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Nonparametric Estimation of Mean Doppler and
Spectral Width
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Abstract—This paper proposes a new nonparametric method
for estimation of spectral moments of a zero-mean Gaussian
process immersed in additive white Gaussian noise. Although the
technique is valid for any order moment, particular attention
is given to the mean Doppler (first moment) and to the spectral
width (square root of the centered second-spectral moment). By
assuming that the power spectral density (PSD) of the underlying
process is bandlimited, the maximum-likelihood estimates of its
spectral moments are derived. A suboptimal estimate based on
the sample covariance is also studied. Both methods are robust
in the sense that they do not rely on any assumption concerning
the PSD (besides being bandlimited). Under weak conditions,
the set of estimates based on sample covariance is unbiased and
strongly consistent. Compared with the classical pulse pair and
the periodogram-based estimators, the proposed methods exhibit
better statistical properties for asymmetric spectra and/or spectra
with large spectral widths, while involving a computational
burden of the same order.

Index Terms—Bandlimited processes, maximum-likelihood,
nonparametric estimation, spectral moments.

I. INTRODUCTION

T HE GOAL of spectral estimation is to infer the power
spectral density (PSD) from a finite observation of the

underlying process. This subject has been extensively studied,
yielding a large set of techniques, each suited for a particular
situation. However, in many applications, the objective is the
determination of PSD functionals rather than the PSD itself.
This is the case of the spectral moments (SM’s), particularly
the mean power, the mean velocity, and the spectral width. Ap-
plication areas are weather radar [1]–[8], ultrasound imaging in
medicine [9]–[13], clear-air turbulence measurement [14], [15],
synthetic aperture radar (SAR) [16]–[19], and electroencephalo-
graphic analysis [20]–[22] to name a few.

Concerning Doppler weather radars, the goal is the deter-
mination of the first three spectral moments. These moments
are closely related to physical properties of the backscatterers
within the so-called resolution volume [5], [23]: the mean power
(zeroth moment) is related to the reflectivity (which, in the case
of rain, is an indicator of the water content), the mean frequency
(first moment) is related to the mean radial velocity, and the
spectral width (square root of the second-centered moment) is a
measure of the velocity dispersion.
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Ultrasound imaging is used in medicine for determination of
soft-tissue acoustic parameters [24]. Of particular interest in the
case of blood tissue are the three first-spectral moments [12],
[25]. The mean power is related to the scatterers’ (cells and other
structural details) density, the mean frequency is related to the
mean radial velocity, and the spectral width is a measure of the
blood-flow turbulence.

In the atmosphere, turbulence can be thought of as random
motion of a fluid (clear-air turbulence), thus causing variations
in the refractive index [23]. These variations produce radar
echoes that convey important information concerning atmo-
spheric winds, turbulence, and other meteorological phenomena
[14], [15]. Estimating the first three spectral moments from
clear-air echoes finds important applications in airport hazard
monitoring (for wind shear and wingtip vortices), detection of
severe storms, and transport phenomena of various atmospheric
pollutants.

Regarding SAR applications, the determination of the first
spectral moment, the so-called Doppler centroid, is required
for operations such as range-cell migration correction, azimuth
compression, and image registration [19].

Very often, SM’s must be estimated from a small number
of discrete samples. Normally, underlying this restriction are
either fast scanning rates or short-time observation windows.
For example, in a typical weather radar, the number of esti-
mates per complete aerial revolution can be as large as 3
360 000 [5], corresponding to 3 SM’s, with a spatial resolution
of 100 m 1 . This has to be done in real or near-real time,
which means a few tens of seconds. Furthermore, in order to
have, simultaneously, an acceptable azimuthal velocity (a few
revolutions per minute) and to prevent the broadening of the lat-
eral antenna pattern, the number of samples per estimate should
not be large. Typical values are in the set {16, 32, 64, 128}
(depending on the azimuthal velocity and on the lateral aerial
resolution). A similar scenario can also be found in ultrasound
imaging and clear-air turbulence measurement.

In summary, in many applications, SM’s estimators should
meet the requirement of being low in complexity (in a compu-
tational sense) yielding estimates of acceptable quality based on
small sample sizes.

A. Classical Estimators

As a statistical inference problem, the approach to SM esti-
mation can be classified as parametric or nonparametric.

Nonparametric techniques are based either on the PSD or on
the covariance function (CF) [26]. Accordingly, they are classi-
fied as spectral or covariance approaches, respectively. Seminal
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works [27]–[29] addressed a large set of combinations of spec-
tral and covariance approaches, including continuous and dis-
crete samples, real and complex processes, and white and col-
ored noise.

In [2], various estimators of mean Doppler frequency and
spectrum width are investigated. A technique therein called
spectral processing uses the fast Fourier transform (FFT) as an
efficient way, in a computational sense, to determine a spectral
estimate. This method is, in essence, the one proposed in [28],
in which the periodogram is replaced with a discrete version
computed by means of the FFT. Since this estimator is based on
the periodogram, it will be herein called the periodogram-based
(PB) estimator. Related references on this topic are [30] and
[31].

In the particular case of mean frequency, there exists a consid-
erable number of methods besides those mentioned in the above
paragraph. Namely, the Poly-Pulse-Pair family [32], which is
based on the methodology introduced in [29], the periodogram
maximization [4], the vector phase change [33], the scalar phase
change [34], and the time derivative [35].

Despite the wide variety of available SM estimators, the pulse
pair (PP) method introduced in [29], and the PB method, docu-
mented in [2], are the most widely used. This is a consequence
of a good tradeoff between complexity (measured in number of
floating-point operations) and quality of the estimates. Given a
sample of size , the complexities of the PP and PB algorithms
are of the order of and , respectively. The PP method
has the additional advantage of allowing different sampling in-
tervals, thus providing data to unfold the mean frequency when
aliasing is present. On the other hand, the PB procedure allows
us to edit the periodogram, which is important in some cases.
Application and additional research of these techniques to the
weather radar is carried out in [2], [5], and [36].

The PP and the PB statistical properties are well documented
(see e.g., [2], [3], [29], [30], [36], [37]). Namely, it has been
found that

1) PP Method:

1) The mean-frequency estimate is increasingly biased
with the spectral skewness.

2) The spectral-width estimate is biased (its bias increases
with the spectral width1).

3) The variances of both estimates are far from their
Cramér–Rao bounds (CRB) for all ranges of spectral
widths.

2) PB Method:

1) The mean-frequency estimator is biased due to the fi-
nite resolution associated with the FFT (this is a serious
problem whenever the sample dimension is small).

2) The spectral-width estimator is biased due to the win-
dowing effect associated with the FFT. This worsens as
the spectral width increases.

3) The variance of both estimates at low spectral widths is
close to the PP ones. However, at high spectral widths,
the performance of the PB method is better.

1 Work [36] proposes a modification of the spectral-width estimator intro-
duced in [29], which is unbiased for Gaussian-shaped spectra.

Despite the reported shortcomings, the PP and the PB esti-
mators are extensively used. As was mentioned previously, this
results from the good tradeoff between complexity and perfor-
mance.

Both PP and PB estimators are not optimal2 in the sense that
they were not derived from any optimality criterion, and they
are not able to achieve uniformly optimal statistical properties.
Concerning this matter, the maximum-likelihood (ML) criterion
plays a prominent role given its optimal properties, at least in
an asymptotic sense. In the field of ML spectral-moments esti-
mation, various approaches have been proposed [2], [38]–[40].
Besides ML, maximum entropy [41] and risk-based [7] criteria
have been suggested.

All the aforementioned criteria require parametrized PSD
models. By constraining the search space, parametric ap-
proaches deliver estimates with lower uncertainty compared to
nonparametric procedures. On the other hand, they generally
have higher complexity than nonparametric methods.

Another important issue, concerning the parametric ap-
proach, is the choice of a model able to accurately fit the
true PSD. In weather radar, the Gaussian spectral shape has
been extensively used. Although having some experimental
justification, the Gaussian-shape assumption is not without
weaknesses. This is shown in [42], where a systematic and
exhaustive measurement of spectral shape from precipitation
echoes is reported. We quote from [42]: “a Gaussian spectral
shape agrees reasonably with a large fraction of the obtained
spectra. However, in about a quarter of the cases, the deviation
from the Gaussian shape is considerable, e.g., one or both edges
may be too steep or too slight, the peak may be off-center,
there may be more than one peak.” Thus, a more accurate
spectral fitting should be looked for. This can be achieved, for
example, with autoregressive moving average (ARMA) models
of adequate dimension, of which the work reported in [15] is
an example. However, the complexity inherent in the ARMA
parameters estimation is unbearable in most applications.

As a conclusion to the above considerations, the classical
nonparametric PP and PB estimators are characterized by
having low complexity and tolerable, sometimes poor, per-
formance. On the other hand, the parametric estimators rely
strongly on spectral shape assumptions. In this sense, they are
not robust. Moreover, their complexity is frequently incompat-
ible with practical applications.

B. Rationale of the Proposed Approach

The method herein presented assumes that the PSD of the un-
derlying process is bandlimited. This hypothesis is meaningful,
for example, in weather radar, ultrasound imaging, clear-air,
and synthetic aperture radar (SAR) applications. In fact, in
these cases, the PSD associated with each resolution volume is
a weighted replica of the scatterers velocity distribution in the
same volume [43], [44]. Since in each resolution volume the
scatterers have a maximum and a minimum velocity, the PSD
is bandlimited. The sampling theorem assures, therefore, that
the CF can be exactly recovered from its discrete samples, as

2 For Gaussian processes, if the samples can be split into independent pairs,
which is an unrealistic assumption in most cases, the PP estimator is of max-
imum likelihood [29].
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long as the sampling rate is equal to or greater than the Nyquist
frequency. On the other hand, the SM’s relate easily to the CF
derivatives. In the sequel, the name bandlimited (BL) will be
used to designate the proposed methodology.

The simple strategy we are proposing seems like it has not
been fully explored in the literature. To our knowledge, only
the work described in [10], in the field of ultrasound blood-ve-
locity measurements, explores the bandlimited concept. How-
ever, their approach and methodology diverge from ours.

The paper organization is as follows. Section II introduces no-
tation, formulates the SM estimation problem, and derives the
ML estimates under the BL assumption. In Section III, the in-
terpolation filter design is considered. A suboptimal estimator
based on the sample covariance at different lags and its statis-
tical characterization is presented in Section IV. Experimental
results and comparisons with the PP and PB estimators are re-
ported in Section V.

II. PROBLEM FORMULATION

The BL method computes SM estimates from discrete sam-
ples. It is assumed, however, that there is an underlying process
defined on , from which discrete samples are taken. This is, in
fact, a typical situation in all the applications referred to in the
introduction.

Let and be indepen-
dent, stationary, zero-mean, normal, complex processes, with
covariance functions and

, respectively. Also, define .
Wide-sense stationarity and strict-sense stationarity are

equivalent in real normal processes. This is not the case
with complex processes. A zero-mean, wide-sense, stationary
complex, normal process is strict-sense stationary if and
only if is a function only of [26]. We further
assume that the processesand are circular, which means
that and for all

[45].
It should be stressed that the circular and normal assump-

tions are, to a great extent, physically meaningful in many ap-
plications such as weather radar, ultrasound imaging, clear-air
turbulence measurement, and SAR [46]–[51]. Nevertheless, the
Gaussian hypothesis could be discharged, since it plays no role
in the BL approach (except for its statistical characterization).

Define and as the PSD’s of processesand ,
respectively. The SM estimation problem is stated as follows.
Given the -dimensional sample vector
with , find estimators for the entities below (as-
sumed to exist).

1) the th spectral moment, defined as

(1)

2) the normalized th spectral moment defined as

(2)

3) the spectral width defined as

(3)

Estimators of , , and will be denoted
by , , and , respectively.

It will be assumed that the noise CF is known. This is
not a severe restriction since, in most applications, this function
can be estimated with arbitrary precision in the signal absence.

A. Bandlimited Solution

Assume that process has absolutely continuous spectral
distribution function . Then , where denotes
the derivative. Further assume thatis of energy type and ban-
dlimited, i.e.,

where

with

Assumptions and and the Schwarz’ inequality assure
that for any

(4)

that is, the SM’s of do exist for any .
Inequality (4) for implies that is absolutely inte-

grable. This condition assures that

(5)

exists and is continuous and nonnegative definite on
(Bochner’s Theorem [26, Theorem 5.1]). The above properties
of , together with inequality (4), assure that [the

th derivative of ] with has the following
properties [26, Theorem 5.2]:

exists for

is uniformly continuous on

Property allows us to write the SM’s as

(6)

Given the assumptions and , a slight modification of
the Wittaker–Shannon–Kotel’nikov sampling theorem (see e.g.,
[52]) leads to [48]

(7)
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Fig. 1. Interpolation filter.

where is a well-behaved function whose Fourier transform
fulfills

(8)

Fig. 1 shows two interpolation filters satisfying (8). If
was chosen to be the ideal lowpass filter with cutoff frequency

, then (7) would be exactly the Wit-
taker–Shannon–Kotel’nikov sampling theorem. The problem
with the ideal lowpass filter is that its time response tends to
zero with as . This low vanishing rate is not
tolerable, mainly for small sample sizes. However, this problem
can be lightened by choosing a filter with a smooth variation
in the interval . This issue will be addressed in Section
III.

Placing (7) into (6) leads to

(9)

with and for
. Expression (9) is the basis of our ap-

proach to SM estimation. The following sections are mostly
devoted to the design of suitable coefficients and to the
estimation of sequence .

B. Maximum-Likelihood Estimate

As expressed in (9), estimates are somehow functions
of the infinite sequence . However, since our ap-
proach is nonparametric, given a sample vectorof size ,
only the sequence can be esti-
mated from . Thus, the infinite sum (9) cannot be computed
and should be replaced by a truncated version. This raises no se-
rious problems if the truncation error is small. Assume that for
a given positive number , there exists an integer such that

(10)

Under these conditions, the magnitude of the error between
and sum (9), truncated to , is smaller than (notice
that the nonnegative nature of implies that
). Since , the magnitude of the error between

and the truncated version is smaller than.

In what follows, we assume that is negligible compared
to the estimation error and denote theth SM as the sum (9)
truncated to . The choice of the interpolation function
and the size of the truncated sum (9) will be addressed
in Section III.

The invariance principle of ML estimation [53] states that if
is a mapping of onto , with ,

, and , and is the ML estimate of , then
is the ML estimate of . By applying this principle to

a truncated version of (9), we obtain ML estimates of the SM’s
given by

(11)

(12)
The same concept applies to the ML spectral width estimator.
Hence

(13)

Expressions (11)–(13) are exact ML estimates (under the ban-
dlimited and negligible assumptions). They are simple func-
tions of ML sequences . However,
to our knowledge, they have not been derived and used in the
literature.

III. I NTERPOLATION FILTER

A desirable characteristic of coefficients is that their van-
ishing rate be as large as possible so that, given, inequality
(10) is satisfied for the lowest possible value of .

In accordance with the considerations of Section II-A, in case
of (sampling rate equal to Nyquist rate), there is no al-
ternative to the ideal low-pass filter . How-
ever, if the sampling rate is greater than the Nyquist rate, then the
vanishing rate of coefficients can be significantly increased.
This is achieved by choosing an interpolation filter with a
finite roll-off rate within the interval ( is, by as-
sumption, even). Fig. 1 illustrates this concept (for simplicity,

). The gray rectangles demarcate the frequency inter-
vals for which is not defined. The length of these intervals
is characterized by the roll-off factor with

.
The behavior of , and consequently of , depends

on the continuity properties of and of
its successive derivatives. If and all its derivatives up to
order exist and are of bounded variation in, then its inverse
Fourier transform tends to zero at least as fast as
when . This result is a minor variation of [54, Theorem
1, p. 95].

In this work, we have chosen to be the raised cosine
filter with impulse response [55 p. 179]
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Fig. 2. Upper bound of truncation error associated with interpolation
coefficientsh . Parameter� is the roll-off factor of the raised-cosine filter.

where is the roll-off factor. If , coefficients
tend to zero with as , as opposed to for .

Fig. 2 illustrates the behavior of for
different values of the roll-off factor. For example, if ,
which demands a sampling rate 1.25 above the Nyquist rate, an
upper bound is achieved with just . In the
case of , the same value of leads to .

IV. SAMPLE COVARIANCE-BASED ESTIMATE

Under weak regularity conditions, estimates and ,
for , and given by (11)–(13), respectively,
are best asymptotic normal estimates [44]. Despite the good-
ness of ML estimates, analytic solutions to the correspondent
maximization problem are available only in a few simple cases.
Numerical solutions are, very often, difficult to program and are
computationally intensive (see e.g.,[56]–[58]).

Taking into account (9) or ML estimators (11)–(13), it seems
reasonable to exploit the properties of

(14)

(15)

(16)

where, is the sequence of unbiased
sample covariance estimates. Assume that for

. Given the sample vector of size , the unbi-
ased sample covariances are given by

(17)

tr (18)

where , tr denotes the trace operator, and
is a null matrix, except for theth diagonal, where its entries are

set to . The even nature of and the Hermitian
property allow writing

Im (19)

Re

(20)
meaning that even SM’s depend only on Reand odd SM’s
depend only on Im .

Since the number of sample covariances needed to deter-
mine the SM is moderate (typically smaller than 10), estimates

can be computed directly with approxi-
mately complex floating-point operations. Alternatively,
they can be computed by inverting the periodogram, which has
a complexity of the order of .

The two sets of estimators (11)–(13) and (14)–(16) will be
termed ML method and BL method, respectively.

A. Statistical Characterization

The statistical characterization of and for
, and given by (14)–(16), respectively,

was carried out in [44]. Herein, pertinent statistical properties
of those estimators are stated without proof.

The PSD of sequence , denoted
by , plays a central role in some of the following results.
By definition

(21)

Since , then
.

In order to relate with the underlying continuous echo
and noise spectra and , define

(22)

is assumed to exist. By applying the Poisson formula to (22),
after some manipulation, one concludes that
for . Noting that has limited support
with , it results that

(23)

with

Very often, the noise CF verifies for ,
which defines a white noise sequence. In this case

(24)
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In what follows, it is convenient to define

tr (25)

where

(26)

and

(27)

The statistical characterization next presented is sectioned
into three parts corresponding to zeroth SM, normalized SM’s,
and spectral width.

1) Zeroth Spectral Moment:The estimate exhibits
the following statistical properties.

1) It is unbiased and has variance given by

(28)

with introduced in (25).
2) It is consistent with probability one (w.p.1) and also in

the mean-square sense, verifying

(29)

where .

3) The sequence is asymptotically normal
with zero-mean and variance given by (29).

2) Normalized Spectral Moments:The estimates with
exhibit the following statistical properties.

1) They are asymptotically unbiased

(30)

where symbol means that
for some , and every .

2) They are consistent w.p.1 and in the mean-square sense
as well

(31)
3) The sequence is asymptotically normal

with zero-mean and variance given by

(32)

where is the discrete Fourier series (DFS) of
sequence given by

(33)

Function , defined in (33), is closely related to the
interpolation function introduced in Section III. Suppose

for a while that . Recalling that and that
, expression is then given by

(34)

Applying the Poisson formula to (34) yields

(35)

Filter has support . Since
, the neighbor replicas and

overlap if . Nevertheless, in the interval
, with , there is no overlapping.

This implies that

(36)

since for .
For finite, filter is obtained by noting that

its coefficients are given by the product
rect . Thus, is

the period 1 convolution of (35) with the DFS of rect .
Considering that was chosen in such a way that
is small, this convolution does not change substantially (35).
Under these conditions, we conclude that

(37)

3) Spectral Width:The estimate exhibits the following
statistical properties.

1) It is asymptotically unbiased with

(38)

2) It is consistent w.p.1 and also in the mean-square sense
with

(39)

where .
3) The sequence is asymptotically normal

with zero-mean and variance given by

(40)
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Again, using the fact that for
, the variance (40) is approximately given by

(41)

The sample covariances of a Gaussian
AR process are asymptotically efficient [53, Theorem 5.8].
Since any process can be approximated by an ARprocess,
it is reasonable to admit that the sample covariances

are asymptotically efficient, as well as the
SM’s estimators herein proposed, which are based on the sample
covariances.

Asymptotic variances of given by (37), with , and
of given by (41), are exactly the same as presented in [2] and
[30] for the PB method. Despite this asymptotic similarity, the
BL estimators of and perform better than the corresponding
PB ones for small sample sizes. This will become clear in the
next section.

V. PERFORMANCEEVALUATION

This section presents theoretical and simulation results con-
cerning the mean frequency and the spectral width, aiming
at the comparison of the BL method (BLM), the ML method
(MLM), the PB method (PBM), and the PP method (PPM). The
following statistics are evaluated:

1) BLM biases and given by (30)
and (38), respectively;

2) BLM mean square errors (MSE’s) and
given by (31) and (39), respectively;

3) Cramér–Rao Bounds(CRB’s) of parameters and
with respect to the covariance sequence

;
4) sample mean biases and of the

BLM, the MLM, the PPM, and the PBM (
denotes the sample mean ofinde-

pendent samples of random variable);
5) BL estimates of and computed according to (15)

and (16), respectively, whereas ML estimates of these
parameters are given by (12) and (13), respectively;

6) Sample MSE’s and of the
BLM, the MLM, the PPM, and the PBM.

The following remarks are in order.

1) The random vector was generated according to
, where is a zero-mean -dimensional,

normal, circular-complex random vector of covariance
matrix (identity), and is the square
root of covariance matrix , which exists
since is Hermitian and nonnegative definite

2) The SM’s are functions of the covariance sequence
. On the other hand, the prob-

ability density function of the random vector of
size depends on . Since
the present approach is nonparametric (i.e., no as-
sumption is made concerning the structure of the

covariance function (besides being bandlimited), the
CRB should be determined with respect to the whole
set of parameters . Define

, where Re Re
and Im Im . The variance of any
unbiased estimate of , such as subject to some
regularity conditions, verifies [26]

(42)

where is the Jacobian matrix of , is the infor-
mation matrix, and is the CRB.

From (12), for and (13), and also taking into
account (19) and (20), one gets the Jacobians ofand

, respectively, as

(43)

(44)

where

(45)

For normal circular-complex random vectors, the element
of the information matrix is given by [26]

tr (46)

Since is Hermitian and Toeplitz, its derivatives with
respect to are very easy to determine. To compute
the whole matrix , we adopted the method proposed in
[48] and [59], with complexity . Notice that
computing according to (46) (one inverse, three matrix
products, and one trace) would have the unbearable com-
plexity of .

3) The ML estimates and depend both on the ML
sequence . This is a well-known in-
stance of estimation of structured covariance matrix, par-
ticularly of ML estimation of Toeplitz covariance ma-
trices [56]–[58], [60]–[62].

In this work, we adopted the methodology proposed in
[56] with slight adaptations. Basically, the iterative ex-
pectation-maximization scheme [63], [64] was used to
generate a sequence of covariance matrices , for

, with increasing likelihood
4) The CRB refers to unbiased estimates. However, the

methods herein considered are biased, mainly in what
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spectral width is concerned. Nevertheless, the CRB is
plotted jointly with the MSE’s of the estimates. The
main reason for this is that in many situations, the BML
is almost unbiased, being therefore comparable with the
CRB.

The results next presented are grouped under the following
major topics: a) symmetric spectra; b) asymmetric spectra; c)
sample size; and d) SNR.

Gaussian and linear combination of rectangular spectral
shapes are considered. The underlying reasons for studying
linear combinations of rectangular forms are the following.

• According to (37) and (41), the performance of the BLM
depends above all on how the spectral mass is clustered in
the neighborhood of the respective SM. It does not depend,
therefore, on small spectrum details. Linear combination
of rectangular forms is a simple way of placing spectral
mass.

• As stated and documented in the introduction, the PPM
performance degrades as the degree of skewness and/or
spectral width increases. It is therefore important to com-
pare the performances of the BL and the PP methods for
spectra having those features. The rectangular spectrum
is the form that exhibits the largest spectral width in the
smaller frequency interval. In addition, by using linear
combination of rectangular forms, it is straightforward to
build highly skewed spectra.

The Gaussian spectral shape, considered in all works on SM’s
estimation, is also included in this study, mainly for reference
purposes.

In all the results presented, it is assumed that noise is white,
i.e., for , thus leading to a PSD associated
with given by (24).

In all simulations next presented, the sample meanis ob-
tained from 100 Monte Carlo simulations per point.

A. Symmetric Spectra

Figs. 3 and 4 display statistics relative to the Gaussian-shaped
PSD

(47)

which, assuming a negligible aliasing (i.e., , is
obtained from the underlying continuous PSD

(48)

Spectrum (48) has power , mean frequency ,
and spectral width . The sample size is set to and the
SNR dB ( ).

Fig. 3—Mean Frequency:In this figure, the abscissa is the
scaled spectral width , which takes values in the interval

( corresponds nearly to a sinusoid,
whereas would lead to aliasing). The ordinate is the
root mean square error (RMSE) of scaled by .

We call attention to the closeness between the theoretical
BLM MSE and the CRB. For the present choice of spectrum
parameters, the BLM is almost efficient. This fact is confirmed

Fig. 3. RMSE of mean-frequency estimatê� for the Gaussian-shaped
spectrum (47),N = 32, and SNR = 20 dB. The abscissa is the spectral width
scaled byT , and the ordinate is the RMSE of̂� scaled by

p
NT . The

sample MSE is obtained from 100 Monte Carlo simulations per point. The
CRB−0.5 of � and the standard deviation of the PPM are also plotted.

by the BLM simulation results. The behavior of the MLM can
be taken as equal to that of the BLM (within the limits of sample
variability). Concerning the PPM and the PBM, it is clear they
perform worse when .

The theoretical PPM curve plotted in Fig. 3 is the variance of
given in [2]. We stress the agreement between the variance

and the sample MSE of PPM. This is a consequence of having
unbiased mean frequency PPM estimates when the spectrum
exhibits symmetry about the mean frequency [29]. However,
this is not so when the spectrum is asymmetric.

Fig. 4—Spectral Width:In this figure, the abscissa is the
same as in Fig. 3, and the ordinate is the RMSE ofscaled
by .

The theoretical BLM MSE presented in Fig. 4 is greater than
the CRB for . However, for , these two statistics
are nearly equal. The MLM performance is very close to the
CRB for all values of considered. The PPM and the PBM
behaviors are similar to that of BLM for . Yet, for

, the performance of the former two degrades severely.
The theoretical PPM curve plotted in Fig. 4 is the variance of
given in [2]. The slight increase between the variance and the

sample MSE of the PPM is due to the nonnegligible bias of this
estimator for .

In conclusion, for SNR = 20 dB, , ,
, and Gaussian-shaped spectra, we have the

following.

1) The BLM and MLM produce estimates of and
that are practically unbiased.

2) The BLM and MLM produce estimates of that are
practically efficient.

3) The BLM produce estimates of that are practically
efficient for .

4) The MLM delivers estimates of that are practically
efficient.
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Fig. 4. RMSE of spectrum-width estimatê� , for Gaussian-shaped spectrum
(47). Axes and curves have the same meaning as in Fig. 3.

5) The BLM performs similarly to the PPM and the PBM
for low spectral widths. For high spectral widths, the
BLM generates better estimates than the PPM and
much better estimates than the PBM.

B. Asymmetric Spectra

Results presented in Figs. 6–9 correspond to the linear com-
bination of rectangular-shaped spectra

(49)
Fig. 5 shows . For , is symmetric with respect
to the origin, having SM’s , , and .
For , is symmetric with respect to ,
having SM’s , , and . Varying

in the interval yields spectra with different degrees of
asymmetry.

Studying the behavior of SM estimators in the case of asym-
metric spectra is of interest, because this situation is found in
many applications (e.g., about 25% of the weather radar spectra
are asymmetric [42]). On the other hand, it has been reported
that the PPM’s performance degrades as the degree of spectral
asymmetry increases [2], [29].

From the results presented in Figs. 6–9, we conclude the fol-
lowing.

1) The BLM and the MLM produce estimates of and
that are practically unbiased.

2) The bias presented in Fig. 8 follows roughly
the sample bias .

3) The BLM and the MLM produce estimates of and
that are practically efficient.

4) The BLM and the MLM have performance somewhat
superior to that of PPB and much superior to that of
PBM for the class of asymmetric spectra considered.

Fig. 5. Asymmetric spectrum (49). Different degrees of asymmetry
are obtained by varying parameter
. Maximum skewness is obtained,
approximately, for
 = 5.

Fig. 6. Bias of mean-frequency estimate�̂ for the spectrum of Fig. 5,N =

32, and SNR = 20 dB. Parameter
 controls the degree of skewness. The ordinate
is the bias of̂� scaled byNT . The sample bias is obtained from 100 Monte
Carlo simulations per point.

Fig. 7. RMSE of the mean-frequency estimate� for the asymmetric spectrum
of Fig. 5,N = 32, and SNR= 20 dB. The abscissa is the same as in Fig. 6.
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Fig. 8. Bias of the spectrum-width estimate�̂ for the spectrum of Fig. 5,N =

32, and SNR= 20 dB. Axes and curves have the same meaning as in Fig. 6 and
Fig. 7.

Fig. 9. RMSE of the spectrum-width estimate�̂ for the spectrum of Fig. 5,
N = 32, and SNR= 20 dB. Axes and curves have the same meaning as in Fig.
7.

The difference reported in item 2 is due to the low sample-size
dimension used in the simulations [for , terms of order

are still not negligible].

C. Sample Size

Figs. 10 and 11 concern the MSE’s of and of , respec-
tively, as functions of the sample size. Data were generated
according to the spectrum (49), taking (this value of
corresponds, approximately, to the maximum of spectral skew-
ness). The MLM was not considered in this simulation, because
the BLM is practically efficient (see curves of CRB and BLM in
Figs. 10 and 11). With respect to the PPM and PBM, the BLM
exhibits superior performance. This behavior is due to the large

Fig. 10. RMSE of the mean-frequency estimate�̂ for the spectrum of Fig. 5,

 = 5, SNR= 20 dB, andN variable. Coordinate and curves have the same
meaning as in Fig. 3.

Fig. 11. RMSE of the spectrum-width estimate�̂ for the spectrum of Fig. 5,

 = 5, SNR= 20 dB, andN variable. Ordinates and curves have the same
meaning as in Fig. 3.

bias that PPM and PBM have (independently of), for asym-
metric spectra.

D. Signal to Noise Ratio (SNR)

With the purpose of studying the dependence of the BLM on
the SNR, we have performed simulations using data generated
according to the spectrum (49), taking and SNR
dB. For SNR≥ 10 dB, the BLM MSE is close to the CRB,
smaller than the PPM one, and much smaller than the PBM one.
For 5 dB≤ SNR < 10 dB, the MSE (of and ) depart from
the CRB, being smaller than the MSE of PBM, however. Still
considering the interval 5 dB≤ SNR < 10 dB, and in compar-
ison to the PPM, the BLM exhibits better performance in the
mean frequency estimation and comparable performance in the
spectral-width estimation.
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VI. CONCLUSIONS

This paper introduces a novel nonparametric method for the
estimation of SM’s of stationary zero-mean normal circular-
complex processes immersed in additive white Gaussian noise.
The approach applies to discrete samples.

By assuming that the PSD is bandlimited (a hypothesis valid
in applications such as weather radar, ultrasound imaging,
clear-air turbulence measurement, SAR, and electroencephalo-
graphic analysis), it was shown that the SM’s can be obtained
by linear combination of covariance-function samples taken at
the sampling instants with coefficients obtained from adequate
interpolating functions.

The number of terms of the linear combinations referred to
previously is infinite. However, in a practical implementation,
they must be somehow truncated. In order to minimize the
truncation error, a raised cosine-type interpolating filter was
adopted. This family of functions assures a vanishing rate
proportional to ( denotes theth multiple of the sampling
period). In what concerns the SM’s and , it was shown
that a roll-off factor of only 0.2 in the raised-cosine filter and
seven terms in the linear combinations lead to a truncation error
smaller than 0.01 and 0.0025, respectively.

By applying the invariance principle of the maximum-likeli-
hood estimation to the truncated linear combinations, (assuming
negligible truncation errors in comparison with the estimation
standard deviation) maximum-likelihood estimators of the SM’s
were obtained. This procedure was termed maximum-likelihood
method (MLM).

An estimator with the same formal structure as the MLM,
but with the maximum-likelihood covariance sequence replaced
by the unbiased sample-covariance sequence, was also studied.
This procedure was named bandlimited method (BLM).

The BLM exhibits the following statistical properties.

1) Nonnormalized SM estimators are unbiased, mean
square consistent, consistent with probability one, and
asymptotically normal.

2) Normalized SM estimators are asymptotically unbi-
ased (with bias proportional to ), mean square con-
sistent, consistent with probability one, and asymptot-
ically normal.

3) The spectral-width estimator is asymptotically unbi-
ased (with bias proportional to ), mean square con-
sistent, consistent with probability one, and asymptot-
ically normal.

The following conclusions concerning the mean frequency
and the spectral width are based on simulation results.

1) The BLM and the MLM performances are much better
than the ones of the PPM and the PBM for asymmetric
spectra.

2) The BLM and MLM performances are much better
than the ones of the PPM and the PBM, for spectra with
medium or large spectral widths.

3) The BLM performance is comparable to the ones of
the PPB and the PBM for spectra with small spectral
widths.

4) The BLM and the MLM MSE’s are close to the
CRB .

5) The BLM MSE is close to the CRB for SNR≥ 10
dB.

6) The BLM MSE is close to the CRB for .

The results presented correspond to Gaussian and rectan-
gular-shaped spectra. However, it was verified (by simulation)
that the drawn conclusions remain valid for other spectral
shapes (e.g., triangular and rational). The justification for this
fact is due to the behavior of terms defined in (25), on which
all considered statistics depend. They tend asymptotically to
integrals [e.g., (37) and (40)], having little sensitivity to the
spectral detail.
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