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Information Fusion for Estimation of Summer
MIZ Ice Concentration from SAR Imagery

Donna HaverkampMember, IEEE,and Costas TsatsouliSenior Member, IEEE

Abstract—In this paper we define the concept ofinformation  backscatter alone. Once the melt season begins, the signatures
fusion and show how we used it to estimate summer sea iceof the different ice types quickly begin to move closer to-
concentration in the marginal ice zone (MIZ) from single-channel gether. After converging, they remain indistinguishable until

SAR satellite imagery. We used data about melt stage, wind speed, id Melt and drai | ltiole backscatt
and surface temperature to generate temporally-accumulated miasummer. Vielt and drain cycles cause muiltiple backscatter

information, and fused this information with the SAR image, reversals in the response of first-year and multiyear ice until
resulting in an interpretation of summer MIZ imagery. We also the end of the summer, when the backscatter once again
used the results of previous classifications of the same area togighilize [3]-[6]. Consequently, neither the dynamic ranges
_gwde ar_ld correct future interpretations, thus fusing historical produced in imaging these scenes nor the dynamic ranges
information with imagery and nonimagery data. We chose to . .
study the summer MIZ since summer melt conditions cause Of the resident classes of these scenes are consistent. The
classification based upon backscatter intensity to fail, as the Segmentation and classification of scenes imaged during this
backscatter of open water, thin ice, first-year ice, and multiyear timespan is extremely difficult. Any strict classification based
ice overlap to a large degree. This makes it necessary to fuseypon hardcoded expected intensities will fail. Even if a proper

various information and data to achieve proper segmentation and : : : : :
automated classification of the image. Our results were evaluated segmentation of the image is achieved, class labeling becomes

qualitatively and showed that our approach produces very good @ Problem because the labels cannot be assigned based upon

ice concentration estimates in the summer MIZ. the image intensity alone. The highest-intensity portion of
the image is not always the same class; no intensity-grouped
I. INTRODUCTION portion of the image is consistently representative of the

HE inal i MIZ) is the d ic ed ¢ hsame class over the course of a summer season. An excellent
. markgm:; ice zone ( b) Is the ynarrfnc et ge o ftl ﬁﬁtensity—based segmentation of the image is definitely a good
ICE pack, where one may Observe a mix of watef, ice °‘§§arting point for image classification, but intensity alone

(bOth first-year ice and multiyear ice, WQ'Ch s ice that h gnnot serve as the basis of a fully automated classification.
survived at least one meIt_ season), and bac_kground matrix However, ancillary data and information sources can pro-
or bsubstlrattle, Wh'ChT%(.)n.S'StS qf p;pker:-up .p|ecefstr?f floes Qrde a context for the interpretation of a given scene and
sub-resolution size. 11iS 1S a signiticant region ot the oceang,, 5 1omated classification. Consequently, we turn to data

Open water in the ar_ctic regions generates heat flux as mgcr}&%n approaches. Data fusion can occur at three different
.tWO orders of m"?‘g”'t“de great_er than that through mUItIyef’J‘erveIs [7]: data levelfusion is performed at the single-element
ice [1], [2], making the detection of open water extremel}/eveI (e.g., pixel}—two or more corresponding images may

important in terms of global climate. i:)e added, subtracted, or somehow combined using more

The classification of SAR imagery of the summer Ml : .
. : : complex numeric methodgeature levelfusion is performed
cannot be performed using backscatter information alone,. : . .
. . using symbolic representations of the different data sources
since, depending upon a number of factors, the scene moé}yima es, typically using artificial intelligence techniques;
exhibit different backscatter tendencies in the resident class]gler? ges, typically 9 9 ques,

L L ally, decision levelfusion combines different theories or
resulting in differing image characteristics. The backscatter. .
: i o vidence generated from the different data sources to generate
contrast between first-year and multiyear ice is mostly stable .
) ) some conclusion about the scene.
only from October through May; the summer season is char- . . .
A number of data fusion techniques have been utilized

acterized by nearly indistinguishable backscatter for all i(}e

types. Surface melt affects the backscatter of the ice adverse?rh'mar%eV?rI]aSS'fl(r:]at'ton' r']l'hesrer havei](?enen mfo;i;Ify rc?l?ce:]nec:
and different ice thickness cannot be distinguished based uﬁ{ﬁ achieving a one-to-one correspondence o erent senso
channels or even different sensor types and using patterns
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backscatter behavior of summer MIZ sea ice, images of theor floe statistics of the same area and historical ice and water
same area are inconsistent with respect to intensity not onlydoncentrations to detect discrepancies or possible classification
the long term (the relative backscatter of the different classesors. If the classification is accepted as correct, a database
varies over the course of the summer season) but also in theipdated with the current classification results (both ice and
short term (the dynamic ranges of the classes in these scemater concentrations and floe size distributions). If not, the
can vary from image to image). user is notified and requested to provide a correct classification
In our work, we used a new kind of data of data fusiomf the area. Either way, final ice and water concentrations
information level fusion. Different pieces of information thatind floe size distributions are obtained and saved to assist in
are pertinent to the classification of the data are applied satccessive classifications of the same area.
appropriate times of the classification process. The image dat&esults show that an information fusion approach to image
are fused with different, heterogeneous data sources during ¢hessification can assist greatly in the automation of the
various classification stages; the result of a stage establishisssification. Using other information pertinent to the scene,
which classification step will be applied next and which data addition to the image intensity itself, conclusions (or ex-
source will be fused with the data. Temperature is a dgectations) can be made about dominant image characteristics,
source that we use to generate a piece of information—namefshich can in turn be exploited in order to segment and classify
the melt stage occurring in the imaged scene. Wind isaa image correctly, without the need for human intervention.
data source that is combined with the melt stage in ord&n implementation of this approach applied to SAR imagery
to determine the relative backscatter of the different classg®duced automated interpretation and generation of sea ice
within the image. This information is used to guide theoncentration statistics for summer MIZ data.
segmentation and classification of the corresponding image.
From the classified image, we generate data concerning floe
sizes and ice and water percentages. We compare these to
prior floe size distribution data and historical information
concerning expected ice percentages for the correspondfhgData Fusion for Image Classification
week and location of the image under inspection. If the Data fusion combines different sources of raw data into a
current classification is correct, we can record the current flsihgle set of information that is of greater benefit than the
size distribution and ice coverage data for use in the nestim of its component parts [7]. Most data fusion techniques
classification of the same area. for image processing have been applied on multispectral data
The approach to data fusion used here differs from trads combine multiple bands of concurrent imagery in order
tional approaches in that instead of performing a “flat” dat@ classify a scene. A good number of these techniques are
fusion in which Data A is used to generate Evidence A artshsed upon neural network approaches. For example, one
Data B is used to generate Evidence B and then Evidencem®thod used a back-propagation neural network to classify
and B are combined to make conclusions, it utilizes a hybrichndsat imagery using bands 2, 4, and 7, and concatenating
of decision-, feature-, and data-level fusion techniques. Thiee data from all three bands at each pixel location [8].
fusion is performed such that any piece of information it another system a back-propagation network was used to
integrated into the classification at the appropriate time. Thtassify Landsat Thematic Mapper pixels, then a maximum-
idea is that for data fusion to be effective, the arrangementliKelihood method was used to determine which classification
the solution must fit the characteristics of the available datamong those generated by three different bands was correct
In the case of a difficult problem such as the classificatigg]. See also [10] for an overview of many multisource data
of unstructured data like remotely sensed sea ice imagesyalysis technigues.
alternative sources of data or information must be studiedOther ways of fusing multispectral take advantage of cor-
to see how and in what format they can best be used rilation between spectral bands. One approach worked with
constrain the classification possibilities, and at what stage mdlarimetric SAR data, which consists of P, L, and C bands
the classification their utilization is appropriate. in both copolarized and cross-polarized forms, and performed
Through detailed investigations of SAR imagery and litel multidimensional fuzzy clustering of the logarithm of the
ature and through discussion with experts in the field of SAparameters composing the polarimetric covariance matrix of
sea ice interpretation, data and information sources pertingmé multispectral data to segment the data into classes [11].
to the automated classification of summer MIZ imagery were One unique approach was used on Thematic Mapper im-
identified. These sources are wind speed, temperature, pagery and attempted to utilize combinations of bands that
ice floe statistics, and historically accumulated ice and waterovide the best separability among classes. At each iteration,
concentrations. Our method fuses these different informatiarband selection process was performed and one or two cover
sources to achieve automated image classification. Surfagees were classified using that band or bands. Ancillary in-
temperatures are analyzed over time to deduce melt stdgenation, such as elevation, was also used for band selection
which, in combination with wind speed, can guide the se@nd classification [12]. Another technique took into account
mentation and classification of an image into three class&sowledge about sensors, the multiple viewing notion, and
ice floes, background matrix (essentially ice), and watdhe uncertainty and imprecision of models and data modeled
The intermediate results are floe statistics and ice and waidth the possibility theory. A blackboard structure was used to
concentrations. These intermediate results are comparedaliow “scene specialist” programs to control the processing of

Il. BACKGROUND AND RELATED WORK
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the image, and “conflict specialist” programs to resolve classi=

; ; P P ; : 2 -141 Indexing Latitude/Longitude
f|cat|_on conflicts using spatial context.ual k.nowledge of objects 55 | 924 10226 10228 Temperature Record
that involved multispectral data and intelligent analysis [13]. ApvANCED Melt Stage
A data fusion technique for the classification of sea ice.0229 Wind Speed and Recording Date
images used SAR data to generate estimates of the multiyea? Date of Last Classification
PERC OW 7.75 ICE 92.25 Last Classification Percentages

ice concentration, and applied this concentration as a segthy 5.0 5.00 8.00 9.00 10.00 15.00
value to the NASA TEAM algorithm that classifies sea ice—
using SSM/I images. The SAR data provided good multiyeary. 1. Ice database excerpt.

ice estimates while the SSM/l data was used to compute ) ) )
first-year ice and open water estimates [14]. We selected the information and data sources following

discussion with geophysicists at the National Ice Center, the
Jet Propulsion Laboratory, and NASA Goddard Space Flight
) ) Center, and also based upon results described in the literature
The summer ice season consists of several stages {4}, 6], [13], [16]-[18]. The information needed is: state of
beginning with theearly meltstage in which the snow packpelt wind speed, acceptable ice concentration ranges, accept-
begins to undergo transformation due to melt/freeze cycling|e fioe distribution ranges, and recent floe distributions. This
It ends when moisture is continuously present in the SNQWormation can be extracted from the following data sources:
cover. This also marks the beginning of thelt onsestage, emperature records, wind speed records, daily ice charts, and
which is characterized by dampness at the snow-ice interfac@aianase of previous classifications. In the following, we

and an average surface temperature near the melting pojficyss the information extraction and fusion steps.
This stage ends when most of the snow cover has become

completely saturated, signaling the beginning of dkdganced A. Information Extraction

melt stage. From this point, the snow melts rapidly, ponding ) )
occurs, and drainage networks are created. The ice continugkémperature records and wind speed data provide much

Corresponding Floe Distributions

B. Summer and MIZ Ice Backscatter Characteristics

to decay until the freeze-up season begins. of the information that allows the automatic interpretation of
A number of notable conclusions are made in [15] concerf¥mmer MIZ SAR imagery. For our implementation, we used
ing the backscatter changes in the summer ice cover: 2 m surface winds and 2 m air temperature data. Measurements

1) when the snow begins to melt in early summer, e taken every 12 h for both wind and temperature, at

contrast between multiyear and first-year signatures Va@pprommately 100-km resolution. Surface winds are model-

ishes: generated through surface pressure, which is sampled by buoys

2) when no snow remains in the first-year ice, the wint%zytphe irrCttliC BBuoy E):og:am '(gerrr:pcnetr;amtjrr]es are ralso S:‘S:pbd
contrast between first-year and multiyear ice is reverse € Arctic buoy Frogram. Lurrently the accuracy ol these

which causes the first-year ice returns to exceed tp{glues in unclear, especially due to the interpolation performed

multiyear ice returns by a few decibels—the shift cahO BeStrIT:T:)E:]t'?o:hnemar?(\:i/ea_rn;rlle Yr\:h(;lr?e?;rzr?cérat e in a diven area
occur in less than a week; y ttoring yzing P ure inagiv

3) the melting of superimposed ice can cause the revers[c;evc‘xE ' t|m§, we can est|mat§ the stage_of melt m_that area. Com-
contrast to disappear in less than a week; |neq with wind speed, this mformauon supplies us with thg
4) as melt ponds increase in number, the multiyear i‘Eglatlve expected backscatter of ice roe;, background matrix,
return is again higher than the first-year ice return; and water. Because temperature and wind data are used for
5) because of the rapid fluctuations in the backscattjtl}eIt stage mterpn_’-ztatlon, a database _cont_ammg updatc_ed wind
of first-year and multiyear ice, it is very difficult to and temperature information was maintained for cor?tllnuous
classify C- and X-band radar images using intensity'S€ Ve the course of the summer season. In addlt_|on, we
based algorithms. developed a process by WhI.Ch the melt stage and .Wlnd can
be used to predict the relative backscatter of the ice floes,
background matrix, and water.
Ill. M ETHODOLOGY 1) Ice Database:For any given latitude and longitude, we
Information fusion combines imagery of a scene with inforanalyzed temperature records from the area to estimate the
mation about the image, the sensor, and the environmentctorent melt state, and we utilized records of the most recently
allow segmentation and classification. It requires a collectioneasured floe distributions in order to guide the classification
of heterogeneous data sources from which information can dfethe area. To store these types of information, a database
generated using a variety of algorithms. Each piece of availabl@as maintained in which blocks of data were indexed to
information is incorporated into the image analysis system, #i® nearest whole latitude and longitude point. Each block
it becomes applicable. Some pieces are incorporated befbegjins with a temperature record for the area and stores other
the actual processing of an image even begins. Other pieg#gsrmation such as the state of melt (FREEZE, EARLY,
are generated at the beginning of processing in order to gudBISET, ADVANCED), the last recorded wind speed and
the entire classification and are incorporated at every steptioé day on which that wind speed was recorded, the date of
the automatic classification procedure. Yet other pieces dhe last classification of the area, and the results of that last
incorporated after the classification has been completed, classification: the ice and water percentages and the floe size
order to evaluate the accuracy of the classification. distributions. An excerpt is shown in Fig. 1.
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(@) (b)
Fig. 2. (a) Original ERS-1 image segmeit ESA 1991); (b) result of the three-level local dynamic thresholding.

(@) (b)

Fig. 3. Example of neighbor segmentation algorithm. (a) Original ERS-1 image segm&8A 1991); (b) neighbor-segmented output. Although the water
is both dark and bright, the neighbor segmentation manages to segment much of the bright water into the same class as the dark water.

The transitions between the different stages of melt aegtensive amount of variation. We reject this evidence of early
characterized through analyses of local temperature recondlt in the event that there is a decreasing trend present in the
Given a temperature record of readings taken on a seriesterhperatures.
days prior to and including (or at least recent with respect Transition to Melt Onset:After early melt, the next possi-
to) the date of the scene being classified, we plot the tble stage of melt is melt onset. This rule states that if the
last readings, perform a least-squares fit on the temperatuesrage of the temperature record is very near %G, Gand
and analyze the trend as rising, falling, fluctuating, or steadyere is either an increasing trend in the temperatures or a very
We also compute the mean temperature and variance of #imeall variance in the temperatures and no decreasing trend,
temperature data set. then the area has reached the melt onset stage. The transition is

Transition to Early Melt: After the winter freeze, the next characterized by surface temperatures very near to the melting
stage must be early melt. If the average of the temperature@dsnt and either an increasing trend in the record or a very low
very near to 0C, the temperatures do not exhibit a decreasingriance in the temperatures, indicating temperatures hovering
pattern, and the variance in the temperatures is quite smakar the melting point.
then the area has entered the first stage of melt, or earlyTransition to Advanced MeltThe next stage of melt is
melt. The transition is modeled as temperatures near® Oadvanced melt. If the temperature is consistently abdve, 0
with some fluctuation (measured as the variance), but not as indicated by an average temperature of greater tham@
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(b) ©
Fig. 4. (a) Original ERS-1 image segment ESA 1991); (b) three-level segmented; (c) extracted floes after refinement.

either an increasing or steady temperature trend or no trendrirdifferent backscatter ranges for the different classes in the
the temperatures whatsoever but all temperatures in the recondge (ice floes, background matrix, and water). In early melt,
being greater than°) then the current state of melt can béhe floes have not yet been significantly affected by melt, so
safely assumed to be advanced melt. the relative backscatter of the resident classes is the same as for
Transition to Freeze-Up:The next transition is to winter freeze-up: the floes are brighter than the background matrix,
freeze-up. This rule indicates that if the average temperataed the water is either the darkest (when the wind is low)
is somewhat below the freezing point and the temperaturasthe brightest (when the wind is high). After melt onset
indicate either a steady or decreasing trend or the averameurs, the floes begin to be affected adversely by melt and
temperature is well below the freezing point, then the arélae backscatters of the floes and the matrix begin to move
has entered freeze-up. The transition is characterized by @dtiser together. The floes are now not strongly brighter than
temperatures being belovf O, relatively either far below zero the matrix and, therefore, the effect of water within the matrix
or somewhat below zero and on a nonincreasing trend.  begins to be seen. When the water is bright (high wind), the
Each time the database is updated with a new temperator-in of water with the matrix causes the matrix to become
reading for some latitude and longitude, the meltstage infdsrighter than the floes. Alternatively, when the water is dark
mation is re-evaluated to keep it current with the temperatuflew wind), the mix-in of the dark water with the matrix allows
record. the matrix to remain darker than the floes. Later in the season,
2) Parameterization:Depending upon the stage of meliadvanced melt is reached, and now the floes are consistently
being experienced by a given area, SAR imaging will resudarker than the matrix. This leads to problems, however, when
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the water is dark (low wind). When this occurs, the floes
are dark, the matrix is dark (due to the additional mix-in

TABLE |

1283

FLOE Size CATEGORIES “A” | s THE AREA OF THE FLOE

of the dark water), and the water is dark. For the purpose8cry smai AZ100 pixels A Lk’ Bin 0
of image processing, the matrix and the floes are virtually Smalt A<500 pixels A< 5-km” Bin I
FERTT . . P Aedium A5000 pixels A< 50-km’ Bin 2
indistinguishable. Either due to the sensor charac_terlstl_cs, _ePLargC AS12000 pixcls A< 120kt Bin 3
perhaps as another effect of advanced melt, sub-pixel size iC&ry large A<30000 pixels A< 300-km’ Bin 4
floes within the water areas sometimes strongly reflect the Vast A>30000 pixels A>300-km’ Bin 5

radar signal producing a backscatter which is more within the
range of the ice floes and background matrix.

Parameters can be generated to guide the automated clas-
sification procedure. According to the melt stage and wind,
the assumed relative backscatter of the resident classes_of

TABLE I

IMAGE CLASSIFICATION EVALUATIONS. OUuT OF 64 ROINTS
PossIBLE FOR THE16 IMAGES, 54 WERE AWARDED. THE
AVERAGE SCORE FOR THEIMAGES IN THE DATA SET WAs 3.375

the image are used to guide a three-level segmentation, flfgage ID Number | Judge | Score Judge 2 Score Average Score
extraction, and classification of the image. Further investi——322> = = 2
gations revealed that during advanced melt when the wind— 55457 i 2 !
is low, the floes and matrix mix in such a way that they 25028 35 4 375
cannot be segmented apart. Additionally, in some of these ;:822 2 3.5 275
. . . 2
scenes, even parts of the water areas mix in with the generat— '; ; 22‘755
backscatter range of the ice, leading to water areas whiCh 5036 5 3 35
may be characterized by gray levels which are numerically 25658 3 3 3
distant from each other. In this case, a two-level segmentation 2262 3.5 ER) 3.5
using a neighborhood-based algorithm is preferred, providin 23060 22 = 2
9 ghb _ algor! S p » ProVIAING ™ 5561 35 4 3.75
a subsequent ice/no-ice classification without floe extraction. 25662 35 35 35
25362 4 4 4
25363 4 4 4
; 25364 4 4 4
B. Image Segmentatlon Total Avg. Score: 54/64 possible Avg. Image Score: 3.375

Any image classification must have at its most basic level
some means of dividing the image into its component classes.
To accommodate all the different intensity ranges possibfeas been adapted to segment the image into three classes.
a local thresholding technique was developed which splits ahe version used in this work is an extension of that of
image into three unlabeled classes. This segmentation does[@6} and the reader is referred to this work for details of
depend upon any predetermined threshold values or upon #n§ methodology. The image is first subdivided into many
parameters created in the parameterization process (deriggthller regions; by using subregions of the image in the
from melt stage and wind). It simply assumes that there afgesholding process, we can adapt to local variation within
three classes of some sort present in the image and attentpe image and preserve smaller-scale detail. A first pass
to segment the image accordingly, using a scheme based uisaugh these regions is made to detect possibly bimodal
Gaussian curve-fitting of the histograms of smaller pieces bistograms and approximate bimodal Gaussian curves for such
the image. This segmentation process attempts to define ttgions. Criteria are applied to select those regions whose
three basic classes expected in summer, marginal ice zdigiograms are substantially bimodal. A bimodal Gaussian
imagery: ice floes, matrix, and water. curve is approximated to represent the region. A second pass

As indicated earlier, only segmentation between ice (i¢brough the regions detects possibly trimodal histograms and
floes and background matrix) and open water is possi@gproximates trimodal Gaussian curves for those regions in
under certain conditions. In this case, another segmentatsimilar manner. The bimodal and trimodal Gaussian curves
procedure is selected as a result of the parameterization stgproximated for any region are then tested for fit, and the
Because the water in these types of images often exhidigst-fitting curve is used to characterize the region. Bimodal
two very different general backscatters, it was determinetirves are used to calculate a single threshold using the
that a neighbor-based algorithm would perform better thawiaximum Likelihood method, while trimodal curves are used
the dynamic thresholding procedure. The procedure develogedcalculate two threshold values. The calculated thresholds
is a hybrid neighbor- and gray-level-based segmentation dane clustered into two groups—one to represent the division
which gray values that neighbor each other extensively dretween Class 1 and Class 2, the other to represent the
grouped together, then those groups are grouped together usiivision between Class 2 and Class 3. We then interpolate from
the same technigue to obtain subgroups. A split point is theggions with thresholds to other regions in the image to ensure
selected to divide the subgroups into two groups. A subsequiémt each region has two thresholds. A final interpolation is
thresholding provides the two classes, ice and open water.performed from the region down to the pixel level to provide

1) Dynamic Local ThresholdingThe process used to per-each pixel with two threshold values. These interpolations
form a dynamic local thresholding of the image is basembssure smooth threshold transitions across the image. Finally,
upon that used in [19], which divided an image into twéhe actual thresholding is performed upon every pixel in the
basic regions, considered to be object and background.intage, using the two threshold values determined for each
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Fig. 5. Original ERS-1 image, median filtered, identification number 25 @2EESA 1991).

pixel. Each individual pixel is assigned to one of three classes.This method works independently of the dynamic range and,

An example of how this algorithm segments an image can lesome extent, uses the spatial proximity of a subclass within

seen in Fig. 2: Fig. 2(a) is the original image, while Fig. 2(bhe image instead of merely gray level proximity. An example

is the segmented image. Note the preservation of detail. of the results attained by this algorithm can be seen in Fig. 3.
2) Maximum-Neighbor Segmentatioithis algorithm di- Fig. 3(a) is the original image, containing a water area which

vides an image into two classes by utilizing a combinatioggxhibits two very different backscatter ranges; Fig. 3(b) is the

of co-occurrence matrix and nearest-neighbor techniqué§gmented image, which shows the two different backscatter

Specifically, it adds up the number of times a pixel ofubclasses combined as one class.

gray level y neighbors a pixel of gray levet in any 8-

neighborhood direction. It then selects the maximum neighbler Floe Refinement

for each gray level (possibilities are 0-255). Each gray level isFloe distributions are used as an information source which
grouped with its maximum neighbor to form groupings of grajndicates whether a current classification is valid: if the current
levels. Another grouping is then performed using maximumfive size measurements are not consistent with the past floe
neighboring groups to form subgroupings. After this finadize measurements of the same area (as stored in the ice
subgrouping, a maximal split point is selected among tltabase), it can indicate an error in the classification. For this
groups to maximize both the compactness and the diversigason, it is important that floe shapes be properly identified
of each of the two groups found. and isolated within the image. The parameters generated by
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iy e
”cwmlll‘@w .

Fig. 6. Result of dynamic local thresholding of image of Fig. 5. The three different classes found are designated by black, gray, and white.

the parameterization stage indicate where floes are likely to3) objects that are linked by pixels misidentified as part of
be found. Working on only those portions of the image, a  objects during the processing of the image are separated
feature refinement procedure can be utilized to isolate floe into individual objects.
shapes within the image. The result of the growing algorithm can be seen in Fig. 4.
The method used to distinguish floe shapes in the imagerg. 4(a) is the original image; Fig. 4(b) is the three-level seg-
a combination of morphological techniques and a specializgfented image generated for that original image; and Fig. 4(c)
object-growing method which succeeds in growing erodes the result of the floe refinement algorithm. Note the im-
objects back to their original sizes while denying them thérovement of visible feature boundaries between the features
ability to merge with nearby objects from which they may havig Fig. 4(c) over the boundaries in Fig. 4(b). After ice floe
been separated in the initial probabilistic labeling phase [2Ehapes have been refined, the image is ready for class labeling.
The purpose of this floe-refinement procedure is to improve
the floe shapes in the image in three ways: o . o
1) objects that are composed of different segment pixé?s Classification and Generation of Image Statistics
become more solidly composed of object pixels; According to the parameters supplied by the parameteri-
2) objects that are composed of adjacent, disconnected padton process, the three-level segmented and floe-extracted
due to lost detail during the image segmentation age the two-level segmented image can be labeled. It is at
grown together; this point that floe shapes are also analyzed, if applicable.
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Fig. 7. Result of class labeling of the image of Fig. 6, after floe refinement and filtering. White is ice floes, gray is background matrix, and blaclateropen w

Floes that do not exhibit proper shape characteristics at® perimeter to its area, or

discarded and assumed to be of the background matrix class Py

(the backscatter of the ice matrix often overlaps with that of By = ey (1)

ice floes throughout the summer season). The nonfloe portions !

of the image are labeled as water and matrix or, converselywhich is given by [22] as a measure of compactness. Accord-

a two-level segmentation was performed, the image is label8d to this approximation, a square will give a branch factor of

as simply water and ice. one. The higher the branch factor produced by a floe, the more
In order to determine whether or not a floe has a propgfanchy and less compact it is. If its branch factor exceeds

shape, different geometric characteristics which could be seme threshold, it can t_>e considered a nonfioe and relabeled
the background matrix class.

tracted were experimented with to see what measure COB?quior knowledge from the parameterization stage makes
be used to reliably filter out poorly-shaped floes (essentiall%e relative backscatter of the resident classes immediately
nonfloes). The calculation identified as most helpful in this tagft cessible. Al features identified in the image are labeled with
was found a measure of the branch-factor of a floe. Typicaliye appropriate class based upon a comparison between their
floes are compact in shape and tending more toward roundgfiginal” value as given by the segmentation and the class
oval than toward branchiness. A good approximation of thgesignations indicated by the parameterization stage. The seg-
branch-factor of a floe can be found through a comparison mientation gives “bright,” “medium,” and “dark” classes; the
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parameterization step indicates to what labels these backscatter
classes correspond (floes, background matrix, and water or ice
and water). Total floes: 1823
Given the labeled features and the filtered floes, we calculate
ice percentages for the image. The areas of the ice floe-labeled B
; 0 917  4.89%
features and the background matrix-labeled features can be ) 690 14.54%
added together to get the total area of the image which is 2 203 25.87%
3
4
5

Image number 25026

in# #flocs arca_covered

covered by ice. The area of the water-labeled features can 7 #61%
be added together to get the total area of the image which ? ;1:21/(70
is covered by open water. These numbers are expressed as T
percentages of area coverage and are used in the subsequent
validation step.

After faulty floe shapes have been filtered out, the floe Water = 5.21%
sizes are measured and floe size distributions are generated Substrate = 36.16%
for the image. The size bins of summer floe size distributions Floc = 38.62%
used are indicated in Table I. As each floe is considered, . . .

. . S Fig. 8. Output floe analysis and ice coverage percentages for image shown

the corresponding size bin is incremented, and the total a;g%ig_ 7.
represented by floes of that size is incremented. At the end,
the area for each bin is converted into a percentage of tBerel, isthe average ice concentration ant the standard
image area. These ﬂoe distributions can be thought Of %Viation Of 23 yeaI’S Of sea ice Concentl’ation data. If the

an intermediate classification product and are used in tf@ncentration of ice coverage resulting from the classification
subsequent validation step. falls outside this range, it indicates a possible error in the

classification.

2) Floe Distributions: Over the course of the summer, ice
o o o _floes should be gradually melting and becoming increasingly

To minimize the possibility of generating incorrect classifigmajier. In comparison to the most recent floe distributions
cations, historical knowledge of the area’s ice percentages 8fdasured over the same area, a current floe distribution of
prior ice floe distributions are used as guidelines for curreffe area should show an overall decrease in floe sizes, or
ice percentages and floe distributions. at the very least not an increase in floe sizes. If the current

1) Historical Knowledge: The National Ice Center (NIC) f5¢ gistribution does not adhere to this logic, then the user is
released a CD-ROM containing Arctic and Antarctic Segqified and asked to supply the correct classification.
ice weekly data from 1972 through 1994 [23]. Historically, The most recent known floe size distribution for the area
all NIC sea ice analyzes have been produced through {@€ken from our database. Because the summer MIZ is a
integration of remotely sensed aftésitu oceanographic and gynamic area, characterized by a high degree of ice motion,
meteorological data. Today, sea ice analysis at the NICj§e gistributions may be used to offer only a gentle constraint:
done almost exclusively with remotely sensed data. The salgls; the current floe size distribution cannot exhibit a greater
lites and sensors used to produce global sea ice analyggSerage of larger floe sizes than the previous distribution of
included: TIROS visible/infrared GAC/LAC/HRPT (VHRR e same area. Using the percentage of area covered by floes
and AVHRR) data; NIMBUS passive microwave (ESMR and¢ any particular size, we can compute an average floe size
SMMR) data; DMS!3 visible/infrared (OLS) Sm00th _and fingor a scene, using the total percentage area covered by floes
data; GEOSAT altimetry data; DMSP passive microwav@ normalize. If the current average floe size is larger than the

(SSM/I) data; ERS-1 Synthetic Aperture Radar (SAR) datE'revious, then it is possible that an error has been made in the
and RADARSAT SAR data. The percent utilization of eacfyagsification, since the floes should be shrinking as summer

data type varies both temporally and spatially in the weekly wiinues and ice melt progresses.

analysis files. For example, summer ice analyses during théxgsyming there are no errors found in the validation process,
period 1972-1983 were based on 60% visible/infrared dajfe jce database is updated with the new classification per-
30% microwave data and 10% conventional (aeriahesitt)  centages and the new floe size distributions for the area.
observations. Alternatively, if errors are found, then the raw and classified

By analyzing this data, we generated acceptable upper anflges are presented to the user for either validation or
lower bounds for ice coverage for any latitude and longituqg,rection, and the ice database is updated accordingly with

point of the Beaufort Sea for any week of the year. Thge yser-input classification via the database interface.
variance E{z?} — {E[z]}? for each week and location was

then calculated to obtain the standard deviation of the ice
concentration over the 23 years of data. An estimate for the

acceptable rang® of ice concentrations at a given latitude 1h€ data used for testing of the system was a time series
La and longitude Lo for a given week’ of the year was ©f ERS-1 data from the Beaufort Sea, ranging frer40®
expressed as: to —145 E longitude and from 70to 75° N latitude. The

data are from strips imaged on four different days in August
Rwiato =Iay, .o Towiralo (2) of 1991, on Julian days 229, 232, 235, and 238. The images

Image number 25026

E. Validation

IV. SYSTEM TESTING AND RESULTS
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Fig. 9. Original ERS-1 image, median filtered, identification number 25 36EG6A 1991).

represent an area approximately 180100 kn?. Of these

data, 16 images were judged to be marginal ice zone imagery,
appropriate for testing the system. The system was executed op)
the dataset in temporal order so that the classification results
at a given latitude and longitude point could be used to assist
in the classification of the temporally successive image at that

same location.

A. Evaluation Methods

3)

The classification of each image in the set was evaluated

on a scale of 0—4 on the quality of the visual classification.

Factors that were taken into account were as follows, listed in4)

order of importance.

1) Correctness of assigned classes. Was the coverage type

(floes, matrix, wateor ice, water) assigned to the proper

segmented class? The focus of the work is achieving a
correct, automated classification.

Correctness of segmentation. Are the ice and water
classes consistent with the original image? Distinct floe,
matrix, and water areas should agree with the original
image. When the floes and matrix mix, the ice (ice floes
and background matrix) and water should be separate.
Quality of extracted floes (if any). Are floe shapes
visually apparent in the original image present in the
classified image? Floe statistics are generated for use in
later classification of the same area.

Rejection of floes with nonfloe shapes. Are floes with
nonfloe shapes rejected by the floe analysis and classi-
fication procedure? Poor floe shapes will affect the floe
statistics adversely.
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Fig. 10. Result of neighbor-based segmentation followed by class labeling of the image of Fig. 9. White is ice (ice floes and background matrix
together) and black is open water.

The evaluation of each image and the total average scomaprovement of floe shapes through the floe refinement tech-
are shown in Table Il. The evaluations of two separate judgeigjue, and a final classification that was consistent with
were averaged to score each image. visual image inspection. In cases where only separation in

ice and water was feasible, the neighbor-based segmentation
B. Discussion of Results provided good distinction between ice and water areas and a
fyal classification that was also consistent with visual image

Generally speaking, the results of the system were vel _ .
good. The fusion of various types of information with th spection. To provide examples of the results of the automated

imagery, and the inclusion of the information at appropriagassificat_ion procedure, Mo of these images were selected for
stages of the image analysis process, proved to correctly gupigSentation and discussion.

the algorithm. The parameterization stage produced the relathf@y 229: Image #25026

expected backscatters that allowed the automated classificatiohhis scene, centered at7M, 143* W, was under advanced

of the image. In cases where a three-level segmentatitlt (information established from the temperature database)
and classification was considered feasible, the dynamic With a wind speed of more than 5 m/s. The original image can
cal thresholding technique preserved contrast in the imadpe seen in Fig. 5. Notice the bright water, indicating a high
enabling good floe separation. This was followed by a goadnd speed. Notice also the variation in the backscatter of the
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the use of this information in guiding a number of different
algorithms through the segmentation and classification of a
Total flocs: ? given image. Statistical historical information and temporal
data (recent prior classification results) are used to validate
this classification before accepting it as correct. In the event
Water = 23.20% that the assumed classification fails the validation step, the user
Iee = 76.80% is allowed to input correct classification values. The possibility
- of user intervention is beneficial in that it helps prevent the
$ystem from being corrupted with incorrect feedback data.
The information fusion approach was used to analyze SAR
images of the summer MIZ. We combined information fusion

with good segmentation techniques and validation checks

water across the image. Upon execution, the parameterizatb%ed upon past historical information and expected floe

stagg resglted n |nyocat|on ofa t-hree-level segmenFatlon avior, and our test results showed that the system generated
classification of the image, assuming dark floes, medium ba ry good results

ground matrix, and bright water. The subsequent dynamic loca he historical ice concentration database is currently limited

:grﬁshogdér:]ge agqcuecset(:]éherg;geatpgn':(')gf ' d?a.ta(':loarZEZm:agd ';'g'thq a section of the Beaufort Sea. To realize the full potential of
'9- : P vat ! 1ev Y s system, historical information for latitude and longitude

Ioc.al dynamic thresholding.technique. Aiter a subse_quent fl Gints in all regions of the Arctic Seas should be analyzed
refinement and class labeling, the three-level classified im d incorporated into the historical database. Currently, the
is as depicted in Fig. 7. The ice coverage of 94.78% surviv% '

the comparison to historical data, and because there w rea of application is small, and the system is not sited for
omp e ' S FaFge—scale use. Results on this subset of the Arctic Oceans,
no prior floe statistics for the area, the floe distribution was

accented as correct. Statistics and ice percentages gener 1EE?W%ever, show a positive potential for the use of information
pte ' S P ges g §%n in the interpretation of remotely sensed data.
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