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Information Fusion for Estimation of Summer
MIZ Ice Concentration from SAR Imagery

Donna Haverkamp,Member, IEEE,and Costas Tsatsoulis,Senior Member, IEEE

Abstract—In this paper we define the concept ofinformation
fusion and show how we used it to estimate summer sea ice
concentration in the marginal ice zone (MIZ) from single-channel
SAR satellite imagery. We used data about melt stage, wind speed,
and surface temperature to generate temporally-accumulated
information, and fused this information with the SAR image,
resulting in an interpretation of summer MIZ imagery. We also
used the results of previous classifications of the same area to
guide and correct future interpretations, thus fusing historical
information with imagery and nonimagery data. We chose to
study the summer MIZ since summer melt conditions cause
classification based upon backscatter intensity to fail, as the
backscatter of open water, thin ice, first-year ice, and multiyear
ice overlap to a large degree. This makes it necessary to fuse
various information and data to achieve proper segmentation and
automated classification of the image. Our results were evaluated
qualitatively and showed that our approach produces very good
ice concentration estimates in the summer MIZ.

I. INTRODUCTION

T HE marginal ice zone (MIZ) is the dynamic edge of the
ice pack, where one may observe a mix of water, ice floes

(both first-year ice and multiyear ice, which is ice that has
survived at least one melt season), and “background matrix”
or “substrate,” which consists of broken-up pieces of floes of
sub-resolution size. This is a significant region of the oceans.
Open water in the arctic regions generates heat flux as much as
two orders of magnitude greater than that through multiyear
ice [1], [2], making the detection of open water extremely
important in terms of global climate.

The classification of SAR imagery of the summer MIZ
cannot be performed using backscatter information alone,
since, depending upon a number of factors, the scene may
exhibit different backscatter tendencies in the resident classes,
resulting in differing image characteristics. The backscatter
contrast between first-year and multiyear ice is mostly stable
only from October through May; the summer season is char-
acterized by nearly indistinguishable backscatter for all ice
types. Surface melt affects the backscatter of the ice adversely,
and different ice thickness cannot be distinguished based upon
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backscatter alone. Once the melt season begins, the signatures
of the different ice types quickly begin to move closer to-
gether. After converging, they remain indistinguishable until
midsummer. Melt and drain cycles cause multiple backscatter
reversals in the response of first-year and multiyear ice until
the end of the summer, when the backscatter once again
stabilize [3]–[6]. Consequently, neither the dynamic ranges
produced in imaging these scenes nor the dynamic ranges
of the resident classes of these scenes are consistent. The
segmentation and classification of scenes imaged during this
timespan is extremely difficult. Any strict classification based
upon hardcoded expected intensities will fail. Even if a proper
segmentation of the image is achieved, class labeling becomes
a problem because the labels cannot be assigned based upon
the image intensity alone. The highest-intensity portion of
the image is not always the same class; no intensity-grouped
portion of the image is consistently representative of the
same class over the course of a summer season. An excellent
intensity-based segmentation of the image is definitely a good
starting point for image classification, but intensity alone
cannot serve as the basis of a fully automated classification.

However, ancillary data and information sources can pro-
vide a context for the interpretation of a given scene and
allow automated classification. Consequently, we turn to data
fusion approaches. Data fusion can occur at three different
levels [7]:data levelfusion is performed at the single-element
level (e.g., pixel)—two or more corresponding images may
be added, subtracted, or somehow combined using more
complex numeric methods;feature levelfusion is performed
using symbolic representations of the different data sources
or images, typically using artificial intelligence techniques;
finally, decision levelfusion combines different theories or
evidence generated from the different data sources to generate
some conclusion about the scene.

A number of data fusion techniques have been utilized
for image classification. These have been mostly concerned
with achieving a one-to-one correspondence of different sensor
channels or even different sensor types and using patterns
across these different bands to characterize the classes within
the image (which is why it is often referred to asmultisensoror
multisourcefusion). Either many of these approaches require
the training of a neural network to recognize the patterns
of different classes, or they utilize some other supervised
means, via the use of either exemplary class data or human
participation. The imagery type we were working with (ERS-
1 images) is single-channel and traditional multisource fusion
techniques could not be applied. Additionally, because of the
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backscatter behavior of summer MIZ sea ice, images of the
same area are inconsistent with respect to intensity not only in
the long term (the relative backscatter of the different classes
varies over the course of the summer season) but also in the
short term (the dynamic ranges of the classes in these scenes
can vary from image to image).

In our work, we used a new kind of data of data fusion,
information level fusion. Different pieces of information that
are pertinent to the classification of the data are applied at
appropriate times of the classification process. The image data
are fused with different, heterogeneous data sources during the
various classification stages; the result of a stage establishes
which classification step will be applied next and which data
source will be fused with the data. Temperature is a data
source that we use to generate a piece of information—namely,
the melt stage occurring in the imaged scene. Wind is a
data source that is combined with the melt stage in order
to determine the relative backscatter of the different classes
within the image. This information is used to guide the
segmentation and classification of the corresponding image.
From the classified image, we generate data concerning floe
sizes and ice and water percentages. We compare these to
prior floe size distribution data and historical information
concerning expected ice percentages for the corresponding
week and location of the image under inspection. If the
current classification is correct, we can record the current floe
size distribution and ice coverage data for use in the next
classification of the same area.

The approach to data fusion used here differs from tradi-
tional approaches in that instead of performing a “flat” data
fusion in which Data A is used to generate Evidence A and
Data B is used to generate Evidence B and then Evidence A
and B are combined to make conclusions, it utilizes a hybrid
of decision-, feature-, and data-level fusion techniques. The
fusion is performed such that any piece of information is
integrated into the classification at the appropriate time. The
idea is that for data fusion to be effective, the arrangement of
the solution must fit the characteristics of the available data.
In the case of a difficult problem such as the classification
of unstructured data like remotely sensed sea ice imagery,
alternative sources of data or information must be studied
to see how and in what format they can best be used to
constrain the classification possibilities, and at what stage of
the classification their utilization is appropriate.

Through detailed investigations of SAR imagery and liter-
ature and through discussion with experts in the field of SAR
sea ice interpretation, data and information sources pertinent
to the automated classification of summer MIZ imagery were
identified. These sources are wind speed, temperature, prior
ice floe statistics, and historically accumulated ice and water
concentrations. Our method fuses these different information
sources to achieve automated image classification. Surface
temperatures are analyzed over time to deduce melt stage
which, in combination with wind speed, can guide the seg-
mentation and classification of an image into three classes:
ice floes, background matrix (essentially ice), and water.
The intermediate results are floe statistics and ice and water
concentrations. These intermediate results are compared to

prior floe statistics of the same area and historical ice and water
concentrations to detect discrepancies or possible classification
errors. If the classification is accepted as correct, a database
is updated with the current classification results (both ice and
water concentrations and floe size distributions). If not, the
user is notified and requested to provide a correct classification
of the area. Either way, final ice and water concentrations
and floe size distributions are obtained and saved to assist in
successive classifications of the same area.

Results show that an information fusion approach to image
classification can assist greatly in the automation of the
classification. Using other information pertinent to the scene,
in addition to the image intensity itself, conclusions (or ex-
pectations) can be made about dominant image characteristics,
which can in turn be exploited in order to segment and classify
an image correctly, without the need for human intervention.
An implementation of this approach applied to SAR imagery
produced automated interpretation and generation of sea ice
concentration statistics for summer MIZ data.

II. BACKGROUND AND RELATED WORK

A. Data Fusion for Image Classification

Data fusion combines different sources of raw data into a
single set of information that is of greater benefit than the
sum of its component parts [7]. Most data fusion techniques
for image processing have been applied on multispectral data
to combine multiple bands of concurrent imagery in order
to classify a scene. A good number of these techniques are
based upon neural network approaches. For example, one
method used a back-propagation neural network to classify
Landsat imagery using bands 2, 4, and 7, and concatenating
the data from all three bands at each pixel location [8].
In another system a back-propagation network was used to
classify Landsat Thematic Mapper pixels, then a maximum-
likelihood method was used to determine which classification
among those generated by three different bands was correct
[9]. See also [10] for an overview of many multisource data
analysis techniques.

Other ways of fusing multispectral take advantage of cor-
relation between spectral bands. One approach worked with
polarimetric SAR data, which consists of P, L, and C bands
in both copolarized and cross-polarized forms, and performed
a multidimensional fuzzy clustering of the logarithm of the
parameters composing the polarimetric covariance matrix of
the multispectral data to segment the data into classes [11].

One unique approach was used on Thematic Mapper im-
agery and attempted to utilize combinations of bands that
provide the best separability among classes. At each iteration,
a band selection process was performed and one or two cover
types were classified using that band or bands. Ancillary in-
formation, such as elevation, was also used for band selection
and classification [12]. Another technique took into account
knowledge about sensors, the multiple viewing notion, and
the uncertainty and imprecision of models and data modeled
with the possibility theory. A blackboard structure was used to
allow “scene specialist” programs to control the processing of
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the image, and “conflict specialist” programs to resolve classi-
fication conflicts using spatial contextual knowledge of objects
that involved multispectral data and intelligent analysis [13].

A data fusion technique for the classification of sea ice
images used SAR data to generate estimates of the multiyear
ice concentration, and applied this concentration as a seed
value to the NASA TEAM algorithm that classifies sea ice
using SSM/I images. The SAR data provided good multiyear
ice estimates while the SSM/I data was used to compute
first-year ice and open water estimates [14].

B. Summer and MIZ Ice Backscatter Characteristics

The summer ice season consists of several stages [4],
beginning with theearly meltstage in which the snow pack
begins to undergo transformation due to melt/freeze cycling.
It ends when moisture is continuously present in the snow
cover. This also marks the beginning of themelt onsetstage,
which is characterized by dampness at the snow–ice interface
and an average surface temperature near the melting point.
This stage ends when most of the snow cover has become
completely saturated, signaling the beginning of theadvanced
melt stage. From this point, the snow melts rapidly, ponding
occurs, and drainage networks are created. The ice continues
to decay until the freeze-up season begins.

A number of notable conclusions are made in [15] concern-
ing the backscatter changes in the summer ice cover:

1) when the snow begins to melt in early summer, the
contrast between multiyear and first-year signatures van-
ishes;

2) when no snow remains in the first-year ice, the winter
contrast between first-year and multiyear ice is reversed,
which causes the first-year ice returns to exceed the
multiyear ice returns by a few decibels—the shift can
occur in less than a week;

3) the melting of superimposed ice can cause the reversed
contrast to disappear in less than a week;

4) as melt ponds increase in number, the multiyear ice
return is again higher than the first-year ice return;

5) because of the rapid fluctuations in the backscatter
of first-year and multiyear ice, it is very difficult to
classify C- and X-band radar images using intensity-
based algorithms.

III. M ETHODOLOGY

Information fusion combines imagery of a scene with infor-
mation about the image, the sensor, and the environment, to
allow segmentation and classification. It requires a collection
of heterogeneous data sources from which information can be
generated using a variety of algorithms. Each piece of available
information is incorporated into the image analysis system, as
it becomes applicable. Some pieces are incorporated before
the actual processing of an image even begins. Other pieces
are generated at the beginning of processing in order to guide
the entire classification and are incorporated at every step of
the automatic classification procedure. Yet other pieces are
incorporated after the classification has been completed, in
order to evaluate the accuracy of the classification.

Fig. 1. Ice database excerpt.

We selected the information and data sources following
discussion with geophysicists at the National Ice Center, the
Jet Propulsion Laboratory, and NASA Goddard Space Flight
Center, and also based upon results described in the literature
[4], [6], [13], [16]–[18]. The information needed is: state of
melt, wind speed, acceptable ice concentration ranges, accept-
able floe distribution ranges, and recent floe distributions. This
information can be extracted from the following data sources:
temperature records, wind speed records, daily ice charts, and
a database of previous classifications. In the following, we
discuss the information extraction and fusion steps.

A. Information Extraction

Temperature records and wind speed data provide much
of the information that allows the automatic interpretation of
summer MIZ SAR imagery. For our implementation, we used
2 m surface winds and 2 m air temperature data. Measurements
are taken every 12 h for both wind and temperature, at
approximately 100-km resolution. Surface winds are model-
generated through surface pressure, which is sampled by buoys
in the Arctic Buoy Program. Temperatures are also sampled
by the Arctic Buoy Program. Currently the accuracy of these
values in unclear, especially due to the interpolation performed
to estimate them over the whole Arctic.

By monitoring and analyzing the temperature in a given area
over time, we can estimate the stage of melt in that area. Com-
bined with wind speed, this information supplies us with the
relative expected backscatter of ice floes, background matrix,
and water. Because temperature and wind data are used for
melt stage interpretation, a database containing updated wind
and temperature information was maintained for continuous
use over the course of the summer season. In addition, we
developed a process by which the melt stage and wind can
be used to predict the relative backscatter of the ice floes,
background matrix, and water.

1) Ice Database:For any given latitude and longitude, we
analyzed temperature records from the area to estimate the
current melt state, and we utilized records of the most recently
measured floe distributions in order to guide the classification
of the area. To store these types of information, a database
was maintained in which blocks of data were indexed to
the nearest whole latitude and longitude point. Each block
begins with a temperature record for the area and stores other
information such as the state of melt (FREEZE, EARLY,
ONSET, ADVANCED), the last recorded wind speed and
the day on which that wind speed was recorded, the date of
the last classification of the area, and the results of that last
classification: the ice and water percentages and the floe size
distributions. An excerpt is shown in Fig. 1.
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(a) (b)

Fig. 2. (a) Original ERS-1 image segment ( ESA 1991); (b) result of the three-level local dynamic thresholding.

(a) (b)

Fig. 3. Example of neighbor segmentation algorithm. (a) Original ERS-1 image segment ( ESA 1991); (b) neighbor-segmented output. Although the water
is both dark and bright, the neighbor segmentation manages to segment much of the bright water into the same class as the dark water.

The transitions between the different stages of melt are
characterized through analyses of local temperature records.
Given a temperature record of readings taken on a series of
days prior to and including (or at least recent with respect
to) the date of the scene being classified, we plot the ten
last readings, perform a least-squares fit on the temperatures,
and analyze the trend as rising, falling, fluctuating, or steady.
We also compute the mean temperature and variance of the
temperature data set.

Transition to Early Melt: After the winter freeze, the next
stage must be early melt. If the average of the temperatures is
very near to 0C, the temperatures do not exhibit a decreasing
pattern, and the variance in the temperatures is quite small,
then the area has entered the first stage of melt, or early
melt. The transition is modeled as temperatures near to 0C
with some fluctuation (measured as the variance), but not an

extensive amount of variation. We reject this evidence of early
melt in the event that there is a decreasing trend present in the
temperatures.

Transition to Melt Onset:After early melt, the next possi-
ble stage of melt is melt onset. This rule states that if the
average of the temperature record is very near to 0C, and
there is either an increasing trend in the temperatures or a very
small variance in the temperatures and no decreasing trend,
then the area has reached the melt onset stage. The transition is
characterized by surface temperatures very near to the melting
point and either an increasing trend in the record or a very low
variance in the temperatures, indicating temperatures hovering
near the melting point.

Transition to Advanced Melt:The next stage of melt is
advanced melt. If the temperature is consistently above 0C,
as indicated by an average temperature of greater than 0and
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(a)

(b) (c)

Fig. 4. (a) Original ERS-1 image segment ( ESA 1991); (b) three-level segmented; (c) extracted floes after refinement.

either an increasing or steady temperature trend or no trend in
the temperatures whatsoever but all temperatures in the record
being greater than 0, then the current state of melt can be
safely assumed to be advanced melt.

Transition to Freeze-Up:The next transition is to winter
freeze-up. This rule indicates that if the average temperature
is somewhat below the freezing point and the temperatures
indicate either a steady or decreasing trend or the average
temperature is well below the freezing point, then the area
has entered freeze-up. The transition is characterized by all
temperatures being below 0C, relatively either far below zero
or somewhat below zero and on a nonincreasing trend.

Each time the database is updated with a new temperature
reading for some latitude and longitude, the meltstage infor-
mation is re-evaluated to keep it current with the temperature
record.

2) Parameterization:Depending upon the stage of melt
being experienced by a given area, SAR imaging will result

in different backscatter ranges for the different classes in the
image (ice floes, background matrix, and water). In early melt,
the floes have not yet been significantly affected by melt, so
the relative backscatter of the resident classes is the same as for
freeze-up: the floes are brighter than the background matrix,
and the water is either the darkest (when the wind is low)
or the brightest (when the wind is high). After melt onset
occurs, the floes begin to be affected adversely by melt and
the backscatters of the floes and the matrix begin to move
closer together. The floes are now not strongly brighter than
the matrix and, therefore, the effect of water within the matrix
begins to be seen. When the water is bright (high wind), the
mix-in of water with the matrix causes the matrix to become
brighter than the floes. Alternatively, when the water is dark
(low wind), the mix-in of the dark water with the matrix allows
the matrix to remain darker than the floes. Later in the season,
advanced melt is reached, and now the floes are consistently
darker than the matrix. This leads to problems, however, when
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the water is dark (low wind). When this occurs, the floes
are dark, the matrix is dark (due to the additional mix-in
of the dark water), and the water is dark. For the purposes
of image processing, the matrix and the floes are virtually
indistinguishable. Either due to the sensor characteristics, or
perhaps as another effect of advanced melt, sub-pixel size ice
floes within the water areas sometimes strongly reflect the
radar signal producing a backscatter which is more within the
range of the ice floes and background matrix.

Parameters can be generated to guide the automated clas-
sification procedure. According to the melt stage and wind,
the assumed relative backscatter of the resident classes of
the image are used to guide a three-level segmentation, floe
extraction, and classification of the image. Further investi-
gations revealed that during advanced melt when the wind
is low, the floes and matrix mix in such a way that they
cannot be segmented apart. Additionally, in some of these
scenes, even parts of the water areas mix in with the general
backscatter range of the ice, leading to water areas which
may be characterized by gray levels which are numerically
distant from each other. In this case, a two-level segmentation
using a neighborhood-based algorithm is preferred, providing
a subsequent ice/no-ice classification without floe extraction.

B. Image Segmentation

Any image classification must have at its most basic level
some means of dividing the image into its component classes.
To accommodate all the different intensity ranges possible,
a local thresholding technique was developed which splits an
image into three unlabeled classes. This segmentation does not
depend upon any predetermined threshold values or upon any
parameters created in the parameterization process (derived
from melt stage and wind). It simply assumes that there are
three classes of some sort present in the image and attempts
to segment the image accordingly, using a scheme based upon
Gaussian curve-fitting of the histograms of smaller pieces of
the image. This segmentation process attempts to define the
three basic classes expected in summer, marginal ice zone
imagery: ice floes, matrix, and water.

As indicated earlier, only segmentation between ice (ice
floes and background matrix) and open water is possible
under certain conditions. In this case, another segmentation
procedure is selected as a result of the parameterization step.
Because the water in these types of images often exhibits
two very different general backscatters, it was determined
that a neighbor-based algorithm would perform better than
the dynamic thresholding procedure. The procedure developed
is a hybrid neighbor- and gray-level-based segmentation in
which gray values that neighbor each other extensively are
grouped together, then those groups are grouped together using
the same technique to obtain subgroups. A split point is then
selected to divide the subgroups into two groups. A subsequent
thresholding provides the two classes, ice and open water.

1) Dynamic Local Thresholding:The process used to per-
form a dynamic local thresholding of the image is based
upon that used in [19], which divided an image into two
basic regions, considered to be object and background. It

TABLE I
FLOE SIZE CATEGORIES. “A” I S THE AREA OF THE FLOE

TABLE II
IMAGE CLASSIFICATION EVALUATIONS. OUT OF 64 POINTS

POSSIBLE FOR THE16 IMAGES, 54 WERE AWARDED. THE

AVERAGE SCORE FOR THEIMAGES IN THE DATA SET WAS 3.375

has been adapted to segment the image into three classes.
The version used in this work is an extension of that of
[20] and the reader is referred to this work for details of
the methodology. The image is first subdivided into many
smaller regions; by using subregions of the image in the
thresholding process, we can adapt to local variation within
the image and preserve smaller-scale detail. A first pass
through these regions is made to detect possibly bimodal
histograms and approximate bimodal Gaussian curves for such
regions. Criteria are applied to select those regions whose
histograms are substantially bimodal. A bimodal Gaussian
curve is approximated to represent the region. A second pass
through the regions detects possibly trimodal histograms and
approximates trimodal Gaussian curves for those regions in
a similar manner. The bimodal and trimodal Gaussian curves
approximated for any region are then tested for fit, and the
best-fitting curve is used to characterize the region. Bimodal
curves are used to calculate a single threshold using the
Maximum Likelihood method, while trimodal curves are used
to calculate two threshold values. The calculated thresholds
are clustered into two groups—one to represent the division
between Class 1 and Class 2, the other to represent the
division between Class 2 and Class 3. We then interpolate from
regions with thresholds to other regions in the image to ensure
that each region has two thresholds. A final interpolation is
performed from the region down to the pixel level to provide
each pixel with two threshold values. These interpolations
assure smooth threshold transitions across the image. Finally,
the actual thresholding is performed upon every pixel in the
image, using the two threshold values determined for each
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Fig. 5. Original ERS-1 image, median filtered, identification number 25 026 ( ESA 1991).

pixel. Each individual pixel is assigned to one of three classes.
An example of how this algorithm segments an image can be
seen in Fig. 2: Fig. 2(a) is the original image, while Fig. 2(b)
is the segmented image. Note the preservation of detail.

2) Maximum-Neighbor Segmentation:This algorithm di-
vides an image into two classes by utilizing a combination
of co-occurrence matrix and nearest-neighbor techniques.
Specifically, it adds up the number of times a pixel of
gray level neighbors a pixel of gray level in any 8-
neighborhood direction. It then selects the maximum neighbor
for each gray level (possibilities are 0–255). Each gray level is
grouped with its maximum neighbor to form groupings of gray
levels. Another grouping is then performed using maximum
neighboring groups to form subgroupings. After this final
subgrouping, a maximal split point is selected among the
groups to maximize both the compactness and the diversity
of each of the two groups found.

This method works independently of the dynamic range and,
to some extent, uses the spatial proximity of a subclass within
the image instead of merely gray level proximity. An example
of the results attained by this algorithm can be seen in Fig. 3.
Fig. 3(a) is the original image, containing a water area which
exhibits two very different backscatter ranges; Fig. 3(b) is the
segmented image, which shows the two different backscatter
subclasses combined as one class.

C. Floe Refinement

Floe distributions are used as an information source which
indicates whether a current classification is valid: if the current
floe size measurements are not consistent with the past floe
size measurements of the same area (as stored in the ice
database), it can indicate an error in the classification. For this
reason, it is important that floe shapes be properly identified
and isolated within the image. The parameters generated by
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Fig. 6. Result of dynamic local thresholding of image of Fig. 5. The three different classes found are designated by black, gray, and white.

the parameterization stage indicate where floes are likely to
be found. Working on only those portions of the image, a
feature refinement procedure can be utilized to isolate floe
shapes within the image.

The method used to distinguish floe shapes in the image is
a combination of morphological techniques and a specialized
object-growing method which succeeds in growing eroded
objects back to their original sizes while denying them the
ability to merge with nearby objects from which they may have
been separated in the initial probabilistic labeling phase [21].
The purpose of this floe-refinement procedure is to improve
the floe shapes in the image in three ways:

1) objects that are composed of different segment pixels
become more solidly composed of object pixels;

2) objects that are composed of adjacent, disconnected parts
due to lost detail during the image segmentation are
grown together;

3) objects that are linked by pixels misidentified as part of
objects during the processing of the image are separated
into individual objects.

The result of the growing algorithm can be seen in Fig. 4.
Fig. 4(a) is the original image; Fig. 4(b) is the three-level seg-
mented image generated for that original image; and Fig. 4(c)
is the result of the floe refinement algorithm. Note the im-
provement of visible feature boundaries between the features
in Fig. 4(c) over the boundaries in Fig. 4(b). After ice floe
shapes have been refined, the image is ready for class labeling.

D. Classification and Generation of Image Statistics

According to the parameters supplied by the parameteri-
zation process, the three-level segmented and floe-extracted
or the two-level segmented image can be labeled. It is at
this point that floe shapes are also analyzed, if applicable.
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Fig. 7. Result of class labeling of the image of Fig. 6, after floe refinement and filtering. White is ice floes, gray is background matrix, and black is open water.

Floes that do not exhibit proper shape characteristics are
discarded and assumed to be of the background matrix class
(the backscatter of the ice matrix often overlaps with that of
ice floes throughout the summer season). The nonfloe portions
of the image are labeled as water and matrix or, conversely, if
a two-level segmentation was performed, the image is labeled
as simply water and ice.

In order to determine whether or not a floe has a proper
shape, different geometric characteristics which could be ex-
tracted were experimented with to see what measure could
be used to reliably filter out poorly-shaped floes (essentially,
nonfloes). The calculation identified as most helpful in this task
was found a measure of the branch-factor of a floe. Typically,
floes are compact in shape and tending more toward round or
oval than toward branchiness. A good approximation of the
branch-factor of a floe can be found through a comparison of

its perimeter to its area, or

(1)

which is given by [22] as a measure of compactness. Accord-
ing to this approximation, a square will give a branch factor of
one. The higher the branch factor produced by a floe, the more
branchy and less compact it is. If its branch factor exceeds
some threshold, it can be considered a nonfloe and relabeled
to the background matrix class.

Prior knowledge from the parameterization stage makes
the relative backscatter of the resident classes immediately
accessible. All features identified in the image are labeled with
the appropriate class based upon a comparison between their
“original” value as given by the segmentation and the class
designations indicated by the parameterization stage. The seg-
mentation gives “bright,” “medium,” and “dark” classes; the
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parameterization step indicates to what labels these backscatter
classes correspond (floes, background matrix, and water or ice
and water).

Given the labeled features and the filtered floes, we calculate
ice percentages for the image. The areas of the ice floe-labeled
features and the background matrix-labeled features can be
added together to get the total area of the image which is
covered by ice. The area of the water-labeled features can
be added together to get the total area of the image which
is covered by open water. These numbers are expressed as
percentages of area coverage and are used in the subsequent
validation step.

After faulty floe shapes have been filtered out, the floe
sizes are measured and floe size distributions are generated
for the image. The size bins of summer floe size distributions
used are indicated in Table I. As each floe is considered,
the corresponding size bin is incremented, and the total area
represented by floes of that size is incremented. At the end,
the area for each bin is converted into a percentage of the
image area. These floe distributions can be thought of as
an intermediate classification product and are used in the
subsequent validation step.

E. Validation

To minimize the possibility of generating incorrect classifi-
cations, historical knowledge of the area’s ice percentages and
prior ice floe distributions are used as guidelines for current
ice percentages and floe distributions.

1) Historical Knowledge:The National Ice Center (NIC)
released a CD-ROM containing Arctic and Antarctic sea
ice weekly data from 1972 through 1994 [23]. Historically,
all NIC sea ice analyzes have been produced through the
integration of remotely sensed andin-situ oceanographic and
meteorological data. Today, sea ice analysis at the NIC is
done almost exclusively with remotely sensed data. The satel-
lites and sensors used to produce global sea ice analyzes
included: TIROS visible/infrared GAC/LAC/HRPT (VHRR
and AVHRR) data; NIMBUS passive microwave (ESMR and
SMMR) data; DMSP visible/infrared (OLS) smooth and fine
data; GEOSAT altimetry data; DMSP passive microwave
(SSM/I) data; ERS-1 Synthetic Aperture Radar (SAR) data;
and RADARSAT SAR data. The percent utilization of each
data type varies both temporally and spatially in the weekly
analysis files. For example, summer ice analyses during the
period 1972–1983 were based on 60% visible/infrared data,
30% microwave data and 10% conventional (aerial orin-situ)
observations.

By analyzing this data, we generated acceptable upper and
lower bounds for ice coverage for any latitude and longitude
point of the Beaufort Sea for any week of the year. The
variance for each week and location was
then calculated to obtain the standard deviation of the ice
concentration over the 23 years of data. An estimate for the
acceptable range of ice concentrations at a given latitude
La and longitude Lo for a given week of the year was
expressed as:

(2)

Fig. 8. Output floe analysis and ice coverage percentages for image shown
in Fig. 7.

where is the average ice concentration andis the standard
deviation of 23 years of sea ice concentration data. If the
concentration of ice coverage resulting from the classification
falls outside this range, it indicates a possible error in the
classification.

2) Floe Distributions: Over the course of the summer, ice
floes should be gradually melting and becoming increasingly
smaller. In comparison to the most recent floe distributions
measured over the same area, a current floe distribution of
the area should show an overall decrease in floe sizes, or
at the very least not an increase in floe sizes. If the current
floe distribution does not adhere to this logic, then the user is
notified and asked to supply the correct classification.

The most recent known floe size distribution for the area
is taken from our database. Because the summer MIZ is a
dynamic area, characterized by a high degree of ice motion,
floe distributions may be used to offer only a gentle constraint:
that the current floe size distribution cannot exhibit a greater
coverage of larger floe sizes than the previous distribution of
the same area. Using the percentage of area covered by floes
of any particular size, we can compute an average floe size
for a scene, using the total percentage area covered by floes
to normalize. If the current average floe size is larger than the
previous, then it is possible that an error has been made in the
classification, since the floes should be shrinking as summer
continues and ice melt progresses.

Assuming there are no errors found in the validation process,
the ice database is updated with the new classification per-
centages and the new floe size distributions for the area.
Alternatively, if errors are found, then the raw and classified
images are presented to the user for either validation or
correction, and the ice database is updated accordingly with
the user-input classification via the database interface.

IV. SYSTEM TESTING AND RESULTS

The data used for testing of the system was a time series
of ERS-1 data from the Beaufort Sea, ranging from140
to 145 E longitude and from 70 to 75 N latitude. The
data are from strips imaged on four different days in August
of 1991, on Julian days 229, 232, 235, and 238. The images
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Fig. 9. Original ERS-1 image, median filtered, identification number 25 363 ( ESA 1991).

represent an area approximately 100100 km . Of these
data, 16 images were judged to be marginal ice zone imagery,
appropriate for testing the system. The system was executed on
the dataset in temporal order so that the classification results
at a given latitude and longitude point could be used to assist
in the classification of the temporally successive image at that
same location.

A. Evaluation Methods

The classification of each image in the set was evaluated
on a scale of 0–4 on the quality of the visual classification.
Factors that were taken into account were as follows, listed in
order of importance.

1) Correctness of assigned classes. Was the coverage type
(floes, matrix, wateror ice, water) assigned to the proper

segmented class? The focus of the work is achieving a
correct, automated classification.

2) Correctness of segmentation. Are the ice and water
classes consistent with the original image? Distinct floe,
matrix, and water areas should agree with the original
image. When the floes and matrix mix, the ice (ice floes
and background matrix) and water should be separate.

3) Quality of extracted floes (if any). Are floe shapes
visually apparent in the original image present in the
classified image? Floe statistics are generated for use in
later classification of the same area.

4) Rejection of floes with nonfloe shapes. Are floes with
nonfloe shapes rejected by the floe analysis and classi-
fication procedure? Poor floe shapes will affect the floe
statistics adversely.
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Fig. 10. Result of neighbor-based segmentation followed by class labeling of the image of Fig. 9. White is ice (ice floes and background matrix
together) and black is open water.

The evaluation of each image and the total average scores
are shown in Table II. The evaluations of two separate judges
were averaged to score each image.

B. Discussion of Results

Generally speaking, the results of the system were very
good. The fusion of various types of information with the
imagery, and the inclusion of the information at appropriate
stages of the image analysis process, proved to correctly guide
the algorithm. The parameterization stage produced the relative
expected backscatters that allowed the automated classification
of the image. In cases where a three-level segmentation
and classification was considered feasible, the dynamic lo-
cal thresholding technique preserved contrast in the image,
enabling good floe separation. This was followed by a good

improvement of floe shapes through the floe refinement tech-
nique, and a final classification that was consistent with
visual image inspection. In cases where only separation in
ice and water was feasible, the neighbor-based segmentation
provided good distinction between ice and water areas and a
final classification that was also consistent with visual image
inspection. To provide examples of the results of the automated
classification procedure, two of these images were selected for
presentation and discussion.
Day 229: Image #25 026

This scene, centered at 74N, 143 W, was under advanced
melt (information established from the temperature database)
with a wind speed of more than 5 m/s. The original image can
be seen in Fig. 5. Notice the bright water, indicating a high
wind speed. Notice also the variation in the backscatter of the
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Fig. 11. Output analysis of ice coverage for image shown in Fig. 9. Since
the two-level segmentation was used, no floe statistics were computed.

water across the image. Upon execution, the parameterization
stage resulted in invocation of a three-level segmentation and
classification of the image, assuming dark floes, medium back-
ground matrix, and bright water. The subsequent dynamic local
thresholding produced the image of Fig. 6. Comparing Fig. 6
to Fig. 5 one notices the preservation of detail achieved by the
local dynamic thresholding technique. After a subsequent floe
refinement and class labeling, the three-level classified image
is as depicted in Fig. 7. The ice coverage of 94.78% survived
the comparison to historical data, and because there were
no prior floe statistics for the area, the floe distribution was
accepted as correct. Statistics and ice percentages generated
for the image can be seen in Fig. 8. The three classes (floes,
matrix, and water) are assigned properly; the segmentation
itself resulted in good separation among classes: the ice regions
and water regions were divided properly and good floe shapes
were preserved.
Day 238: Image #25363

This scene, centered at 74N, 144 W, was under advanced
melt with a wind speed of less than 5 m/s. The original image is
shown in Fig. 9. Notice the wide backscatter range of the water
in the image, from dark to bright portions. Upon execution, the
information generated by the parameterization stage guided the
system to select the two-level segmentation and classification
algorithm. The subsequent neighbor-based segmentation and
subsequent class labeling produced the image of Fig. 10.
Compared to Fig. 9, Fig. 10 shows good separation between
ice and water areas. The ice coverage of 76.80% failed
the comparison to historical information, which stated the
acceptable range as 86.20% to 100.00%. Because no floe sizes
could be generated for this image, no comparison to prior floe
sizes was performed. Statistics and ice percentages generated
for the image are shown in Fig. 11. In this case, the user
was notified to evaluate the results of the algorithm and she
accepted the system’s output as correct.

V. CONCLUSION

The approach to the problem of classifying data with
temporally inconsistent backscatter involves the fusion of a
number of information sources in addition to the intensity data
itself in order to attain an automated classification. Different
types of ancillary data were identified and interpreted into a
usable format to help define a context for SAR ERS-1 data
that allowed its segmentation and automated labeling. The
method for doing this involves time analyses of certain data
sources, the conversion of those analyses into information, and

the use of this information in guiding a number of different
algorithms through the segmentation and classification of a
given image. Statistical historical information and temporal
data (recent prior classification results) are used to validate
this classification before accepting it as correct. In the event
that the assumed classification fails the validation step, the user
is allowed to input correct classification values. The possibility
of user intervention is beneficial in that it helps prevent the
system from being corrupted with incorrect feedback data.

The information fusion approach was used to analyze SAR
images of the summer MIZ. We combined information fusion
with good segmentation techniques and validation checks
based upon past historical information and expected floe
behavior, and our test results showed that the system generated
very good results.

The historical ice concentration database is currently limited
to a section of the Beaufort Sea. To realize the full potential of
this system, historical information for latitude and longitude
points in all regions of the Arctic Seas should be analyzed
and incorporated into the historical database. Currently, the
area of application is small, and the system is not suited for
large-scale use. Results on this subset of the Arctic Oceans,
however, show a positive potential for the use of information
fusion in the interpretation of remotely sensed data.
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