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Nonparametric Estimation of Mean Doppler and
Spectral Width
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Abstract—This paper proposes a new nonparametric method  Ultrasound imaging is used in medicine for determination of
for estimation of spectral moments of a zero-mean Gaussian soft-tissue acoustic parameters [24]. Of particular interest in the
process immersed in additive white Gaussian noise. Although the a56 of plood tissue are the three first-spectral moments [12],
technique is valid for any order moment, particular attention . ,
is given to the mean Doppler (first moment) and to the spectral [25]. The mean power is related to the scatterers.(cells and other
width (Square root of the centered Second-spectreﬂ moment). By Structural deta"s) denSIty, the mean frequency IS l’elated to the
assuming that the power spectral density (PSD) of the underlying mean radial velocity, and the spectral width is a measure of the
process is bandlimited, the maximum-likelihood estimates of its plood-flow turbulence.
spectral moments are derived. A suboptimal estimate based on |, the atmosphere, turbulence can be thought of as random
the sample covariance is also studied. Both methods are robust . . . . -
in the sense that they do not rely on any assumption concerning monon ofa ﬂq|d (plear—aw turbulence), thug causing variations
the PSD (besides being bandlimited). Under weak conditions, in the refractive index [23]. These variations produce radar
the set of estimates based on sample covariance is unbiased ang&choes that convey important information concerning atmo-
strongly consistent. Compared with the classical pulse pair and spheric winds, turbulence, and other meteorological phenomena
the penodpgram—based_ estimators, the _proposed methods exhibit [14], [15]. Estimating the first three spectral moments from
better statistical properties for asymmetric spectra and/or spectra . ) . S L
with large spectral widths, while involving a computational clear-alr echoes flnds Important f_jlppll|cat|or?s In airport hazard
burden of the same order. monitoring (for wind shear and wingtip vortices), detection of

Index Terms—Bandlimited processes, maximum-likelihood, severe storms, and transport phenomena of various atmospheric

nonparametric estimation, spectral moments. pollutants. o o .
Regarding SAR applications, the determination of the first

spectral moment, the so-called Doppler centroid, is required
. INTRODUCTION for operations such as range-cell migration correction, azimuth

HE GOAL of spectral estimation is to infer the powe€ompression, and image registration [19].
spectral density (PSD) from a finite observation of the Very often, SM’s must be estimated from a small humber

underlying process. This subject has been extensively studigtidiscrete samples. Normally, underlying this restriction are
yielding a large set of techniques, each suited for a particug'pher fast scanning rates or short-time observation windows.
situation. However, in many applications, the objective is tHeor example, in a typical weather radar, the number of esti-
determination of PSD functionals rather than the PSD itsefflates per complete aerial revolution can be as large as 3
This is the case of the spectral moments (SM's), particular30 000 [5], corresponding to 3 SM's, with a spatial resolution
the mean power, the mean velocity, and the spectral width. Ap-100 mx 1° This has to be done in real or near-real time,
plication areas are weather radar [1]-[8], ultrasound imagingWhiCh means a few tens of seconds. Furthermore, in order to
medicine [9]-[13], clear-air turbulence measurement [14], [L5ave, simultaneously, an acceptable azimuthal velocity (a few
synthetic aperture radar (SAR) [16]—[19], and electroencephal§volutions per minute) and to prevent the broadening of the lat-
graphic analysis [20]-[22] to name a few. eral antenna pattern, the number of samples per estimate should

Concerning Doppler weather radars, the goal is the det8@t be large. Typical values are in the set {16, 32, 64, 128}
mination of the first three spectral moments. These momef@epending on the azimuthal velocity and on the lateral aerial
are closely related to physical properties of the backscatteréggolution). A similar scenario can also be found in ultrasound
within the so-called resolution volume [5], [23]: the mean powdfaging and clear-air turbulence measurement.
(zeroth moment) is related to the reflectivity (which, in the case In summary, in many applications, SM’s estimators should
of rain, is an indicator of the water content), the mean frequengiget the requirement of being low in complexity (in a compu-
(first moment) is related to the mean radial velocity, and tHational sense) yielding estimates of acceptable quality based on
spectral width (square root of the second-centered moment) &8all sample sizes.
measure of the velocity dispersion.

A. Classical Estimators
Manuscript received August 13, 1997; revised January 11, 1999. This . . .
work was supported by the Portuguese PRAXIS XXI Program under ProjectAjc’ a statistical mf.e.rence problem,_the approach to S_M estl-
2/2.1.TIT/1580/95. mation can be classified as parametric or nonparametric.

The authors are with the Instituto de Telecomunicag6es and Departamentq\lonparametric techniques are based either on the PSD or on

de Engenharia, Electrotécnica e de Computadores, Instituto Superior Técnjco . . . .
1049-001 Lisboa, Portugal (e-mail: bioucas@Ix.it.pt). f_ﬁé covariance function .(CF) [26]. Accordingly, they are class!-
Publisher Item Identifier S 0196-2892(00)00016-4. fied as spectral or covariance approaches, respectively. Seminal

0196-2892/00$10.00 © 2000 IEEE



272 IEEE TRANSACTIONS ON GEOSCIENCE AND REMONTE SENSING, VOL. 38, NO. 1, JANUARY 2000

works [27]-[29] addressed a large set of combinations of spec-Despite the reported shortcomings, the PP and the PB esti-
tral and covariance approaches, including continuous and disators are extensively used. As was mentioned previously, this
crete samples, real and complex processes, and white and cadults from the good tradeoff between complexity and perfor-
ored noise. mance.

In [2], various estimators of mean Doppler frequency and Both PP and PB estimators are not optihialthe sense that
spectrum width are investigated. A technique therein calléldey were not derived from any optimality criterion, and they
spectral processing uses the fast Fourier transform (FFT) asaa@ not able to achieve uniformly optimal statistical properties.
efficient way, in a computational sense, to determine a spect@dncerning this matter, the maximum-likelihood (ML) criterion
estimate. This method is, in essence, the one proposed in [38%&ys a prominent role given its optimal properties, at least in
in which the periodogram is replaced with a discrete versi@n asymptotic sense. In the field of ML spectral-moments esti-
computed by means of the FFT. Since this estimator is basedmation, various approaches have been proposed [2], [38]-[40].
the periodogram, it will be herein called the periodogram-bas&easides ML, maximum entropy [41] and risk-based [7] criteria
(PB) estimator. Related references on this topic are [30] ahdve been suggested.

[31]. All the aforementioned criteria require parametrized PSD

Inthe particular case of mean frequency, there exists a consitbdels. By constraining the search space, parametric ap-
erable number of methods besides those mentioned in the abpreaches deliver estimates with lower uncertainty compared to
paragraph. Namely, the Poly-Pulse-Pair family [32], which isonparametric procedures. On the other hand, they generally
based on the methodology introduced in [29], the periodogrdmve higher complexity than nonparametric methods.
maximization [4], the vector phase change [33], the scalar phasénother important issue, concerning the parametric ap-
change [34], and the time derivative [35]. proach, is the choice of a model able to accurately fit the

Despite the wide variety of available SM estimators, the pulseie PSD. In weather radar, the Gaussian spectral shape has
pair (PP) method introduced in [29], and the PB method, docbeen extensively used. Although having some experimental
mented in [2], are the most widely used. This is a consequenastification, the Gaussian-shape assumption is not without
of a good tradeoff between complexity (measured in numberwtaknesses. This is shown in [42], where a systematic and
floating-point operations) and quality of the estimates. Givenexhaustive measurement of spectral shape from precipitation
sample of sizeV, the complexities of the PP and PB algorithmechoes is reported. We quote from [42]: ‘a Gaussian spectral
are ofthe order alV andN log NV, respectively. The PP methodshape agrees reasonably with a large fraction of the obtained
has the additional advantage of allowing different sampling ispectra. However, in about a quarter of the cases, the deviation
tervals, thus providing data to unfold the mean frequency wh&om the Gaussian shape is considerable, e.g., one or both edges
aliasing is present. On the other hand, the PB procedure allaway be too steep or too slight, the peak may be off-center,
us to edit the periodogram, which is important in some casdlsere may be more than one peak.” Thus, a more accurate
Application and additional research of these techniques to thgectral fitting should be looked for. This can be achieved, for
weather radar is carried out in [2], [5], and [36]. example, with autoregressive moving average (ARMA) models

The PP and the PB statistical properties are well documentfdadequate dimension, of which the work reported in [15] is
(see e.g., [2], [3], [29], [30], [36], [37]). Namely, it has beeran example. However, the complexity inherent in the ARMA

found that parameters estimation is unbearable in most applications.
1) PP Method: As a conclusion to the above considerations, the classical
1) The mean-frequency estimate is increasingly biasé@nparametric PP and PB estimators are characterized by
with the spectral skewness. having low complexity and tolerable, sometimes poor, per-
2) The spectral-width estimate is biased (its bias incread@émance. On the other hand, the parametric estimators rely
with the spectral widt}. strongly on spectral shape assumptions. In this sense, they are

3) The variances of both estimates are far from theffot robust. Moreover, their complexity is frequently incompat-
Cramér—Rao bounds (CRB) for all ranges of spectrile with practical applications.
widths.
2) PB Method:
1) The mean-frequency estimator is biased due to the fi. The method herein presented assumes that the PSD of the un-
nite resolution associated with the FFT (this is a serio§i€11ying process is bandlimited. This hypothesis is meaningful,
problem whenever the sample dimension is small). for example, in weather radar, ultrasound imaging, clear-air,
2) The spectral-width estimator is biased due to the wiind Synthetic aperture radar (SAR) applications. In fact, in
dowing effect associated with the FFT. This worsens these cases, the PSD associated with each resolution volume is
the spectral width increases. a weighted replica of the scatterers velocity distribution in the

3) The variance of both estimates at low spectral widths§&Me volume [43], [44]. Since in each resolution volume the
close to the PP ones. However, at high spectral widtRgatterers have a maximum and a minimum velocity, the PSD
the performance of the PB met,hOd is better. is'bandlimited. The sampling theorem assures, therefore, that

the CF can be exactly recovered from its discrete samples, as

B. Rationale of the Proposed Approach

2 For Gaussian processes, if the samples can be split into independent pairs,
1 Work [36] proposes a modification of the spectral-width estimator intrawhich is an unrealistic assumption in most cases, the PP estimator is of max-
duced in [29], which is unbiased for Gaussian-shaped spectra. imum likelihood [29].
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long as the sampling rate is equal to or greater than the Nyquist 3) the spectral width defined as
frequency. On the other hand, the SM'’s relate easily to the CF
derivatives. In the sequel, the name bandlimited (BL) will be 0(Sz) = [12(Sz) — ni(S)]2. 3)
used to designate the proposed methodology.
The simple strategy we are proposing seems like it has notEstimators ofm(S.), 11(S.), anda(S,) will be denoted
been fully explored in the literature. To our knowledge, only 7.(Y), fix(Y), andz(Y), respectively.
the work described in [10], in the field of ultrasound blood-ve- It will be assumed that the noise GF, () is known. This is
locity measurements, explores the bandlimited concept. Hom@t a severe restriction since, in most applications, this function
ever, their approach and methodology diverge from ours. ~ can be estimated with arbitrary precision in the signal absence.
The paper organization is as follows. Section Il introduces no-
tation, formulates the SM estimation problem, and derives the Bandlimited Solution

ML estimates under the BL assumption. In Section Ill, the in- Assume that proces& has absolutely continuous spectral
terpolation filter design is considered. A suboptimal estimatgfstribution function,.. ThenS, = W, where(-)’ denotes

based on the sample covariance at different Iags and its Staﬂiﬁ;‘derivaﬂve_ Further assume ti$atis of energy type and ban-
tical characterization is presented in Section IV. Experiment@imited, i.e.,

results and comparisons with the PP and PB estimators are re-

ported in Section V. C, / Si(f) df < 00
ll. PROBLEM FORMULATION C:  S5:(f)=0,f¢Is=[fm, ful
The BL method computes SM estimates from discrete saM{bere
ples. It is assumed, however, that there is an underlying process fm < fs/2 with  f, =1/T,.

defined orik, from which discrete samples are taken. This is, in
fact, a typical situation in all the applications referred to in the AssumptionsC; andC, and the Schwarz’ inequality assure
introduction. that foranyk =0, 1, ---

Let X = {x(t), t € R} andN = {n(t), t € R} be indepen- - y . -
dent, _stahonary,_zero-meeil, normal, coinplex processe_s, wu‘ry RS df S/ |2 af / S2(f)df < oo
covariance function®,.(7) = Elz(t + 7)x*(t)] and R, (1) = —oo — oo
E[n(t+7)n*(t)], respectively. Also, defing(t) = z(t) +n(t). (4)

Wide-sense stationarity and strict-sense stationarity are
equivalent in real normal processes. This is not the ca@tis, the SM's of5,. do exist for anyk =0, 1, -- ..
with complex processes. A zero-mean, wide-sense, stationarynequality (4) fork = 0 implies thatS, is absolutely inte-
complex, normal procesg’ is strict-sense stationary if andgrable. This condition assures that
only if E[z(t + 7)x(¢)] is a function only ofr [26]. We further oo
assume that the process&sand. A are circular, which means R.(7) = / ST af (5)
that E[z(t + 7)x(t)] = 0 and E[n(t + 7)n(t)] = 0 for all —o0

t, E eh§R [Ifjsl]) ¢ d that the circul d | exists and is continuous and nonnegative definite 3n
should be stressed that the circular and normal assUmBs, -pner's Theorem [26, Theorem 5.1]). The above properties

tions are, to a great extent, physically meaningful in many a F R.(7), together with inequality (4), assure thﬁik)(’r) [the

plications such as weather radar, ultrasound imaging, clear-aif 7 ./’ . - .
turbulence measurement, and SAR [46]-[51]. Nevertheless, @é der|'vat|ve Off2,,(r)] with k_ =0, 1, ---, has the following
Operties [26, Theorem 5.2]:

Gaussian hypothesis could be discharged, since it plays no r%rle

in the BL approach (except for its statistical characterization). P,
DefineS,(f) andsS,,( f) as the PSD’s of processasand\/, oo

respectively. The SM estimation problem is stated as follows. P,  R®(r) = (2r5)* / S (f)ed ™™ df

Given theN-dimensional sample vectd& = [V, ---, Yn|? —oo

with Y; = y(iT,), find estimators for the entities below (as- Pz RY(7) is uniformly continuous ofR.

sumed to exist).

1) thekth spectral moment, defined as

R (1) exists forr € R

PropertyP, allows us to write the SM'’s as

S R;k)(())
mk(Sx)E/ LA df k=0,1,--- (1) mk(Sm)=W, k=0,1,---. (6)

the Wittaker—Shannon-Kotel'nikov sampling theorem (see e.g.,

/ N fRS(f) df [52]) leads to [48]
—Fe——— k=12 (2 50
/ So(f) df R¥)(r) = Z R, ((THRM® (r —4T,), k=1, (7)
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H(D p=00 IO In what follows, we assume thaj, is negligible compared
p=02 to the estimation error and denote thidn SM as the sum (9)
truncated taM;,. The choice of the interpolation functidi{~)
and the sizé\;,(z},) of the truncated sum (9) will be addressed
L S,(fn) in Section IlI.
The invariance principle of ML estimation [53] states that if
g(@): ® — & is a mapping of® onto &, with @ C ™,
$ C 12, andn; < no, andé™ is the ML estimate o®, then

oty

fn
f,

f=

Ll

¢ £ 0 g(@"”) is the ML estimate of(#). By applying this principle to
o a truncated version of (9), we obtain ML estimates of the SM’s
fi=f-f, given by
Fig. 1. Interpolation filter. 1 M
! = oL S otef, k=0,1,--- (11

] A

whereh(r) is a well-behaved function whose Fourier transform =My

fulfills
g M

TS |f| Sfrn ~ml (27TJ) A,rnl]k E=1.2
H = 8 Hi = ~m T — 4y &y T
) {0 A2 fn = fo = ®) 2

12)

Fig. 1 shows two interpolation filters satisfying (8). H pa same concept applies to the ML spectral width estimator.
was chosen to be the ideal lowpass filter with cutoff frequeng(ence

fs/2 (H(f) = T11(f/fs)), then (7) would be exactly the Wit-
taker—Shannon—Kotel'nikov sampling theorem. The problem smt — [ﬂgll _ (,3/1"1)2]1/2, (13)
with the ideal lowpass filter is that its time response tends to
zero with1/7 as|r| — oo. This low vanishing rate is not Expressions (11)—(13) are exact ML estimates (under the ban-
tolerable, mainly for small sample sizes. However, this problegfimited and negligible;; assumptions). They are simple func-
can be lightened by choosing a filt&F with a smooth variation tions of ML sequence$s™, ¢ = —Mj, -- -, M;}. However,
in the interval[f,.., f»]. This issue will be addressed in Sectiorio our knowledge, they have not been derived and used in the
Il literature.

Placing (7) into (6) leads to

[ll. I NTERPOLATION FILTER

mi(Ss) = VR Z rihk, k=0,1,--- (9) A desirable characteristic of coefficient$ is that their van-
(2mg) i=—o0 ishing rate be as large as possible so that, gignnequality

L . Ko () . _ (10) is satisfied for the lowest possible valueidf..
with r; = R,(i1;) andhi = R™(—iTy) for ¢ € Z = 5 5ccordance with the considerations of Section II-A, in case
{--, =1,0, 1, ---}. Expression (9) is the basis of our apyt r _ o (sampling rate equal to Nyquist rate), there is no al-
proach to SM estimation. The followmg. sections are MOSt\ ative to the ideal low-pass filtéf (f) = T,I1(f/f,). How-
devoted to the design of suitable coefficierits and to the oyer ifthe sampling rate is greater than the Nyquist rate, then the
estimation of sequence;, « € Z}. vanishing rate of coefficients? can be significantly increased.
This is achieved by choosing an interpolation filké¢ /) with a
finite roll-off rate within the interval f,.., f.] (H(f) is, by as-

As expressed in (9), estimatés,(Y') are somehow functions sumption, even). Fig. 1 illustrates this concept (for simplicity,
of the infinite sequencég?;, i € Z}. However, since our ap- f, = 1). The gray rectangles demarcate the frequency inter-
proach is nonparametric, given a sample vedfoof size N, vals for whichH is not defined. The length of these intervals

only the sequencér;, i = —N +1,---, N — 1} can be esti- s characterized by the roll-off facter = (f,, — fm)/f» with
mated fromY . Thus, the infinite sum (9) cannot be computed < , < 1.

and should be replaced by a truncated version. This raises no sefhe behavior ofh(k‘)(T), and consequently of¥, depends
rious problems if the truncation error is small. Assume that femn the continuity properties o (f) = (2n)*H(f) and of
a given positive numbery, there exists an integéif,, such that its successive derivatives. H.(f) and all its derivatives up to

B. Maximum-Likelihood Estimate

1 ordern exist and are of bounded variationdit) then its inverse
a Z |h§“| < & k=0,1,---. (10)  Fourier transfornk*) (1) tends to zero at least as fastlgs™ !
TSy when|7| — co. This result is a minor variation of [54, Theorem
1, p. 95].

Under these conditions, the magnitude of the error betwegn
and sum (9), truncated | < My, is smaller thamoe;, (notice
that the nonnegative naturefof;, « € Z} implies thafr; /r¢| <
1). Sincepy, = my /70, the magnitude of the error betwegp Wr) =T sin(wfs7) cos(wfspr)
and the truncated version is smaller than TP (mfsm) 1= (2fsp7)?

In this work, we have choseH (f) to be the raised cosine
filter with impulse response [55 p. 179]
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121 [ ! set to(IV — |i|)~*. The even nature df(7) and the Hermitian
) ) Z 1 property7_, = 7 allow writing
—_ h —
\ p=00 n IiI>M| | 9i M
o I I g = e {)k [Z Im[fi]hﬁ“] k=1,3--- (19
0.6 \ ] =1
0.4 ~
0.2 \\\ p=04 \\ 9 M
: ><< p=02 T — B = g Fohf + > Re[fi]hé“‘] k=02 .-
wJ —
° 5 10 15 20 FERN =1 (20)
1

meaning that even SM’s depend only on[Reand odd SM’s
Fig. 2. Upper bound of truncation error associated with interpolatiglepend only on Irf#;].

coefficientsh.}. Parametep is the roll-off factor of the raised-cosine filter. Since the numbel/ of sample covariances needed to deter-
mine the SM is moderate (typically smaller than 10), estimates
where0 < p < 1 s the roll-off factor. Ifp > 0, coefficientsh® {7, ¢ = 0, ---, M} can be computed directly with approxi-

tend to zero with /43 as|i| — oo, as opposed to/i for p = 0. Mately MN complex roat?ng—p(_)int operati_ons. Alternatiyely,

Fig. 2 illustrates the behavior ¢f2x)=* i, |hi|) for theycan bg computed by inverting the periodogram, which has
different values of the roll-off factos. For example, ip = 0.2, @ complexity of the order oV In V.
which demands a sampling rate 1.25 above the Nyquist rate, ad he two sets of estimators (11)—(13) and (14)—(16) will be
upper bound:; = 0.01 is achieved with justi/; = 7. In the termed ML method and BL method, respectively.
case ofh?, the same value af/f; = 7 leads toep < 0.0025.

A. Statistical Characterization
IV. SAMPLE COVARIANCE-BASED ESTIMATE The statistical characterization ofn; and [ for

k = 0,1,---, and 6 given by (14)—-(16), respectively,
was carried out in [44]. Herein, pertinent statistical properties
Sfjthose estimators are stated without proof.
{he PSD of sequencgk, (i1;), —oo < i < oo}, denoted
Ay (F), plays a central role in some of the following results.

Under weak regularity conditions, estimateég* and a7,
fork = 0,1, ---, andé™ given by (11)—(13), respectively,
are best asymptotic normal estimates [44]. Despite the go
ness of ML estimates, analytic solutions to the corresponden
maximization problem are available only in a few simple cas

Numerical solutions are, very often, difficult to program and a@y definition
computationally intensive (see e.g.,[56]-[58]). 00
Taking into account (9) or ML estimators (11)—(13), it seems ), (F) = Z R, (iT,)e 9 F" Fel[-L 3. (21
reasonable to exploit the properties of i=—oo0
M SinceR,(iT,) = R,(iT,) + R, (iT3), then),(F) = X\, (F) +
1 E T E ™ E T
= e 3 Al k=01 (1) \(p). ’
-
I == In order to relate\, (F") with the underlying continuous echo
and noise spectrd, ands,,, define
M
- (2mj)~* ok g
o= S DL mh k=120 (15) gpy =g Y S (F -]+ SAE-DL] (22)
i=—M i=—00
is assumed to exist. By applying the Poisson formula to (22),
& = [fiz — (jir)?]¥? (16) after some manipulation, one concludes tHaF) = \,(F)
for F € R. Noting thatS..(f) has limited support—f.., fim]
where, {#;,i = —M, ---, M} is the sequence of unbiasedyith f,, < fs/2, it results that
sample covariance estimates. Assume fHat= M for & =
1, 2, ---. Given the sample vectd of size N > M, the unbi- MN(F) = £So(Ff) + M(F),  Fel[-5 1] (23
ased sample covariances are given by
with
1 N—|i|
A ) N Yntity — Bo(iT5) 0<i< M - . = . 2R Fi
=< N —|i nz::l a7 () =f Z Su(F—i)fs] = Z R, (iTs)e jamEi
P =% ~-M<i<0 B B
=tr{J, YY"} - R, (¢T,) |i| <M (18)  \Very often, the noise CF verifieR,,(i7;,) = 0 for |i| > 1,

which defines a white noise sequence. In this case
where(-) = ((-)*)T, tr{-} denotes the trace operator, ahd
is a null matrix, except for théth diagonal, where its entries are A\, (F) = ;5. (Ffs) + R, (0), Fel-3 3. (@4
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In what follows, it is convenient to define for a while thatM = oc. Recalling that? = (—5)*h} and that
hY = h®)(—iT,), expressiorH,(F) is then given by
Tij = (27r)i+j tr{RyAZRyAJ}, t, 7 =0,1, - (25) -
TR — (i (k) (277 N~ (27 F)i
st - v = O s
M . . X
A, = Z akJ,, (26) Applying the Poisson formula to (34) yields
i=—M
and = =)* < :
Hu(F) =" > H[(F 0[] (35)
a; = (=j)*h;. (27) E e

The statistical characterization next presented is sectiong@er Hi(f) = (G2 f)*H(f) has supporf—f,, f.]. Since
into three parts corresponding to zeroth SM, normalized SM’s, — (1 + p)f,/2, the neighbor replicadl[(F — i)f.] and

and spectral width. Hy[(F—i—1)fs] overlapifp > 0. Nevertheless, in the interval

1) Zeroth Spectral MomentThe estimaten, = 7o exhibits [~ fm> fim], With f,,, = (1 — p)f,/2, there is no overlapping.
the following statistical properties.

1) Itis unbiased and has variance given by

This implies that

Too Hy(F)=@rFf)"  [FI<3(0-p)  (36)
V(o) = E{("o — mo) (g — mg)*} = 53 (28)
sinceH(f) = 1T, for f e_[_fna fn]
with Tp introduced in (25). For M finite, filter H.(F) is obtained by noting that
2) Itis consistent with probability one (w.p.1) and also ints coefficients {a* ;, || < M} are given by the product
the mean-square sense, verifying {a* recti/(2M))i = ---,—1,0,1,---}. Thus, H.(F) is
the period 1 convolution of (35) with the DFS of régt(2)1)).
Aym NV (i) :/ A(F)dF (29) Considering thad/ was chosen in such away thal, ., ,, |hk|
- L is small, this convolution does not change substantially (35).
where [, = f_liz Under these conditions, we conclude that
3) The sequencg' N (g —my) is asymptotically normal . ) 1 ) § )
with zero-mean and variance given by (29). m NV (i) =~ m2 /1 N NESfs) — )™ dF. (37)
2) Normalized Spectral Momentsfhe estimategi; with
k=1, 2, --- exhibit the following statistical properties. 3) Spectral Width: The estimates exhibits the following
1) They are asymptotically unbiased statistical properties.
" 1 _ 1) It is asymptotically unbiased with
Elfi] = pu — N2 [Tox — pToo] + O(N~?) (30) ) ymp Y
My
where symboD( N ~2) means thatV2|O(N~2)| < « El6]=0— ZoNm? {(Tm — p2Too)
for somea > 0, and everyN > Nj. 9
2) They are consistent w.p.1 and in the mean-square sense +(1111 — 2imTio + piloo)
as well t5.2 (Ta — 2pu2To0 + u%Too)} + O(N7?%).(38)
E[(fix — 11)?] = — [Ter — 2Tho + 12 To0] + O(N~2).
[ = )] Nm3 T = 2414Tio + i Tool ( (Si) 2) ltis consistent w.p.1 and also in the mean-square sense
with
3) The sequence/N (i, — ) is asymptotically normal
with zero-mean and variance given b . 1
e El(6 ~ )] = ppy— [T — 4Tz
(2m)~2* - b 7o
-y / )\i(F)|Hk(F) — 2m)*uHo(F)|"dF  (32) — 2aTye + 4uiTiy + dpraTy,
1
o + a2Too] + O(N™2) (39)
where H,(F) is the discrete Fourier series (DFS) of
sequencda” ,, |i| < M} given by wherea = 0% — 2.
y 3) The sequence/N(6 — o) is asymptotically normal
H(F) = Z o =i (33) with zero-mean and variance given by
i=—M —4
27 — —
- o o [ DHAE) - 2emy Hu(E)
Function H;(F), defined in (33), is closely related to the 4mgo® Ji

interpolation functior( f) introduced in Section Ill. Suppose — (27)2aHo(F)? dF. (40)
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Again, using the fact thall ,(F) ~ (2rFf,)* for |F| <
(1/2)(1 — p), the variance (40) is approximately given by

Alim NV (i)

~ ; 2 _ 2 272
= o [ MO - - P ar. @)
The sample covariancés;,, k = 0, ---, k = p} of a Gaussian

AR(p) process are asymptotically efficient [53, Theorem 5.8].
Since any process can be approximated by afic&Rprocess,
it is reasonable to admit that the sample covariaqégsk =
0, -,k = M} are asymptotically efficient, as well as the
SM'’s estimators herein proposed, which are based on the sample
covariances.

Asymptotic variances ofi; given by (37), witht = 1, and
of & given by (41), are exactly the same as presented in [2] and
[30] for the PB method. Despite this asymptotic similarity, the
BL estimators of:; ando perform better than the corresponding dpy

PB ones for small sample sizes. This will become clear in the@

next section.

V. PERFORMANCE EVALUATION

This section presents theoretical and simulation results con-
cerning the mean frequengy and the spectral width, aiming
at the comparison of the BL method (BLM), the ML method
(MLM), the PB method (PBM), and the PP method (PPM). The
following statistics are evaluated:
1) BLM biasesE[ji; — u1] and E[6 — o] given by (30)
and (38), respectively;
2) BLM mean square errors (MSE'&)[(j1; — 1)?] and
E[(6 — o)?] given by (31) and (39), respectively;
3) Cramér—Rao Bound€CRB'’s) of parameterg:;; and
o with respect to the covariance sequereg, ¢
0, ---, M},
4) sample mean biasdg/i; — p1] andT[6 — o] of the
BLM, the MLM, the PPM, and the PBM1([z] =
(1/N) Ef;l z; denotes the sample mean8finde-
pendent samples of random variable
5) BL estimates of;; ande computed according to (15)
and (16), respectively, whereas ML estimates of these
parameters are given by (12) and (13), respectively;
6) Sample MSE'S[(/11 — p1)?] andT’[(6 — o)?] of the
BLM, the MLM, the PPM, and the PBM.
The following remarks are in order.

1) The random vectorY was generated according to 3)
Y = RY/*W, whereW is a zero-meatV-dimensional,
normal, circular-complex random vector of covariance
matrix I (identity), andR;/2 = (R;/Q)H is the square

root of covariance matriR,, = Ry/°R,/>, which exists

sinceR,, is Hermitian and nonnegative definite

The SM's are functions of the covariance sequence

{r;;¢ = 1,---, M}. On the other hand, the prob-

ability density function of the random vectdy of

size N depends on{r;,« = 1,---, N — 1}. Since

the present approach is nonparametric (i.e., no as-4)

sumption is made concerning the structure of the

2)
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covariance function (besides being bandlimited), the
CRB should be determined with respect to the whole

set of parameter§r;,¢ = 1,---, N — 1}. Define
0= (01, 02), Where01 = (7‘0, Re(rl), s, Re(rN_l))
and@; = (Im(r1), - -+, Im(ry—_1)). The variance of any

unbiased estimate @f(#), such ag(Y) subject to some
regularity conditions, verifies [26]

V(O =E{(g-8)&-8)"}
> G(0)IH(0)G (6) (42)
whereG(#) is the Jacobian matrix gf(#), J is the infor-
mation matrix, andaJ~*G* is the CRB.
From (12), fork = 1 and (13), and also taking into
account (19) and (20), one gets the Jacobians aind
o, respectively, as

1
= |—mp1, 0, ---,0, hh el h}\lov -, 0 (43)
7{.7,0 N — oV
1 N-1-M
do 1 d/JQ dul
do 1 [dpy , dim 44
a0 2a[d0 a6 @
where
dp2 1
el [ AR TR T8
0,---,00,---,0 (45)
N N —
N—1-M N—1

For normal circular-complex random vectors, the element
Jy of the information matrix is given by [26]
Ju =t {R;'RVR;RD ). (46)
SinceR,, is Hermitian and Toeplitz, its derivatives with
respect tod;, are very easy to determine. To compute
the whole matrixJ, we adopted the method proposed in
[48] and [59], with complexityD(N? In V). Notice that
computingJ according to (46) (one inverse, three matrix
products, and one trace) would have the unbearable com-
plexity of O(N*).
The ML estimateg™! ands™ depend both on the ML
sequencdsgt, A7t #miL This is a well-known in-
stance of estimation of structured covariance matrix, par-
ticularly of ML estimation of Toeplitz covariance ma-
trices [56]-[58], [60]-[62].

In this work, we adopted the methodology proposed in
[56] with slight adaptations. Basically, the iterative ex-
pectation-maximization scheme [63], [64] was used to
generate a sequence of covariance matri{d?ig}, for
t =0, 1, ---, with increasing likelihood
The CRB refers to unbiased estimates. However, the
methods herein considered are biased, mainly in what



278 IEEE TRANSACTIONS ON GEOSCIENCE AND REMONTE SENSING, VOL. 38, NO. 1, JANUARY 2000

spectral width is concerned. Nevertheless, the CRB
plotted jointly with the MSE’s of the estimates. The

Root Mean Square Error of Mean Frequency Estimate

T

main reason for this is that in many situations, the BM| Simulation a“‘mMLM MCRB

is almost unbiased, being therefore comparable with tl . osr 5 BIM ... BLM

CRB. S —= PPM ___. PPM
o —8— PBM

The results next presented are grouped under the followi
major topics: a) symmetric spectra; b) asymmetric spectra; .
sample size; and d) SNR.

Gaussian and linear combination of rectangular spect
shapes are considered. The underlying reasons for study
linear combinations of rectangular forms are the following.

» According to (37) and (41), the performance of the BL\
depends above all on how the spectral mass is clusterel
the neighborhood of the respective SM. It does not deper )
therefore, on small spectrum details. Linear combinatic
of rectangular forms is a simple way of placing spectr:
mass.

» As stated and documented in the introduction, the PPM
performance degrades as the degree of skewness andipr3. RMSE of mean-frequency estimafa for the Gaussian-shaped

spectral width increases. It is therefore important to corgRectrum (47)N = 32, and SNR = 20 dB. The abscissa is the spectral width
th f fthe BL d the PP thod ﬁéaled byT,, and the ordinate is the RMSE @f; scaled by\/;\_"TS. The
pare the perrormances or the bL and (he MEetNoas 1k nie MSE is obtained from 100 Monte Carlo simulations per point. The

spectra having those features. The rectangular spectrarB-0.50f ., and the standard deviation of the PPM are also plotted.
is the form that exhibits the largest spectral width in the
smaller frequency interval. In addition, by using linea|

=

=

I 04
:

T

~

0.3F

T, (B[

@

lz

0.2

01

SNR =20 dB

I ! s
0.05 01 6.15 0.2 0.25

Normatized Spectrum Width - o Tq

combination of rectangular forms. it is straiahtforward tBy the BLM simulation results. The behavior of the MLM can
build highlv skewed sgectra ' g De taken as equal to that of the BLM (within the limits of sample
g_ y P o i variability). Concerning the PPM and the PBM, it is clear they
The Gaussian spectral shape, considered in all works on SM§torm worse wher > 0.1.
estimation, is also included in this study, mainly for reference 1 theoretical PPM curve plotted in Fig. 3 is the variance of
purposes. . _ i givenin [2]. We stress the agreement between the variance
In all the results presented, it is assumed that noise is whilg, ' the sample MSE of PPM. This is a consequence of having
I.e., R (¢15) = O for [4| > 1, thus leading to a PSD associatednhiased mean frequency PPM estimates when the spectrum
with { R, (¢T’,)} given by (24). _ exhibits symmetry about the mean frequency [29]. However,
In all simulations next presented, the sample m&as 0b- s is not so when the spectrum is asymmetric.
tained from 100 Monte Carlo simulations per point. Fig. 4—Spectral Width:In this figure, the abscissa is the
same as in Fig. 3, and the ordinate is the RMSE afcaled
A. Symmetric Spectra by VNT,.

Figs. 3 and 4 display statistics relative to the Gaussian-shaped he theoretical BLM MSE presented in Fig. 4 is greater than

PSD the CRB fors < 0.1. However, foro > 0.1, these two statistics
\ 1 2 are nearly equal. The MLM performance is very close to the
yF)=—— exp| ———— | + R.(0 i
y(F) V2r (oT,) p < 2(0T5)2> (0) CRB for all values ofs considered. The PPM and the PBM

behaviors are similar to that of BLM far < 0.1. Yet, foro >
0.1, the performance of the former two degrades severely.

The theoretical PPM curve plotted in Fig. 4 is the variance of
& givenin [2]. The slight increase between the variance and the
sample MSE of the PPM is due to the nonnegligible bias of this
estimator foro > 0.15.

In conclusion, for SNR = 20 dBN 32, 0,
oT; € [0.02.0.25], and Gaussian-shaped spectra, we have the
following.

Fel[-% 3] (47)
which, assuming a negligible aliasing (i.e7, < 0.25), is

obtained from the underlying continuous PSD

Sulf) = —

o (P20

V2ro
Spectrum (48) has powen, = 1, mean frequency;; = 0,
and spectral widtly. The sample size is set f§ = 32 and the
SNR= 20 dB (R,,(0) = 0.01).

(48)

Fig. 3—Mean Frequencyin this figure, the abscissa is the
scaled spectral widtl¥7;, which takes values in the interval
[0.02, 0.25] (o 0.02 corresponds nearly to a sinusoid,
whereass > 0.25 would lead to aliasing). The ordinate is the
root mean square error (RMSE) of scaled by/NT,,.

We call attention to the closeness between the theoretical
BLM MSE and the CRB. For the present choice of spectrum
parameters, the BLM is almost efficient. This fact is confirmed

1) The BLM and MLM produce estimates @fi and&
that are practically unbiased.

2) The BLM and MLM produce estimates 6f that are
practically efficient.

3) The BLM produce estimates éf that are practically
efficient foro > 0.1.

4) The MLM delivers estimates af that are practically
efficient.
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Root Mean Square Error of Spectral Width Estimate 4+y S ( f)
. : ‘ — X
Simulation Theoretical
o5k —— MILM CRB 2 |
' —e— BIM ... BLM I
s —= PPM - ._. PPM
= PBM
'{él 04 —& 0.125
<o
Zos 1
= ] !7 I
z |
02 -0.5 -0.25 0.2ST 0375 0.5
0.3125
o Fig. 5. Asymmetric spectrum (49). Different degrees of asymmetry
SNR =20 dB are obtained by varying parameter. Maximum skewness is obtained,
o . ‘ . ‘ approximately, fory = 5.

!
0.05 0.1 0.15 0.2 0.25

Normalized Spectrum Width — o T, Bias of Mean Frequency Estimate
25 T . . . .

T T T T

SNR =20 dB

Fig. 4. RMSE of spectrum-width estimate, for Gaussian-shaped spectrum
(47). Axes and curves have the same meaning as in Fig. 3.

5) The BLM performs similarly to the PPM and the PBM
for low spectral widths. For high spectral widths, the _:
BLM generates better estimates than the PPM an

much better estimates than the PBM. . ) .
Simulation Theoretical

MLM  oeee BLM
——g— BLM

PPM

N T, (E{ (k-]

05

B. Asymmetric Spectra

Results presented in Figs. 6-9 correspond to the linear cot

e 03
bination of rectangular-shaped spectra
85 - ,
)\U(F) = 4 + ’Y{H (2Ff5) + ’YH[8(Ff5 - 03120)]} +Rn(0) -0'50 2 4 6 8 10 12 14 16 18 20

Spectrum Asymmetry Controling Parameter - y

fssa:(f:FfS)

) ) . . (49) Fig. 6. Bias of mean-frequency estimdie for the spectrum of Fig. 5V =
Fig. 5 showsS,(f). Fory = 0, S,, is symmetric with respect 32, and SNR =20 dB. Parametecontrols the degree of skewness. The ordinate

to the origin having SM'sng = 1, py = 0, ando = 0.144. is the bias ofi, scaled byNT;. The sample bias is obtained from 100 Monte
’ . Y ' . Carlo simulations per point.

Forvy = oo, S, is symmetric with respect t¢" = 0.3125,

having SM’'smg = 1, u; = 0.3125, ando = 0.036. Varying

vinthe interval(0, cc) yields spectra with different degrees of Root {wean %q“are Error OfMean Frequelncy Es'nmatel
asymmetry. o _
Studying the behavior of SM estimators in the case of asyn ol : MMLM MCRB |
metric spectra is of interest, because this situation is found ’ T OBIM BLM
many applications (e.g., about 25% of the weather radar spec QQ vl —=  PPM |
are asymmetric [42]). On the other hand, it has been report(~Z. —=— PBM
that the PPM’s performance degrades as the degree of spec -
asymmetry increases [2], [29]. 2 ° |
From the results presented in Figs. 69, we conclude the fc @; o
lowing. Z '
1) The BLM and the MLM produce estimates of and 03 SNR=20d8
4 that are practically unbiased.
2) The biask[s — o] presented in Fig. 8 follows roughly 0245
the sample biag'[¢ — o].
3) The BLM and the MLM produce estimates f and e
¢ that are praCtica”y efficient. Spectrum Asymmetry Controling Parameter - y
4) The BLM and the MLM have performance somewhat

superior to that of PPB and m.UCh superior to that Qfg 7. RMSE ofthe mean-frequency estimatefor the asymmetric spectrum
PBM for the class of asymmetric spectra consideredof Fig. 5, N = 32, and SNR= 20 dB. The abscissa is the same as in Fig. 6.
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Bias of Spectral Width Estimate Root Mean Square Error of Mean Frequency Estimate
0.9 ‘ ‘ . . ‘ .
05 . T T r T r r r .
Simulation Theoretical
08 BLM CRB b
—+ _ PPM ... BLM

2,_\ 07\ g PBM 4

=

/': —

—_ =%

o 05 3

| <=

<o =
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a4 Simulation Theoretical e

z MLM  cooeeenee BLM Z
15 —— BLM
—=<*__ PPM
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Spectrum Asymmetry Controling Parameter - y Sample Size ~ N

) . ) o ) Fig. 10. RMSE of the mean-frequency estimaefor the spectrum of Fig. 5,
Fig.8. Bias of the spectrum-width estimatéor the spectrum of Fig. 5V = = 5, SNR= 20 dB, andN variable. Coordinate and curves have the same
32, and SNR= 20 dB. Axes and curves have the same meaning as in Fig. 6 af@aning as in Fig. 3.

Fig. 7.
Root Mean Square Error of Spectral Width Estimate
0.9 : r T T T T
Root Mean Square Error of Spectrum Width Estimate Simulation Theoretical
T T T T T 08 - E
0.45 — o BLM CRB
8 ,, —=— PPM ... BLM
0.4+ B N":\ . N PBM 7
©
2 omsf Simulation Theoretical <6 08
= —w— MLM CRB =
° s —e— BLM ... BLM s 0
<b — = _ PPM @
= PBM " o4
& z
8 03
z
0.2
G~ e
0.1F 3
SNR =20dB
o . . . . . .
w . . . : ‘ 0 40 0 80 100 120
0885 2 4 6 8 10 12 14 16 18 20 Sample Size — N

Spectrum Asymmetry Controling Parameter - vy

Fig. 11. RMSE of the spectrum-width estimatdor the spectrum of Fig. 5,

i > o .
Fig. 9. RMSE of the spectrum-width estimagefor the spectrum of Fig. 5, 1. — 5, SNR= 20 dB, and/N variable. Ordinates and curves have the same

N = 32,and SNR= 20 dB. Axes and curves have the same meaning as in Flrgneanlng asin Fig. 3.

7.

bias that PPM and PBM have (independenth\f, for asym-

The difference reported in item 2 is due to the low sample-siZeetric spectra.
dimension used in the simulations [féf = 32, terms of order

O(N—2) are still not negligible]. D. Signal to Noise Ratio (SNR)
With the purpose of studying the dependence of the BLM on
C. Sample Size the SNR, we have performed simulations using data generated

according to the spectrum (49), taking= 5 and SNRe [5, 25]

Figs. 10 and 11 concern the MSE’s @f and ofg, respec- dB. For SNR= 10 dB, the BLM MSE is close to the CRB,
tively, as functions of the sample si2é. Data were generated smaller than the PPM one, and much smaller than the PBM one.
according to the spectrum (49), taking= 5 (this value ofy For 5 dB< SNR < 10 dB, the MSE (of:; and¢) depart from
corresponds, approximately, to the maximum of spectral skethe CRB, being smaller than the MSE of PBM, however. Still
ness). The MLM was not considered in this simulation, becausensidering the interval 5 dB SNR < 10 dB, and in compar-
the BLM is practically efficient (see curves of CRB and BLM inison to the PPM, the BLM exhibits better performance in the
Figs. 10 and 11). With respect to the PPM and PBM, the BLkhean frequency estimation and comparable performance in the
exhibits superior performance. This behavior is due to the largpectral-width estimation.
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VI. CONCLUSIONS

This paper introduces a novel nonparametric method for the
estimation of SM’s of stationary zero-mean normal circular-
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5) The BLM MSE is close to the CRB) for SNR= 10

dB.

6) The BLM MSE is close to the CRB) for & > 0.1.

complex processes immersed in additive white Gaussian noise! '€ results presented correspond to Gaussian and rectan-

The approach applies to discrete samples.

gular-shaped spectra. However, it was verified (by simulation)

By assuming that the PSD is bandlimited (a hypothesis vafig@t the drawn conclusions remain valid for other spectral

in applications such as weather radar, ultrasound imagi
clear-air turbulence measurement, SAR, and electroenceph
graphic analysis), it was shown that the SM’s can be obtain8
by linear combination of covariance-function samples taken

apes (e.g., triangular and rational). The justification for this
gﬁi}j is due to the behavior of terri; defined in (25), on which
lj considered statistics depend. They tend asymptotically to
igfegrals [e.g., (37) and (40)], having little sensitivity to the

the sampling instants with coefficients obtained from adequatgectral detail.

interpolating functions.

The number of terms of the linear combinations referred to
previously is infinite. However, in a practical implementation,
they must be somehow truncated. In order to minimize thelll
truncation error, a raised cosine-type interpolating filter was
adopted. This family of functions assures a vanishing rate[y]
proportional tok—2 (k denotes théth multiple of the sampling
period). In what concerns the SM;js and .2, it was shown =l
that a roll-off factor of only 0.2 in the raised-cosine filter and 4]
seven terms in the linear combinations lead to a truncation error
smaller than 0.01 and 0.0025, respectively.

By applying the invariance principle of the maximum-likeli- [s]
hood estimation to the truncated linear combinations, (assuming%
negligible truncation errors in comparison with the estimation 6l
standard deviation) maximum-likelihood estimators of the SM’s [7]
were obtained. This procedure was termed maximum-likelihood
method (MLM). (8]

An estimator with the same formal structure as the MLM,
but with the maximume-likelihood covariance sequence replaced
by the unbiased sample-covariance sequence, was also studied
This procedure was named bandlimited method (BLM).

The BLM exhibits the following statistical properties.

1) Nonnormalized SM estimators are unbiased, mean
square consistent, consistent with probability one, andL1]
asymptotically normal.

Normalized SM estimators are asymptotically unbi-[12
ased (with bias proportional f§ 1), mean square con-
sistent, consistent with probability one, and asymptot—[13]
ically normal.

The spectral-width estimator is asymptotically unbi-
ased (with bias proportional t§—*), mean square con- [14]
sistent, consistent with probability one, and asymptot-
ically normal.

The following conclusions concerning the mean frequency
and the spectral width are based on simulation results.

1) The BLM and the MLM performances are much better
than the ones of the PPM and the PBM for asymmetric
spectra.

2) The BLM and MLM performances are much better
than the ones of the PPM and the PBM, for spectra with1s]
medium or large spectral widths.

3) The BLM performance is comparable to the ones ofj;q
the PPB and the PBM for spectra with small spectral
widths.

4) The BLM and the MLM MSE’s are close to the
CRB(p1).

(20]

2)

3)

[15]

[17]

(20]
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