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Penalized Discriminant Analysis ofIn Situ
Hyperspectral Data for Conifer Species Recognition

Bin Yu, Senior Member, IEEE,I. Michael Ostland, Peng Gong, and Ruiliang Pu

Abstract—Using in situ hyperspectral measurements collected
in the Sierra Nevada Mountains in California, we discriminate six
species of conifer trees using a recent, nonparametric statistics
technique known as penalized discriminant analysis (PDA). A
classification accuracy of 76% is obtained. Our emphasis is on
providing an intuitive, geometric description of PDA that makes
the advantages of penalization clear. PDA is a penalized version
of Fisher’s linear discriminant analysis (LDA) and can greatly
improve upon LDA when there are a large number of highly
correlated variables.

I. INTRODUCTION

CLASSIFICATION of forest species is important in natu-
ral resource management, environmental protection, bio-

diversity, and wildlife studies. Conventionally reliable meth-
ods for tree species recognition depend mainly on costly,
time-consuming, and labor-intensive inventory in the field or
on interpretation of large-scale aerial photographs. The use
of these methods is frequently limited by cost and time and
is not applicable to large areas. Another option is the use
of hyperspectral data such as those obtained from field and
imaging spectrometers. An important step toward large-scale
application of this approach is the successful classification of
individual trees using ground-based hyperspectral measure-
ments.

Such data were used to estimate biochemistry constituents
[1]–[4] and were shown to detect subtle spectral changes of
various targets [5]. But many studies used spectra measured
either from tree leaves only [6], [7] or from selected com-
ponents of forest stands such as branches of needles, shoot
stacks, barks, and litter and soil [8], [9]. Although valuable for
understanding the underlying biophysics and biochemistry, this
“decomposed” approach requires difficult, nonlinear models
in order to characterize properties of remotely sensed forest
canopies in terms of these constituent parts [10], [11].

Different from the “decomposed” approach, our goal is
to use hyperspectral data measured directly from above for-
est canopies in the field. We believe that the high spectral
resolution data in hundreds of bands provide a wealth of
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information for forest species discrimination. Our belief is
supported by initial results, in which an artificial neural
network algorithm using the spectral derivative technique
successfully discriminated six conifer species [12].

However, neural networks can be tricky to tune, and the
parameters are difficult to interpret. We desire a classifier that
is easy to implement and that provides high accuracy and a
ready physical interpretation. Penalized discriminant analysis
(PDA) as developed by Hastieet al. [13] is reviewed here as
a promising technique for realizing these goals. Like linear
discriminant analysis (LDA), PDA produces linear combina-
tions that show how the components of the predictor vector
contribute to the discrimination rule. Unlike LDA, which is
known to fail when faced with the high dimension and high
correlation of adjacent spectral bands, PDA often performs
well with hyperspectral data. Furthermore, the penalization of
PDA has a nice geometric interpretation that makes clear how
PDA escapes the pitfalls of LDA in situations such as ours.
On our data, PDA roughly doubled the accuracy of LDA and
narrowly outperformed a well-tuned neural network similar to
those in our previous work [12].

Our particular example is not definitive about the general ap-
plicability of PDA for forest species recognition. As Section II
will describe, our data are exclusively young conifers mea-
sured vertically tens of centimeters above tree canopies, and
spectral reflectance properties from such data may not scale
up to the conifers’ adult counterparts. However, the success in
this specific problem is clearly promising.

Instead of an exhaustive survey, we would like to mention
briefly a few discrimination methods applicable to hyperspec-
tral data. A binary coding algorithm (BCA) [14] encodes
each hyperspectral band to zero or one according to the
sign of the first order derivative and the difference between
the spectral value and the mean of all the bands. Any of a
number of multivariate binary data classification procedures
[15] could then be used. This encoding characterizes the
general pattern of a spectral curve and can be useful in
discriminating populations with very different general patterns.
However, this is not suitable for conifer species discrimination,
because their spectral curves have similar shapes with only
small differences in magnitudes. Bensmail and Celeux [16]
use cross validation to choose among classes of models that
impose restrictions and/or varying degrees of commonality
on the components of the eigenvalue decompositions of the
within group covariance matrices. Unfortunately, the estimated
eigenvectors (whether common or not) will suffer from the
same pitfalls that we describe in Section III.
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This paper is organized as follows. Section II describes the
study area and data collection process. Section III carefully
introduces PDA, emphasizing a geometric point of view that is
helpful in understanding how PDA can improve over LDA. A
simulation in that section demonstrates the geometric intuition
in high dimensions. In Section IV, we give an example of PDA
analysis using our data. Section V contains some concluding
remarks.

II. STUDY AREA AND DATA DESCRIPTION

A. Study Area

Hyperspectral measurements were taken at the Blodgett For-
est Research Station of the University of California, Berkeley,
located in the American River watershed on the western slope
of the central Sierra Nevada, El Dorado County, CA. The
vegetation consists of the normal associates of the Sierra
mixed-conifer forest type, the major tree species include
five conifers: sugar pine (SP,pinus lambertiana), Ponderosa
pine (PP,pinus ponderosa), white fir (WF, abies concolor),
Douglas fir (DF,pseudotsuga menziesii), incense cedar (IC,
calocedrus decurrens), and one hardwood, California black
oak (quercus kelloggii). All but the black oak are present
in our data. In addition, we also measured the giant sequoia
(GS,sequoiadendron giganteum), a species native to the Sierra
Nevada but not found in the Blodgett Forest and which has
been planted in selected sites since the 1900’s. Major shrub
species include manzanita, deerbrush, white thorn, and bear
clover.

B. Spectral Reflectance Collection

Field measurements were taken with the PSD1000 [17], a
high spectral resolution spectrometer designed for use with a
portable computer and capable of precise measurements from
210 to 1050 nm. The PSD1000 covers over 1500 bands with an
average band width of about 0.5 nm and spectral resolution of
approximately 2.6 nm. The field of view of the spectrometer
is approximately 22. Three types of spectral measurements
can be made: dark current (the response of the system with
no light being exposed to detectors), white reference (spectra
from a standard white panel with close to perfect diffusion),
and sample (spectra obtained from the target of interest). To
avoid saturation or shortage, an integration time for collecting
photons is selected based on the illumination condition and
by adjusting the sampling frequency. A reflectance spectrum
can be generated by dividing the sample radiance by the
radiance from the standard white reference under the same
light condition.

At Blodgett Forest, six sites (see Table I) were chosen for
hyperspectral measurements at different times in multiple years
for long-term monitoring of selected tree species. Canopy sizes
at sites 2, 3, and 6 are smaller than those at sites 1, 4, and 5.
Site 1 has the largest canopies with a dry soil background free
of litter and understory vegetation. Sites 4 and 5 have more
litter and understory vegetation surrounding the tree canopies
than all the other sites. Our measurements were collected
between June 2 and 3, 1996 between 11:00 and 13:00 local

TABLE I
SITE NAMES AND SAMPLE DISTRIBUTIONS

time under a clear sky with air temperatures ranging from 20 to
30 C. We measured young conifer trees (four to seven years
old) only. Measurements were made at heights less than 1.5 m
from vertical directions, 15–20 cm above canopies. We do not
believe that a result based on a sample of only young trees
can be directly generalized to the entire population. Rather,
we believe that our work is suggestive of possible benefits,
requiring further investigation on the adult population.

Dark current and white reference were measured every 5–10
min as necessary to reduce the effects of possible illumination
differences. A total of 322 reflectance spectra were measured
from the six conifer species in equal proportions at each of
the six locations. For some locations, each tree was measured
multiple times. We denote our data by where

is the vector of spectral reflectances
corresponding to our bands, and are categorical
variables indicating the species and location, respectively, of
the associated tree. We will make use of standard statistical
terminology by referring to as predictors.

C. Preprocessing and Aggregating Data

For all analyses that follow, we perform the following
preprocessing of our data. First, spectral curves are truncated
below 350 nm and above 900 nm, since the measurements
are extremely noisy outside of this range. This leaves us with
1073 bands, each with a width of about 0.51 nm. Next, we take
simple averages over blocks of six neighboring bands, leaving
us with bands. We then normalize the spectral curves
for constant area by dividing by the mean reflectance for that
curve. That is, we replace with

(1)

The benefit of such a normalization is the suppression of
illumination differences. Fig. 1(a) shows a plot of unnor-
malized versus band wavelength for eight observations
(four DF and four PP). Fig. 1(b) shows the same curves
after normalization. Notice the clearer separation between the
species over a wide range of frequencies in Fig. 1(b).

III. M ETHODS

High dimension, strong correlation within the vector ,
and similarity of classes make our discrimination problem
difficult. Standard techniques, such as LDA, are known to
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(a)

(b)

Fig. 1. (a) Unnormalized spectral reflectance curves for two species and (b)
same curves now normalized by (1).

perform poorly in such contexts. Hastieet al. [13] introduced
a penalized variation on LDA, the aforementioned PDA, that
could be a considerable improvement. In this section, we
carefully describe LDA and PDA in order to give interested
researchers the tools to perform PDA and the intuition to
understand the source of the improvements. In Section IV, we
give an example. Readers interested in theoretical details of
PDA are referred to [13].

A. Fisher’s Linear Discriminant Analysis (LDA)

LDA [18] is a classical technique that assumes only that
the data are drawn from groups with -dimensional group
mean vectors common within group
covariance matrix and proportions of the
groups in the population. LDA searches for successive linear
combinations of the data such that the group means of the
linear combinations are spread out as much as possible relative
to the within group variation. Specifically, we find

with such that
is maximized. Here, is the overall population
mean vector. Some trivial algebra yields , where
by definition .

To maximize , note that the ratio
is identical to under the constraint . But since

does not depend on , we can do (unconstrained) maxi-
mization of and then rescale any solution by to
satisfy the constraint. Differentiation leads to the eigensystem

. In this way, the ’s are seen to be the properly
scaled eigenvectors corresponding to the nonzero
eigenvalues of . We have if the means
lie in a hyperplane of dimension less than , since this
implies has reduced rank.

Let denote a test sample to be classified.
LDA forms the matrix whose th column is .
It next forms the -vector , whose components are
sometimes calleddiscriminant variables. LDA then classifies
according to Euclidean distances between discriminant vari-
ables and the transformed class means. Namely,is classified
into group

(2)

There are several appealing aspects of this methodology.
First, it is intuitive, since groups are easier to tell apart if
their means are well spread out relative to the within group
variability. Second, the reduction from to dimensions
allows easy graphical inspection of the training and test
data. Third, an equivalent classification results from replacing
the first term in (2) with the Mahalanobis distance

(cf. [13]). This in turn is the well-known
Bayes Rule when the populations are Gaussian.

We note that many authors define LDA in terms of the
training sample estimates of , , and . This is certainly
reasonable, since the population parameters are rarely (if
ever) available. However, we draw the distinction between
the population and sample quantities since, as we will show in
Section III-D, the high variance of the plug-in estimate of
is the primary obstacle to a successful LDA in our context. It
is precisely this obstacle that penalization addresses.

B. Geometric Perspective of LDA

In this section, we give a geometric interpretation of LDA
for dimensions and classes. Although it is
impossible to graph in higher dimensions, the ideas here are
the key to understanding the benefits of penalization. Some
helpful geometric discussion of LDA also can be found in
[19].

Fig. 2 graphically demonstrates LDA. In Fig. 2(a), the num-
bered ellipses are 50% probability contours of bivariate Gauss-
ian densities with common covariance and means marked 1, 2,
and 3. The constraint corresponds to the ellipse
about the origin. Our discussion centers on the following trivial
reexpression of :

(3)
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(a)

(b)

Fig. 2. (a) Equal probability contours of three densities and constraint
�T�W � = 1. A: direction most separating the means; B: first LDA direction;
C: direction keeping within class variation smallest and (b) same curves after
transformed into discriminant variable space. Plus marks a new observation
to be classified.

where . Thus, is a product of two quantities,
one depending only on the norm of and the other only on
the direction. Point A in Fig. 2(a) is one of two points on
the ellipse (the other being A reflected about the origin) that
maximizes . Similarly, point C is one of the two points
that maximizes . Neither A nor C is a satisfactory choice
for separating the groups. In direction A, the means are well
separated, but groups two and three overlap substantially from
the high within group variation. In direction C, the within
group variation is small, but the means from group one and
two are nearly on top of each other. As we move along the
constraint ellipse from A to C, we gain in (3) from increasing

on the one hand, but on the other hand we lose, since
the right term decreases asmoves away from the direction
passing through A. The point B is exactly where the losses
start to overtake the gains. Thus,is locally maximized at B,
which is therefore the first LDA direction . Another local
maxima can be found between A and the reflection of C
about the origin (not shown in Fig 2).

Fig. 2(b) shows the density contours transformed by the
two LDA linear combinations and . Specifically, let

denote the coordinates with respect to the original
basis in Fig. 2(a), then theaxis in Fig. 2(b) is and the -
axis . The small cross symbol represents a new observation
to be classified. Although in original coordinates this new

observation is closer to the first class mean in a Euclidean
sense, once transformed by the LDA linear combinations, it is
closer to the second mean (which is clearly where it should
be classified given the within class covariance).

A problem with LDA is that with many highly correlated
predictors there is too much flexibility in the choice of the

’s for the method to be robust to a poor estimate of .
High correlation yields a constraint ellipsoid with the major
axis much longer than the others. In three dimensions, this is
much like a long, thin cigar with tips very far from the origin.
In higher dimensions, we still can think of the two regions
of the ellipsoid’s surface near the intersections with the major
axes as “tips.” A poor estimate of causes the ellipsoid
to be poorly oriented compared to the ellipsoid based on the
true . This is clearly undesirable since, just as in the two-
dimensional example above, the left term of the product (3)
encourages movement toward the tips of the ellipsoid. But with
the cigar potentially misoriented, the negative impact on the
right term in (3) may not always compensate for the positive
effect of increasing . The net result is a too far out
in the tip of . This is less of a problem in low
dimensions for two reasons. First, with few parameters, is
easy to estimate, and second, there are not as many dimensions
in which to find a route toward the tip of the cigar for which

dominates the right term of (3). For instance, in Fig. 2(a)
the ellipsoid has a one-dimensional surface. However, with
thirty to hundreds of dimensions, as in problems such as ours,
the constraint surface is very high-dimensional, and LDA is
almost sure to find a route along the misoriented ellipsoid to
get near the tip.

This tendency of LDA to favor ’s too far in the tips of
the constraint ellipsoid results in grossly inflated ’s and
overly rough or wiggly (when plotted against index) directions.
Fig. 5 gives an example. The extreme roughness is a property
of the tips of the constraint ellipsoid (true or misoriented), as
determined by the extreme correlation structure in . It is
the misorientation from the poor estimate of that allows
LDA to drift too far out into these tips. This drifting is what
statisticians refer to as over-fitting, and manifests itself (as we
will see) in perfect classification on the training set, but very
poor performance on the test set. In later sections, we show
how penalization can be used to limit this drifting.

C. Penalized Discriminant Analysis (PDA)

To improve the performance of LDA, Hastieet al. [13] add
a penalty term to the within species covariance matrix .
Specifically, they replace with , where
is a by matrix such that is large for “undesirable”

. In our context, undesirable could mean spatially rough
or having large . We discuss details of selecting such a
penalty matrix below. One then proceeds exactly as before.
Let denote the matrix, whose columns are
eigenvectors of [classify using the analog of (2)].

Penalizing is a fairly common practice in the statistical
literature [20]. In fact, Friedman’s regularized discriminant
analysis [19] is basically PDA with an additional parameter
that controls how much the individual within group covariance
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matrices are shrunk toward a common value. Trading a small
amount of bias for a reduction in variance is a standard
parameter estimation point of view of penalization (cf. [20]).
Since estimating a large number of parameters with limited
data results in high variance and has
parameters to estimate , it is easy to see why such
a tradeoff could be beneficial in our setting.

Here, we return to geometry to interpret the effect of penal-
ization. The new constraint ellipsoid defined by
will differ from the unpenalized ellipsoid in that the penalty
term will cause to be smaller in the undesirable directions.
This of course impacts (3), driving down the objective function
in these directions and forcing more desirable directions into
preference.

In the sequel, we consider two types of penalty matrices.
For penalizing high local variation, we consider a second
derivative-type penalty matrix . Namely, let denote

by -dimensional first difference operator matrix. For
example, is

(4)

Then define

(5)

The nonnegative parameteris called thesmoothing param-
eter, since it controls how much of a price is paid for local
variation. A second shrinkage-type penalty is of the form

(6)

where is the identity matrix. This is a similar idea
to ridge regression analysis. The name shrinkage comes from
the fact that up to a , the penalty term reduces to the
usual Euclidean norm . In other words, the penalty favors

’s that are close to the origin.
We now apply our geometric interpretation to . By adding

a constant to the diagonal elements of , the shrinkage
penalty simply rounds and shrinks the constraint ellipsoid (cf.
Fig. 3). Compared with the unpenalized ellipsoid, the new,
more circular constraint allows less of a reward in (3) in the
form of a larger for moving into the tip. So the PDA
direction moves only to the point instead of all the way
down to the point B as with LDA.

The penalty is not so simple to interpret. We note that
one can change basis in such a way that is diagonal (but
with differing elements along the diagonal) with respect to the
new basis [21]. Thus, the penalty amounts to shrinkage with
respect to the new basis, where the different coordinates are
shrunk unequally.

There are other possibilities for the choice of, and one
should use the science underlying the application to guide this
decision. For instance, if there is a reason to insist on more
local smoothness at some wavelengths than others, this could
be accommodated easily by modifying .

Fig. 3. Constraint�T (�W +
S)� = 1 and�T�W � = 1. B: first LDA
direction; b: first PDA direction.

D. Effect of Covariance Estimation on LDA and PDA

In this section, we use a simulation to demonstrate the ideas
of the previous sections in a high-dimensional setting. We
simulate 20 vectors of training data of dimension from
each of three Gaussian distributions, the mean vectors of which
are parabolic when considered as a function of index. Namely,

, ,
and for . The
common within group covariance matrix is defined such
that the th element is . These precise
numbers are not so important. The means and covariance
structure are selected to resemble our hyperspectral data in
terms of very high correlation and smooth, similarly shaped
underlying means. We then generate 50 vectors of test samples
from each of the three distributions. Next, we compare eight
different classifiers of the test data. The first four are LDA
with:

1) and known;
2) only known;
3) only known;
4) neither known.

The next four are the same but use a PDA with a shrinkage
penalty and a value of chosen because it performed well on
preliminary simulations. When or is unknown, it is
estimated from the training sample in the standard way. For all
eight classifiers, we record the test set classification accuracy
and , the first linear combination.

Table II reports the twenty-fifth, fiftieth, and seventy-fifth
percentiles of three quantities of interest from 25 independent
simulations as described above. The first quantity is the test-
set classification accuracy (or “rate”). Let denote the first
LDA direction based on the true and (i.e., the Bayes
Rule), and then the remaining quantities of interest are the ratio
of norms and the angle between directions

in degrees. The four broad
columns of the table correspond to the states of knowledge
as defined in the previous paragraph.

When both parameter matrices are known, neither LDA nor
PDA depends on the training data. Hence, the only numbers
that vary in the left column are the classification rates, which
still depend on the random test samples. In terms of accuracy,
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TABLE II
RESULTS FROM25 SIMULATIONS. RATE IS TEST SET ACCURACY. r IS RATIO OF THE NORM OF THE ESTIMATED LINEAR COMBINATION TO

THE NORM OF THE OPTIMAL (BAYES RULE) LINEAR COMBINATION. � IS THE ANGLE IN DEGREESBETWEEN THE ESTIMATED

AND OPTIMAL DIRECTIONS. (NOTE: FOR A LIST OF 25 NUMBERS WHOSE VALUES SORTED IN ASCENDING ORDER ARE

x(l); � � � ; x(25), THE TWENTY-FIFTH, FIFTIETH, AND SEVENTY-FIFTH PERCENTILES AREx(7); x(13), AND x(19), RESPECTIVELY)

PDA matches LDA very closely in the left column. Hence,
one loses very little by invoking a modest penalty in the ideal
situation when all is known. More importantly, when is
unknown, we see that PDA does appreciably better than LDA.
Where the accuracy of the median LDA result falls from 90%
to under 60%, PDA falls only 8%. To explain this, we see
that the LDA is far too large ( ) and is nearly
orthogonal to , while PDA keeps under
control and closer to the optimal direction .
It is interesting that the’s for PDA are still quite large, but the
minor, consistent improvement is enough to yield the benefit
in terms of test set accuracy. The differences between cases 2
( known) and 4 (nothing known) are minor.

Neither method suffers much from needing to estimate
in case 3 ( known). This agrees with our geometric

discussion of a misoriented constraint ellipsoid as the main
source of our problems. Knowing gives us a perfectly
oriented ellipsoid. Consequently, is only inflated by about
70% or so for LDA, as opposed to a factor of about 30 when

must be estimated. Similarly, is much better behaved.
However, it is noteworthy that even here penalization improves
slightly on and test set accuracy.

IV. EXAMPLE WITH HYPERSPECTRALDATA

We now demonstrate PDA using the hyperspectral data
detailed in Section II. From the 322 observations, we form a
test sample consisting of the 60 observations from site 3 plus
the 60 observations from site 4. The 202 observations from
the other four sites form the training sample. We compare
classification accuracy using PDA with two types of penalties
and a range of values for the smoothing parameter. The case

corresponds to LDA and is included for comparison.
We present plots of the discriminant variables and directions
in order to highlight the effect of penalization on discriminant
analysis. The PDA analysis itself is done in Splus using the

collection of functions written by Hastie and Tibshirani.
These functions are documented and publicly available from
the S archive of StatLib at http://lib.stat.cmu.edu.

Fig. 4 shows the classification accuracy for PDA with
second-derivative and shrinkage penalties for various
choices of the smoothing parameter. For the smallest levels
of , neither penalty has any effect, and the classification is
just that of LDA. The overall classification accuracy (number
correctly classified divided by number of test samples times
100%) is about 38.3% for LDA. As the level of smoothing

Fig. 4. Classification accuracy as a function of smoothing parameter�.

increases, the accuracies of both forms of PDA improve
until peaking and then declining again. PDA with has a
slightly higher peak than with (76.7 versus 74.2%), and the
former has a less abrupt dropoff in performance for nonideal
choices of . Since the best will have to be estimated, this
second property is quite important. Cross validation is one
tool for such estimation. A discussion of the strengths and
weaknesses of cross validation can be found in Efron [22].
Neural networks similar to [12] achieved accuracies between
60–75% depending on a variety of tuning parameters such as
the number of hidden nodes.

Although not shown, we repeated the analysis on other
partitions of test and training sample, and the results were very
similar. LDA had classification accuracies between 18–50%,
while the well-tuned PDA increased accuracies to between
60–90%. The peak accuracies were comparable for the two
types of penalties, but as in Fig. 4, yielded high accuracy
over several orders of magnitude in the smoothing parameter,
whereas was more peaked. Overall, the best test set
performance for occurred with , which is
a bit lower than the best smoothing parameter value in Fig. 4.

A final interesting observation from Fig. 4 is that the range
of ’s for which PDA attains its highest test set accuracy is
just about at the point where the method starts to misclassify on
the training set. This phenomenon also occurred consistently
in our examples. This observation could be used (instead of
cross validation) as a rough guide to select.

Fig. 5 plots the first two of the five ’s (rescaled to have
norm 1) versus index for LDA (dashed) and PDA- with

. Similar to our simulations in Section III-D,
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(a)

(b)

Fig. 5. (a) First direction,�1=k�1k, versus index for LDA (dashed) and
PDA-
D with log

10
� = �0:5 (solid) and (b) second direction.

was about 30 times as big for LDA as for PDA. This,
along with the extreme difference in smoothness between the
two methods, suggests that PDA has effectively prevented the

’s from wandering off into the tips of the constraint ellipsoid.
The four plots in Figs. 6 and 7 further illustrate the benefit

of penalization. Fig. 6(a) is a scatter plot of versus
for the training sample and using LDA. The numbers denote
the species labels , where for clarity, the numbers 1–6 are
used to label species according to alphabetical order (i.e.,

). Clearly, and only separate the
first three species (as one would expect given this information;

, and address the remaining three species). But the
separation is extreme. Fig. 6(b) is the test sample analog of
Fig. 6(a). The scales of the axes do not match, but shaded
circles mark the location of the training sample centroids.
Clearly, the classes are considerably mixed up on the test
set. While this 2-D projection does not tell the entire story
of the classification rule (which incorporates all five directions
jointly), it is suggestive of the extent to which LDA has overfit
the training data.

Fig. 7 is the PDA analog of Fig. 6. Again, we take PDA
with and . When comparing the training
sample discriminant variables between LDA and PDA, we see
that the general orientation is the same, but the PDA classes
are less separated, and the within class variation is larger.
Consequently, by resisting the overfit, PDA performs better

(a)

(b)

Fig. 6. First two LDA discriminant variables: (a) training sample: groups
1, 2, and 3 are well separated from each other and the other three groups
(bunched together in the center) and (b) test sample: locations of the training
group centroids are given by large dots.

on the test sample, which can be seen by the closer agreement
between the 1’s, 2’s, and 3’s and their respective centroids in
Fig. 7(b).

Since the PDA ’s are less influenced by training sample
noise, we can hope that they (or at least the first few that
explain the majority of the variability) have meaningful phys-
ical interpretations. Rewriting the left term in the argument
of (2), the distance in discriminate space of a test sample

from the th class mean is just

(7)

Therefore, coordinates of the vectors that are large in mag-
nitude correspond to bands that are influential in distancing an
observation from a potential class.

Focusing on the solid lines in Fig. 5(a), we see that there
are no large bands above about 750 nm, which agrees with
our understanding of the spectral information just beyond
the red edge. has some moderate weights in this range
but no very large weights. through (not shown) are
similar. Elsewhere, we see the largest individual weights at
approximately 350, 430, 480, 700, and 730 nm for and
at 415, 610, and 725 nm for . Most of those spectral
bands are in the blue spectral range (400–500 nm) and the
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(a)

(b)

Fig. 7. First two discriminant variables for PDA with
D and
log

10
� = �0:5: (a) training sample and (b) test sample: locations of

the training group.

red (600–700 nm) and red edge (670–740 nm) regions. This
information could be useful for selecting a much smaller
subset of bands for classification in the event that collecting
hyperspectral data is not feasible. Of course, in that situation
one might also be interested inregionsof fairly large
(such as around 615 nm for ) rather than large individual
weights, since we expect a physically meaningful location to
be more of a regional than pointwise phenomenon. Distilling
such potentially useful information from the erratic LDA’s
seems unlikely. The black box of neural networks is similarly
not helpful when such physical interpretation is desired.

V. CONCLUSIONS

Emphasizing a geometric point of view, we describe a
novel, nonparametric statistical classification technique known
as PDA [13]. The geometry sheds light on how, in the proper
context, penalization is able to improve substantially upon
LDA. A simulation further demonstrates the dire consequences
of poorly estimating and how these are mitigated by
penalization. Finally, an analysis of ourin situ hyperspectral
data on six conifer species demonstrates the possible benefits
of PDA. The question of how well PDA can identify tree
species in general is not answered by a single example on
young conifers. However, our findings suggest that PDA is
worthy of attention from researchers looking for an accurate,
easy-to-use method of classification.

We employed PDA with two types of penalties and varying
smoothing parameter. Our results suggest that derivative style
penalties (5) are preferable to shrinkage style penalties (6) in
that the former are more resistant to poor choices of smoothing
parameter . With a well-chosen smoothing parameter, PDA
classifies about twice as well as LDA: 76.7% to 38.3%.
Moreover, when we split our data so that trees from the test
site are included in the training set, our classification accuracy
is around 90%, which is similar to previous results using neural
networks under similar conditions [12]. Thus, PDA’s accuracy
seems comparable to neural networks. However, unlike the
complicated nonlinear classifier, PDA is useful for data reduc-
tion, and the “principle component” directions are physically
interpretable as directions where the important spectral bands
for classification are emphasized. This interpretability may be
useful in the selection of subsets of bands for classification,
which we hope to address in the future.
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