all regions of the same location across spectrum, and
level representation. To automatically determine the numbapply conceptual clustering to the linked abstractions. The
of classes in the image, we have used conceptual clusterindjfst approach allows the incorporation of domain knowledge
machine learning technique that has been used in the coniéxthe data fusion stage, thus lessening the burden of our
of unsupervised discovery. The user specifies a numbert@ghnique. The second approach, on the other hand, puts the
parameters for the specific domain of application and targédta fusion task on conceptual clustering, and thus, useful
sensor data (e.g., the biomodality threshold, the value @pmain knowledge about each spectrum might be excluded.
acuity, etc.), such that the algorithm operates properly. After
this initial parameter design phase, the algorithm can run
unsupervised. The adaptability of the algorithm to various
types of sensors and natural scenes is one of its advantageshe authors would like to thank C. Bertoia of the National
a small set of user-defined parameters allows the same bdeg Center, Washington, DC, for her expert classification of
technique to be segment to a large set of natural scenes. SAR sea ice imagery; K. Price, J. Whistler, and R. Lee

We have tested the technique on satellite imagery of natufdl the Kansas Applied Remote Sensing Program (KARS)
scenes. The results show that the technique is capablef@fProviding the Landsat TM and NOAA-AVHRR imagery;
grouping similar classes together, using spatial descriptorsaé';d the anonymous reviewers whose input improved the
the conceptual clustering attributes and second-order statistigsentation of our work.
textures as the discriminator to resolve conflicts in the first tier
clustering results. REFERENCES
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