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Abstract—Over the past years, many algorithms have been de- a result, criteria used for multispectral image classification
veloped for multispectral and hyperspectral image classification. are usually designed to explore spectral characteristics rather
A general approach to mixed pixel classification is linear spectral than spatial properties, as used in digital image processing

unmixing, which uses a linear mixture model to estimate the abun- 2151, A uni feat f i tral i |assificati
dance fractions of signatures within a mixed pixel. As a result, the [2]-{5]. A unique feature of multispectral image classification

images generated for classification are usually gray scale images,that does not exist in standard image processing is the occur-
where the gray level value of a pixel represents a combined amount rence of spectral mixtures within pixels. Spectral unmixing is

of the abundance of spectral signatures residing in this pixel. Due particularly important with high spectral resolution imaging

to a lack of standardized data, these mixed pixel algorithms have spectrometers. These sensors use as many as 200 contiguous

not been rigorously compared using a unified framework. In this band d band di i tral f
paper, we present a comparative study of some popular classifica- anas and can uncover narrow-band cdiagnostic spectral tea-

tion algorithms through a standardized HYDICE data set with a  tures of materials that cannot be resolved by multispectral
custom-designed detection and classification criterion. The algo- imagers. Two such important imagers currently in use are
rithms to be considered for this study are those developed for spec- the NASA Jet Propulsion Laboratory's 224-band Airborne
tral unmixing, the orthogonal subspace projection (OSP), max- yjsjple/InfraRed Imaging Spectrometer (AVIRIS) and the
imum likelihood, minimum distance, and Fisher's linear discrimi- \ .
nant analysis (LDA). In order to compare mixed pixel classification Naval Research.Laborator.yS 210-band HYperspectral Digital
algorithms against pure pixel classification algorithms, the mixed Imagery Collection Experiment (HYDICE) sensor. One of
pixels are converted to pure ones by a designed mixed-to-pure pixel major challenges in hyperspectral image processing is how
converter. The standardized HYDICE data are then used to eval- to process the enormous amount of information provided by
uate the performance of various pure and mixed pixel classification hyperspectral images without spending effort on undesired/un-

algorithms. Since all targets in the HYDICE image scenes can be . . o . . .
spatially located to pixel level, the experimental results can be pre- wanted information [6]. Additionally, the data dimensionality

sented by tallies of the number of targets detected and classified for Of hyperspectral imagery is generally tens of times more than
quantitative analysis. that of multispectral imagery. As a consequence, methods
Index Terms—Linear discriminant analysis (LDA), linear un- d€veloped for multispectral image processing such as principal
mixing, maximum likelihood estimator (MLE), minimum distance, ~ components analysis/canonical analysis [7], minimum distance
mixed-to-pure pixel (M/P) converter (M/P converter), oblique sub- [1], maximum likelihood (ML) classification [8]-[13], and
space projection (OBSP), orthogonal subspace projection (OSP), decision boundary-based feature extraction [14] can be further
s\llgq_iﬁ\ljlrpecspace projection (SSP), winner-take-all M/P converter improved for hyperspectral imagery.
( ) Harsanyi and Chang [15], [16] introduced an orthogonal sub-
space projection (OSP)-based classifier for hyperspectral image
|. INTRODUCTION classification. It implemented an orthogonal subspace projector

MAGE classification is a segmentation method that aggrgl conjunction with a matched filter to derive a classifier for

im ixels in finite number of cl r xed pixel classification. It has been successfully applied for
gates image pixels into a finite numbe Ol classes by ce ta{mYDICE data exploitation [17]-[19]. A variety of OSP-based
rules so that each class represents a distinct entity with spe-

cific properties [1]. In general, it can be viewed as a Iabg assifiers were also developed, such asghgosterioriOSP

assignment by which image pixels sharing similar properti SOSP) classifier [20], the oblique subspace projection clas-

will be assigned to the same class. Since multispectral ima .é@er (OBC) [21], the desired target detection and classifica-

are acquired at different spectral wavelengths, a multispect| ! a_IfgorLFhm (:D TD.tﬁA) ir}dsgiauztgm?tlc tatr_getl dett(ra]ctlgnsind
image pixel can be represented by a pixel vector, in whi assification algorithm ( ) [22]. In particular, the )

each component corresponds to a specific wavelength. %SEd methods were a.Iso 'shown n [2.1.]' [23]’ [24] to be equiv-
alent to the maximum likelihood classifier, given that the noise
is additive and Gaussian. So all of these classifiers turned out to
perform the same spectral unmixing.
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the performance of any new algorithm cannot be substartibn to used for experiments. Section VI presents a comparative
ated. In this paper, we take a first step by conducting a comerformance analysis for classifiers described in Sections Il and
parative study of performance analysis among several cladsf-and Section VII concludes with some remarks.

fication algorithms. We confine our study to linear spectral

mixing problems only. Additionally, we consider two types II. LINEAR MIXING PROBLEMS AND OSP APPROACH

of classification: mixed pixel classification and pure pixel
classification. A general approach to mixed pixel classifica-

tion (such as spectral unmixing) is to estimate the abunda . L . X
fraction of a material of interest present in an image pixecfomponents [25], [26]. Since every pixel is acquired by multiple
’g(_ectral bands, it can be represented by a column vector where

and then the estimated abundance fraction is used to ci&

sify the pixel. However, this generally requires visual inter?aCh component represents a particular band. Supposk &hat

pretation. Such human intervention is rather subjective aHEF number of spectral bands. lrebe anl x 1 column vector

may not be reliable or repeatable. With no availability ap a multispectral or hyperspectral image where vectors are all

standardized data or objective criteria, a quantitative analyggldfaced' In this case, each pixel is considered 1o be a pixel

for mixed pixel classification is almost impossible. By conyector of dimensiorL.. Assume tha\/ is anL x p signature

trast, pure pixel classification does not have such a problefj2trix denoted bym; my .- m,), wherem, is anL x 1

Unlike mixed pixel classification, it does not require abungOlumn vector representing thieth spectral signature resident

dance fractions of spectral signatures to be used for c|é'§§£‘e pixelr, andp is tTh(Enumberlof:gréatures of||nterest.tLet
assignment. Its performance is completely determined by tHe” (o ap -+ ap)” be ap x 1 abundance column vector
ssociated witlr, wherea; denotes the fraction of theth sig-

criteria used for classification. So, two major contribution® . :
of this paper are 1) to establish a link between pure aﬁ'&ture in the pixet.
mixed pixel classification by designing a mixed-to-pure pixe| . .
(M/P) cponverter and 2) to é/ondugt ex%erimental csmpaﬁsoﬁ‘s Linear Spectral Mixture Model
among a set of selected pure and mixed classification algo-A classical approach to solving the mixed pixel classification
rithms, including guantitative performance analysis. In ord@roblem is linear unmixing, which assumes that the materials
to validate such a study, a standardized HYDICE data fendmembers) present in a pixel vector are linearly mixed. A
is used where all man-made targets present in image scepisl vector can be described by a linear regression model as
have been precisely located to the pixel level and designafetiows:
as either target center pixels or target masking pixels. The
reason for using target masking pixels is to include partial r=Maoa+n (1)
target pixels, target background pixels, and target shadow
pixels to account for all possible pixels that may have imwherenis anL x 1 column vector that can be viewed as either
pacts on targets of interest. In addition, a custom-design@@ise or an error correction term resulting from data fitting.
criterion for target detection and classification is also intro- The algorithms to be used for our comparative study only
duced for the purpose of tallying target pixels detected afitrlude those derived from OSP, minimum distance approaches,
classified. By making use of this data set, along with thand Fisher's linear discriminant analysis (LDA). This selection
designed criterion, a comparative analysis for classificatiéh made for three major reasons.
accuracy becomes possible. The significance of these experd) As mentioned earlier, if the noise in a linear mixing
imental results is to offer a performance evaluation of the  problem is white Gaussian, ML estimation and the OSP
classification algorithms in a rigorous fashion so that each  approach for mixed pixel classification are equivalent
algorithm is fairly compared on the same common ground. and both can be viewed as a spectral unmixing method.
A standardized HYDICE data set is used for evaluation. The 2) The white Gaussian noise assumption also simplifies and
experiments show that the OSP-based classification algorithms ~reduces the Gaussian ML classifier to a minimum dis-
resulting from an M/P conversion perform better than the min-  tance classifier.
imum distance-based classification algorithms, but not as well 3) Fisher's LDA has been widely used for classification since
as LDA. On the other hand, the same experiments also show that its criterion is based on the maximization of class separa-
the abundance-based images generated by mixed pixel classi- Dbility.
fication algorithms significantly improve classification resultsThese facts allow us to restrict the mixed pixel classification
These facts substantiate the need for mixed pixel classificatialgorithms to three classes of classification algorithms listed
for multispectral/hyperspectral imagery. above (the OSP-based classifiers, minimum distance-based
This paper is organized as follows. Section Il formulates ttetassifiers, and LDA). The difference between the OSP and the
mixed pixel classification problem as a linear mixture modebther approaches (i.e., minimum distance, LDA) is that the OSP
Section Il describes various approaches to abundance estimas designed for mixed pixel classification, whereas the latter
tion for mixed pixel classification (e.g., OSP-based and Mis for pure pixel classification. Nevertheless, we will show that
classifiers). Section 1V introduces the concept of mixed-to-puby imposing appropriate constraints on the abundance fractions,
pixel conversion to reduce a mixed pixel classification problethe mixed pixel classification can be reinterpreted and reduced
to a conventional pure pixel classification problem. Section ¥ pure pixel classification. By means of a mixed-to-pure
derives an objective criterion for target detection and classificpixel (M/P) conversion, mixed pixel classification algorithms

Linear spectral unmixing is a widely used approach in re-
tely sensed imagery to determine and quantify individual



1046 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 2, MARCH 2000

can then be directly compared with minimum distance-based (2) can be cast in terms of aposterioriformulation and

classifiers and LDA. can be given by
B. Orthogonal Subspace Projection (OSP) r = Ma(r) +ni(r)
Without loss of generality, we assume that there is a signature = ddy(r) + UA(r) + a(r) (5)

of interest in model (1)d = m,. So the signature matri/
can be partitioned into the desired signature vedt@nd an
undesired signature matrix denotedbyBy separatingl from
U7, model (1) can be expressed as follows:

whereé(r), &,(r), and4(r) are estimates af, «,,, and~, re-
spectively, based on the observed pixel itseBecause of this,
model (5) is called ama posteriorimodel as opposed to model
(1), which can be viewed as a Bayesaquriori model. For sim-
r=da, +Uy+n ) plicity, the dependency onwill be dropped from all the nota-
tions of estimates throughout the rest of this paper.

where the subscriptis suppressed throughout this paper and 1) Signature Subspace Projection (SSP) [20], [21)sing
U=(m; my -~ m,_;).Let(d), (M) and(U) be the spaces the least squares error as an optimal criterion for model (5)
linearly spanned byl, U, and M respectively. The reason foryields the optimal least squares estimate:ofi;s(r) given by
separating’/ from M in model (2) is to allow us to design an
orthogonal subspace projector to annihilgtééom an observed
pixel r prior to classification. One such desired orthogonal su
space projector was derived in [15] given By = I — UU#,
WhergUT = (UTU)~'U" is the pseudo-inverse éf and the r = Méys + firs @)
notationz: indicates that the projectdf;- maps the observed
pixel r into the range spacg/)*, the orthogonal complementwhere
of (U).

Now, applyingP;+ to model (2) results in a new spectral sig- s =r— Mars = M(a— drs) +n. (8)
nature model

Grs(r) = (MTM)™*M"r. (6)

g'ubstituting (6) for the estimate afin model (5) results in

From (6), we define’y; = M(MT M)~ M7 to be the signa-
p&r — pbl,d% + pbl,n (3) turespace orthogonal projector that projacitsto the signature
space(M) and applyPy; to model (5), which yields
where the undesired signatureslinvanish due to orthogonal

projection elimination, and the original noisehas been sup- Pyr = Py Mars + PyfiLs 9)

pressed taPin. = Méus (10)
Equation (3) represents a standard signal detection problem

and can be solved by a matched filfef; given by Mqy(x) = WherePy M = M and the termPynis vanishes in (9) since

d”x. So, an orthogonal subspace projection (OSP) classifies annihilgtesﬁLs. . o
g5 derived in [15] can be implemented by an undesired sig- By coupling Py with the OSP classifiegos given by (4),

nature annihilatoP}, followed by a desired signature matched classifiergisc, called signature space projection classifier
filter Mg (SSC) derived in [21] is given by

qgsp = MdPLl, = dTPLl,. 4) qgsc = qgsppM = dTPLL’PM- (11)

Now we applygds to botha priori model (1) andh poste-

I1l. HYPERSPECTRALABUNDANCE ESTIMATION ALGORITHMS riori model (5), we obtain

FORMIXED PIXEL CLASSIFICATION T T pl T
gsscT = d” Py PyyMa + gssen

qu_atio_n @ represents a general Iine_zar model for mixed pixel = dT PFPyda, + gdgen (12)
classification where the signature matfik and the abundance
vectora are assumed to be knovarpriori. In reality,« is gen- and
erally not known and must be estimated. In order to estimate T T
o, @ common approach is spectral unmixing via an inverse of asscT = gssc(Mars +nrs)
the linear mixture model given by (1) (e.g., [27]). In this paper, = dTP,},PMd&p. (13)
we will describe two general approaches in Sections Il and IV,
the estimation of abundance and the classification of abundarfeguating (12) and (13) yields
with the former closely related to the spectral unmixing and the

T pl ~ T pL T
latter reduced to distance-based classification. d* Py Pyday, = d° Py Pydoy + gsgen. (14)

Dividing (14) by d P;F Py,d, we obtain the estimate af,,

A. A Posteriori Orthogonal Subspace Projection denoted byfssc .

In order to estimater = (o a> --- «,)%, several tech-
nigues have been developed in [20]-[24] based @osteriori & — i @Escn — i GEscm (15)
information obtained from the data cube. As a result, model (1) ~ “%%r = “r " gqrplp,d ~ " qrpid
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where the last equality holds becauseP: Py,d = d” P;+d.  In particular, the estimate of theth abundancey,, is given by
The estimation error resulting from (15) is given by

ey = (A7 PEd) " (AT PE) ¢

dTPLJ/'d)il (qgsp) r

d”Ptd) " d7 P} (day, + n)

= ap+ (d7PFd) T d” Pin. 27)

N —1
€SSC,p = XSSC,p — Qp = (dTPva ) dTPLLyPMn. (16)

2) Oblique Subspace Projection (OBSP) [21h SSP, the o E
noise is suppressed by making useff, and the undesired
signatures i/ are subsequently nulled by the projectof. It
would be convenient if we could have these two operations done
in one step. One such operator, called an oblique subspace @it the associated estimation error is
jection, was developed in [21] and designatds$ as its range
space andl/) as its null space. In this case, the oblique sub-
space projection is no longer orthogonal. Furthermore, it was ) .
shown in [28] that the orthogonal subspace projeftgrcan be F1om (6) and (26), SSC andTMLIibotp generate an identical
decomposed as a sum of two oblique projectors, one of whighundance estimate s = (M~ M)M T = OMLE, ti”t dif-
is the oblique subspace projection. ferent noise estimates ?reLpro_dlucfﬂi,TLPU d)~d Pl Pym

Let Exy be a projector with its range spa&eand null space for SSC in (16), andd” Prd)™"d" Fyrn for MLE in (28).

Y. The Py; can be decomposed and expressed by However, if we further compare (24) to (27) and (25) to (28), we
discover that both sets of equations are identical. This implies

Ly — ap = (A7 PEd) " dT Pin. (28)

Py = Eau + Epa (17) that MLE is indeed OBC, given the condition that the noise is
_ white Gaussian. In this case, MLE can be replaced by OBC in
with mixed pixel classification.
_ Tpl "L 4T pl
Ea =d(d"Ppd) " d" Py 18) g Unsupervised OSP [22]

Tpliry L 7/Tpl
Era :U(U Fa U) U™ Py (19) Until now, we have made an important assumption that

particularly, Eq;yd = d and Eqp U = 0 the signature matrix was givea priori. Due to significantly
In analoéy with (11), an oblique subspace projection Clasérirjproved spectral resolution, hyperspectral sensors generally

fier (OBC) denoted byZ .. can be constructed via (18) by extract much more qurmatlon than what.we expect, partlc—
ularly more spectral signatures than desired. These include

Enc =dTEqy = Eqp = (d7d) (dT Pﬁd)fl TP (20) natural backgrqund signatures., unvyar)ted interfere_rs, or cluttgr.
T T T T Under such circumstances, identifying these signatures is
goBc =d" Equr =d"day, +d” Eay. @1 aimost impossible and prohibitive in practice. In order to cope
with this problem, an unsupervised OSP was recently devel-
oped in [22], where the undesired and unwanted signatures
can be found automatically via an unsupervised process. One
(22) Such algorithm, referred to as Automatic Target Detection and
Classification Algorithm (ATDCA), is a two-stage process con-
sisting of a target generation process and target classification
process and can be summarized as follows.
. - - ATDCA
d"daonc,y = d day, +d° Egyn (23) stage1) Target Generation Process (TGP)
and Step 1) Initial condition:
Select a pixel vector with the maximum
length as an initial target denoted 1y,
ie.,

Applying (20) to model (1) and model (5) results in
quCI‘ = dTEdUI‘ = deCAYOBCJ, + dTEdel
= d"daonc,y

whered? Eqpn = 0.
Equating (21) and (22) yields

CA)éo]gCJ7 =, + (de)_ldTEdUn. (24)

So, the estimation errernpc, , can be obtained from (24) as

_ Ty = arf{max r’r } .

concp = Goncy — ap = (A7PFd) T AT P, (25) o = e
Seti = 1 andUy = ¢.

Step 2) Find the orthogonal projections of all
image pixels with respect t@'y, by ap-

3) Maximum Likelihood Estimation (MLE) [23]in the sub-
space projection approaches described in Subsections 1 and 2,
we only assumed that the variance of the naisegiven bys21

and is independent of the signatures. We further assuma that
an additive white Gaussian noise. Th€n) in model (1) can be
expressed as a Gaussian distribution with m&&m and vari-
ances?Iy 1, (i.e.,p(r) ~ N(Ma, 0*1I1,x ). The MLE of« for
model (5) can be obtained in [23], [24] and [29] by

AOMIE = arg{mgxp(r)} = (MTM)_IMTI‘. (26)

plying P¢. = (I — ToTy ) to allimage
pixel vectors, whereT# is the pseudo-
inverse ofTy.

Step 3) Find the first target, denoted Wy, by
finding

T, = arg{mrax [(P,f:or)T (P,f:or)} } .



1048 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 2, MARCH 2000

Step 4) Ifn, = TOTPD%1 Ty < e with /3 = T4, anaposteriorimodel and requires an estimate-ofThis results
go to step 7. Otherwise, let=i+1 and in a posterioriOSP approach where the abundance estimation

continue. is solved as an unconstrained least squares problem. In the latter
Step 5) Find theth targetT; generated by the casegy, is an estimate of the abundance fractigyof a desired
i-th stage, i.e., signature specified byt in model (1). The images generated by
T these algorithms are presented as gray scale, with the gray level
T, = arg{lnax {(P&O,Ui_l)r) (P(éo,l/i_l)r)} } . value used to represent the estimated abundance fraction of a
¥ desired signature present in a mixed pixel vector. The clas-
LetU; = (T, T, --- T,;) bethetarget sification of any given pixel vector is then based on the esti-
matrix generated in thith stage. mated abundance fractiah,. In the past, this has been done
Step 6) Stopping rule. by visual interpretation and later supported by ground truth.
Calculate So, technically speaking, OSP aagbosterioriOSP are signa-
ture abundance estimation algorithms, not classification algo-
ni = T§ Pz, To (29) rithms. In order to use these algorithms as classifiers, we need

process, called a mixed-to-pure pixel converter that can con-
ert mixed pixel abundance estimation to mixed pixel classifica-
ion. A similar process, referred to an analog-to-digital converter
A/D converter) has been widely used in communications and

and compare it to the prescribe
thresholde. If 7; > €, go to step 5. ¢
Otherwise, continue. (Note that eacht
iteration from step 5 to step 6 in the

ATDCA generates and detects one targ signal processing. Such an A/D converter is generally imple-

at a time.) Gﬁ*nented by vector quantization. As a matter of fact, the concept
R . of using vector quantization (VQ) to generate desired targets has
Step 7) '?t this w?l?ll:r)]t’ i t?riintatrg;tIngg]rileratlorbeen explored in [30], where each codeword in the VQ-gener-
{Jhocerss ie € lled ? eb. nvs (r:asﬁated codebook corresponded to one potential target in an image
Theepseot?’al?s ; }ca e{To Te co Te‘?e t§cene. Furthermore, to make classification fully automated, a
0 if = 0 1yre- P . L g . . . )
. L0 =m0 2l computer-aided classification criterion must be also provided.
will be the desired target set used for the P P

next stage of target classification. A. Winner-Take-All Mixed-to-Pure Pixel Converter
Stage 2) Target Classification Process (TCP) (WTAMPC)
In this stage, the target s¢To, T2, ..., T;} gen- . . . .
erated by TGP is ready for classification. B be In C_’Fder_ to compare pure pixel class_|f|cat|o_n to m|xe_d_ p|>_<el
thekth target fork < i+1. Apply the OSP classifier cIaSS|f|caf[|on, we need to mterpre_t a mlxed_plxe_l classification
o = Tfpﬁk given by (4) to classifyT'x, where problem in the context of pure _plxe_l cIaSS|f|c_at|on._One way
T = (To,.. T 1, Trps,-..,T;) is the unde- is to convert the abundance estimation for mixed pixels to the

sired signature matrix made up of all signatures i%Iassification of pure pixels by considering model (1) as a con-
{To, T T,} except for the desired signatureStrained problem with some specific restrictions imposed on the
O Z2yeeey T estimated abundance vector

Ty. . -
It is worth noting that the OPCI stopping criterioncoﬁztsr:mtegiha; Bhfeofgllljrlldgnf:iVefr?(;%:TOdel, (_1)1531[:;;'53
n; = T§PrTo given by (29), actually arises from the J = =J =P j=1% =~

g b . S . -tionally, the estimaté is constrained to a set pfdimensional
constanid? P;-d appearing in the estimation errors derived in . ; :
.vectors with one in only one component and zeros in the re-

ng.. . ) :
implementation of ATDCA. The OPCI only provides a guid@[‘g"’“m.ngp_1 cpmponents. SUCh vgctorswlll be denotet_;bhy-_
ensional unit vectors. if; is ap-dimensional vector with 1 in

to terminate ATDCA. Unfortunately, no optimal number o{” : L o
he j-th component and 0's in all other remaining components

targets can be set for TGP to generate. The number of targgtes w, = (0 0 1 0 0)T), thenu, is called the

needed to be generated by TGP is determined by the prescribed’ ™ — 7" 7777~ 777777 ' 7

error thresholct set for OPCI in step 6, which is determined ) ) compomant ) )

empirically. Another way to terminate ATDCA is to preset thé-th p-d|men3|9nal unit vector. In this case, the estimated abun-

number of targets. In this case, there is no need to use OPCA@§ce vectott is forced to be a pure signature. Thus, there are

a stopping criterion described in step 6. Which one is a bet@ply p choices fora. In other words¢ can be assigned to only

scene-by-scene. ap-class classification problem. It then can be solved by pure
pixel classification techniques. With these constraints model (5)
IV. CONVERSION OF HYPERSPECTRALABUNDANCE becomes

ESTIMATION ALGORITHMS TO PURE PIXEL CLASSIFICATION .
XMPC(I‘) = Mllj =1y for somel < 1<p (30)
The objective of mixed pixel classification algorithms is to
estimater = (a; a2 --- )7 in a pixel vectorr using the where xyypc is called a mixed-to-pure pixel (M/P) converter
linear mixture model described by (1) or (5). Since the abupperating on a pixel vectarthat assigns to signaturam; for
dance vectot in thea priori model (1) is assumed to be knownsomej. It should be noted that the estimated naisie model

there is no need to estimatefor OSP. On the other hand, (5) is(5) has been absorbed intg for classification accuracy. So
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if we interpret model (1) by model (30), each signature vector
in M represents a distinct class, and any sample pixel vector
r will be assigned to one of the signaturesih via an M/P
converterxypc(r) = u, in the sense of a certain criterion.
Using (30), we can assign 1 to a target pixel and 0 otherwise. The

wilw | w W

wil B | g | W

resulting image will be a binary image which shows only target Wi B B w
pixels. An important but difficult task is to design an effective

M/P converter for (30), which will preserve as much information W w W W
as possible from mixed pixels during the mixed-to-pure pixel

conversion.

) ) Fig. 1. Typical mask target.
A simple M/P converter is to use the abundance percentage

as a cut-off threshold value. If the estimated abundance fraction | e . L . .

&, of a signatural accounts for more than a certain percenta misclassification error. So, if the noise in model (1) is rein-

w?thin r, we may classify to the material specified by the sig- erpreted as the error resulting from classification and is also
natureci However. in order for such an M/P converter to bénodeled as a white Gaussian, then the mixed pixel classifiers,

effective, a percentage value needs to be appropriately sele e%P anda kaosif[ﬁrio;i OISP _(:_escribed above, become Gaussian
to threshold an abundance-based image to a binary image vAgXImum fikelinood classiiers

target pixels assigned by 1 and others by 0. Unfortunately, this .

was shown not effective in [31]. AMLE = afg{glggp(r)} (1)
An alternative way is the one proposed in [31], called the

WTA thresholding criterion as described later, and is veryhere A = {& = (&4,...,4,)" |&; = 1 for somey, and

similar to the winner-take-all learning algorithm used in neura;, = 0 forall 1 < ¢ < pandi # j} (i.e., A = {uj}§?=1 =
networks [32]. This WTA thresholding criterion can be used(1,0,...,0)7,(0,1,0,...,0)7,...,(0,0,...,0,1)T}. In

as an M/P converter and serve as a mechanism for (30)dier words, the estimated abundance vedtan (31) must
convert a mixed pixel to a pure pixel. Instead of focusinge ap-dimensional unit vector. Since there areomponents,
on the abundance estimation of the desired signatiyfeas there are only options inA. Due to the Gaussian structure
done in all OSP-based classifiers, we look at the complesgsumed in(r), the classification using (31) can be simplified
spectrum of abundance estimates for all signatures presenta classifier based on the distance between class means
in &. Assume that there arp signatures{mj}15=1 where {mj}§=1 and a pixel vector as shown later.

m; is the j-th signature. Let be a mixed pixel vector to be  Assume thatx = (z1,...,xz1)T is a general sample
classified anda(r) = (ai(r) aa(r) --- ay(r))" be the pixel vector to be classified in a hyperspectral image. Let
associatep-dimensional abundance vector. L&f(r) be the [, w,. ... w,} be the set of classes of interest andbe the
unconstrained estimated abundance fractiomngfcontained class representing theth signaturem; = (m;1,...,m;)".

in r produced by mixed pixel classifiers. We then compargssume thatx;; is the k-th sample vector in clasg, and

all estimated abundance fractiofs;(r), éz(r),...ap(r)} = — {Xjk}f;—]\irjkzl is the set of sample vectors to be used for

?Sd find the one with the maximum fraction, say-(r) (i.e., classification whereV; is the number of sample vectors in the

it = arg:{xngxlgjgp{aj(r)}}).. It will be used to classify the j-th class, andV = N; 4 --- + N, is the total number of

r by assigningr to the j*-th signaturem;-. In other words, sample vectors. Two types of distance-based classifiers can be
using the WTA thresholding criterion and (30), we can definggnsidered depending upon sample statistics.

a WTA-based M/P convertefwraypc(r) = Mu;. = m;. 1) The first-order statistics classifier.

(referred to as WTAMPC) by settingy;-(r) = 1 and Minimum distance classifier:

&;(r) = 0for j # j*. As a result of such assignment, Euclid di

the mixed abundance vecta@¥(r) is then converted to a a) Euclidean distance

pure abundance vector, thg-th p-dimensional unit vector

L
w» =(0,...,0, 1 ,0,...,0)". ED(x,m;) = (x —m;) (x —m;) = Y (z1 — my)*. (32)
3*=th =1

component

Since the quadratic term #of (32) is independent
B. Minimum Distance-Based Classification Algorithms of classy, the Euclidean distance-based minimum

In Section IV.A, we described a WTAMPC that directly con- b d'_Stat:‘lcekCE‘_SS'f'er is a linear classifier.
verted the abundance estimation of a mixed pixel to the classi- ) City block distance
fication of a pure pixel. In the following two sections, we use L
(30) as a yehicle to reinte.rpret two.commonly used pure pi>§el CBD(x, m;) = Z |y — mja. (33)
classification methods, minimum distance-based classification —1
and Fisher's linear discriminant analysis, in the context of con- _ )
strained mixed pixel classification. c) Tchebyshev (maxmimum) distance (TD)
As noted in (30), there is no noise term present in the equa-

tion. This is because the noise can be interpreted and described TD(x, m;) = 192 e = mal. (34)
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(&) (b)

Fig. 2. (a) HYDICE image Scene (b) Same scene as Fig. 2(a) but with vehicles masked by BLACK and WHITE.

2) Second-order statistics classifiers. C. Fisher's Linear Discriminant Analysis (LDA)

a) Mahalanobis classifier [33] From Fisher's discriminant analysis [1], we can form total,
between class and within-class scatter matrices as follows. Let

M) = (=) (5) (e m,). (@8) *= N 2o 225 be he global mean.

In general, the Mahalanobis classifier is a quadratic

]’) ]\
classifier. Wher; = %, for any clasgj, then the il Z Z xi; — ) (xij — )T (37)
Mahalanobis classifier is reduced to the minimum- N i1 =1
distance classifier with Euclidean distance. P
o T
b) Bhattacharyya classifier [33] =~ Z EC: (xi; —m;)(x;; —m;)T (38)
1 (ST zpjﬁ (m; — )T, (39)
Bij = 5 (m; —my) 5 (m; —my;) LN
1 ‘M F (37)-(39)
3 rom —
+-In| —— (36)
2\ VIEX]
St = Sw + 5B. (40)

WhenXx; = X, for classes andj, then the Bhat- . , L -
tacharyya classmer is reduced to the Mahalanobis In order to minimize the misclassification error, we maximize

classifier. the Raleigh quotient

If the covariance matrices in (35) and (36) are not of full

rank, their inverses will be replaced by their pseudo-inverses VANV
_ )= = Z.
u# = (3Ty)-1T. J(Z) 77507 over (41)



CHANG AND REN: EXPERIMENT-BASED QUANTITATIVE AND COMPARATIVE ANALYSIS OF TARGET DETECTION 1051

0.25

02

0.05

Band Number

Fig. 4. Average radiances for target signatures, vehicles of Type 1, Type 2, and
Type 3 and two types of man-made objects.

thesep — 1 Fisher's discriminant§v,}?_", we construct an
eigenmatrix¥ given by = [vy vy --- vp,_1] to map the
pixel vectorx into a new vectop = ¥x in a new space lin-
early spanned b\]vi}f:_f. Then the LDA classification is car-
ried out in the spac& using the minimum distance measures
given by (32)—(36).

D. Unsupervised Classification

Although the distance-based classifiers described above are
supervised based on a set of training samples, they can be
extended to unsupervised classifiers by including a clustering
process such as the nearest neighboring rule [1] or a neural
network-based, self-organization algorithm [32]. For example,
the minimum distance classifier can be implemented by its
unsupervised version, ISODATA [1].

V. CRITERION FORTARGET DETECTION AND CLASSIFICATION

The standardized HYDICE data set used for the following
experiments contains ten vehicles and four man-made objects.
The precise spatial locations of all these targets are provided by
Fig. 3. Subscene from Fig. 2(a). ground truth where two types of target pixels are designated,

BLACK and WHITE. The BLACK-masked (B) pixels are as-
Finding the solution to (41) is equivalent to solving the folSUmed to be target center pixels, while WHITE-masked (W)

lowing generalized eigenvalue problem pixels may be target boundary pixels or target pixels mixed with
background pixels [see Fig. 2(b)]. The positions of these two

Spv; = \iSwv; (42) types of pixels were located in the image by y) coordinates,
wherex andy represent row and column, respectively. The size
or equivalently of a mask used for a target varies and depends upon the size of
the target. A typical masked target of sizex 4 is shown in
Syt Spvi = \v;. (43) Fig. 1 where black (B) pixels are centered in the mask that are

considered to be the target center pixels and white (W) pixels
where the eigenvector; is called thei-th Fisher's linear dis- surrounding B pixels are target pixels that may be either target

criminant. boundary pixels or target pixels mixed with background pixels.
Since onlyp signatures need to be classified, there are onlyere we make a subtle distinction between a tadgétctedand
p — 1 nonzero eigenvalues. Assume that > A\, > --. > atargehit. When a target is detected, it means that at least one

Ap—1 > O are suclp — 1 values arranged in decreasing order dB target pixel is detected. When a target is hit, it means that at
magnitude. Then their corresponding eigenvec{svl;s}fg’;l1 re- least either one B or one W pixel is detected. As long as one
sulting from (42) are called Fisher's discriminants. For instanasf,these B or W pixels is detected, we declare the target is hit.
v; corresponding td; is the first Fisher's discriminant, cor-  So, by way of this definition, a target detected always implies a
responding to\; is the second Fisher's discriminant, etc. Usintarget hit, but not vice versa. Using these B and W pixels, we
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Fig. 5. (a) Images produced by OSP, (b) images produced by OBSP, and (c) Images produced by SSP.
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Fig. 6. (a) Error images produced by taking absolute difference between OSP-generated and OBSP-generated images. (b) Error images prodyced by takin
absolute difference between OBSP-generated and SSP-generated images.

can actually tally the number of target pixels detected or hit by Nywn(T) total number of WHITE-maske® pixels
a particular algorithm. detected;
The criteria that we use in this paper are Nrpp(T) total number of false alarms pixels, i.e., total

1) How many target B pixels are detected;

2) How many target W pixels are detected;
3) How many pixels are detected as false alarms for a
target in which case neither a BLACK-masked pixel or a Ntppm(T) =

WHITE-masked pixel is detected;
4) How many target B pixels are missed.

number of pixels which are neither BLACK-
masked nor WHITE-masked pixels de-
tected;

Ne4w(T) — Nw)p(T)

total number of BLACK-masked or
WHITE-maskedT pixels missed.

For example, suppose that the shaded pixels in Fig. 1 are thosE/sing the above notations, we can further define the detection
detected by a detection algorithm. We declare the target to flesée Rern(T) for B pixels of targefI" by

detected with one B pixel as well as hit with one B and two W
pixels. There are no false alarm pixels, but have three B pixels
missed. In order to quantitatively study target detection perfor-
mance, the following definitions are introduced.

Npp(T)

Rprp (T) = m

(44)

N total number of sample pixel vectors; and the detection ratBwp(T) for W pixels of targefT' by
T specific target to be detected;
Npiw(T) total number of BLACK-masked plus Nwp(T)
WHITE-maskedT pixels; Bwrn(T) = 5 gy (45)
Np(T) total number of BLACK-masked pixels;
Nw(T) total number of WHITE-maske® pixels;  Since B pixels represent target center pixels and W pixels are

Ni+wyn(T) total number of either BLACK-masked ortarget boundary pixels mixed with background pixels, a good
WHITE-masked pixels detected; detection algorithm must have a higher rate of target B pixels

Npp(T) total number of BLACK-masked pixels detectedRgrp(T). On the other hand, detecting a W pixel does
detected; not necessarily mean a target detected. Nevertheless, we can
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declare the target to be hit. For this purpose, we define the targs
hit rate Ry (T) for targetT by

Ni+w)p(T)
Ng4w(T)

So from (46) a higher target hit raféry(T) does not imply a
higher target detection raf@éstp(T) or vice versa. This is be-
cause the number of W pixels are generally much greater tha
the number of B pixels. Thus, the W pixels may actually dom-
inate the performance dtry(T). As will be shown in the ex- o1 0
periments, a detection algorithm may detect all B pixels but nc
W pixels. In this case, this algorithm achieves 100% target pixe
detection raté?pTp (T) = 1, but Rywrp(T) = 0. As a result,
its target hit raté? i ('T) is very small becausBywp(T) = 0.
On the other hand, if the target hit ralg-i (T) = 1, itimplies
that all B and W pixels are detected. In this case, even though th
target is hit, we may still not be able to precisely locate where §§
the target is. So the B target pixel detection r&tgrp(T) is ;
more important tha®¢(T) since it provides the information  §
about the exact location of the target. 4
In addition to (44)—(46), we are also interested in target false |
alarm rateRrpr(T) and target miss rat&rpy (T) defined =
later

RTH(T) = (46)

_ Nppp(T)
Rrpp(T) = N = Nopw (T) (47)
Rrpym(T) =1 — Rop(T) = ]]\\77;2:]((:,))

_ Np4w(T) — N, (B+W)D(T). (48)

NB—l—VV(T)

If there arep targetsl” = {T;}'_, needing to be classified, the
overall detection ratd?op (') for a class of targets' can be
defined as

p

Rop(I') = Zp(Ti)RBTD(Ti) (49)

i=1

wherep(T;) = (N(T;)/ > 5 N(Ty)) for1 < ¢ < p. As

will be seen in the following experiments, a highBpp (1)

does not imply higher classification accuracy, because it ma
happen that several targets are detected in one single image ¢
to their similar signature spectra and itis difficult to discriminate
one from another. This results in poor classification. In order tc §
account for this phenomenon we define the classification rat ¥
for a specific targe®;, R-(T;) as :

Ve

Npp(T;)
Ro(T;) = 50
c(Ti) Ns(T;) + Nopp(Ts) 50) )
and the overall classification rate as
Fig. 7. (a) Abundance-based gray scale images generated by OSP using
p B pixels. (b) Binary images resulting from WTAMPC applied to images in
Roo(T) = > p(T;)R(T) (51) Fig. 7(a).
i=1

wherep(T;) and R.(T;) are defined by (49) and (50) respec- Since the target detection and classification algorithms
tively. Now using (44)—(51) as criteria, we can evaluate thdescribed in Section Il are based on the abundance fractions
detection and classification performance of various algorithro$ targets estimated from mixed pixels, the images produced
through the HYDICE experiments. by mixed pixel classification are gray-scale with the gray level
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TABLE |
TALLIES OF TARGET PIXELS FOR OSP-DETECTION USING B PIXELS AFTER WTAMPC, WITH DETECTION RATES

Ve [V w Veaw | Nen [N wn IV gown| Nee | Napy | Rem |Rw | Rt [ Raee | R v

Vi |16 117|133 | 10 ] 17 27 328 106 | 0.625 |0.145 (0.203 [0.021 | 0.797
V2 7 67 | 74 6 1 7 4 67 0.857 | 0.015 [ 0.095 [0.0003 ] 0.905
V3| 9 |9 | 105 6 22 28 1124 77 [0.667 |0.229 | 0.267 | 0.070 | 0.733
Ol | 73 {146 219 | 66 | 54 120 0 99 0.904 [ 0.370 | 0.548 | 0.000 | 0.452
02 | 43 | 118 § 161 | 43 | 31 74 0 87 1.000 | 0.263 | 0.460 | 0.000 | 0.540

TABLE I
TALLIES OF TARGET PIXELS FOR OSP-DETECTION USING B AND W PIXELS AFTER WTAMPC WITH DETECTION RATES

N R

vehic ™M [Rpm |[Rwp | R m | R TPM
Vi |16 117|133 | 15| 37 52 200 | 81 0938|0316 (0391 [0.018 | 0.609
V2 | 7 |67 74 | 2 35 37 2491 | 37 |0.286]0.522 [0.500 | 0.156 |0.500

V3 9 19 | 105 0 42 42 4486 63 [0.000 | 0.438 | 0.400 | 0.280 { 0.600

N |Nw Npw|Nep|Nwp IV @ewip| ¥ e

Ol | 73 | 146 219 | 47 | 37 84 2 135 ]0.644 | 0.253 | 0.384 [ 0.0001] 0.616
02 |43 1118 | 161 | 43 | 30 73 0 88 1.000 | 0.254 | 0.453 [ 0.000 | 0.547
TABLE 1l

TALLIES OF TARGET PIXELS FOR OSP-DETECTION USING MANUAL SAMPLING AFTER WTAMPC wITH DETECTION RATES

vehic N B N w NB+W NBD NWD N(B+W)D N TPF NTPM R B1D R WID R'IH R TPF R TPM
V1 16 (117 133 | 11 18 29 44 104 {0.688 |0.154 |0.218 | 0.003 | 0.782
V2 7 |67 74 7 6 13 493 61 1.000 | 0.090 |0.176 { 0.031 | 0.825
V3 9 19 | 105| 3 17 20 998 85 10333 |0.177 ] 0.191 | 0.063 | 0.810

Ol |73 ]146( 219 | 71 | 55 126 1 93 10.973 ] 0.377 | 0.575 | 0.0001 0.425

02 (43 ]118 ] 161 | 43 | 35 78 0 83 1.000 | 0.297 | 0.485 | 0.000 [ 0.516

values representing the abundance fractions of targets predbatright. This grass field contains a road along the right edge
in mixed pixels. With the availability of standardized data andf the image. There are ten vehiclég, Vs, V3, Vi, Vi, Vg,
the help of the MPC algorithms developed in Section IV, we cdty, Vg, Vg, andVyg parked along the tree line and aligned ver-
evaluate these algorithms objectively via (44)—(51) by actualtically. They belong to three different types, denoted by V1 for
tallying the number of target pixels detected for performandgpe 1, V2 for Type 2 and V3 for Type 3. The bottom four,
analysis. denoted by, V,, V3, andV, belong to V1 with size approx-
imately 4 mx8 m. The middle three, denoted by, V5, and
V7, belong to V2 with size approximately 3xm6 m. The top
VI. COMPARATIVE PERFORMANCEANALYSIS USING HYDICE three, denoted by, Ve, and Vi, belong to V3 but have the

DATA same size as V2. In addition to vehicles, four man-made objects

This section contains a series of experiments which use a H¥-WO types are shown in the image. Two are located in the near
DICE standardized data set to conduct a comprehensive cdfinter of the scene, the bottom one denotedbynd the top
parison among the OSP-based mixed pixel classification ag€ PyOz. and another two are on the right edge, the bottom

distance-based pure pixel classification algorithms. Three coftiie denoted by, and the top one by.,. O; andO; belong

parative studies are designed. First of all, we describe the Ht?-th‘? same type, indicated by G2;, andO, belolng to another i
DICE image scene. type indicated by O2. In terms of class separation, there are five

distinct classes of targets in the image scene, three for vehicles
and two for man-made objects. It is worth noting that the HY-
A. HYDICE Image Scene DICE scene in Fig. 2(a) was geometrically corrected to precisely
The data used for the experiments are an image scendoicate the spatial coordinates of all vehicles by either BLACK
Maryland taken by a HYDICE sensor in August 1995 using 21dr WHITE masks, where the BLACK-masked pixels are center
bands of spectral coverage 0.4—2.% with resolution 10 nm. pixels of targets and WHITE-masked pixels may be part of the
The scene is of siz200 x 80, shown in Fig. 2(a), taken from atarget pixels or target background pixels or target shadow pixels.
flight altitude of 10 000 ft within a GSD of approximately 1.5So0, BLACK-masked target pixels are always in WHITE mask
m. Each pixel vector has a dimensionality of 210. This figurgames. However, in this paper, the BLACK-masked pixels will
shows a tree line along the left edge and a large grass field lmnconsidered separately from WHITE-masked pixels since they
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i) O |'|_,

(i) W1 W2

Fig. 8. (top) Abundance-based gray scale images generated by ATDCA. (bottom) Binary images resulting from WTAMPC applied to images in Fig. 8(a).

TABLE IV
TALLIES OF TARGET PIXELS FORATDCA AFTER WTAMPC wITH DETECTION RATES

targets Ng|Nw NB+W NBD NWD N(B+W)D Nopr | Nopu Rgm Rwimp R'[H RTPF RTPM

02

i 43 | 118 161 | 43 52 95 0 66 | 1.000 |0.441 [0.590 10.000 | 0.410
Fig. 10(c)

vi—® |16|117|133] 4| 6 10 48 123 | 0250 | 0.051]0.075 [0.003 | 0.925
V2o |7 ]e67|7a | 7| 3 10 48 64 | 1.000 | 0.045 [ 0.135 | 0.003 | 0.865

Ol | 73 146 219 | 21| 13 34 24 185 | 0.289 | 0.089 | 0.155 | 0.015 | 0.848
Fig. 10()

Vi |16 [117] 133 1 12 17 870 120 {0.063 | 0.103] 0.098 | 0.054 | 0.902
Vi 19 |9]105] 6 11 13 866 88 0.067 | 0.115 | 0.162 | 0.054 | 0.838

Fig. 10(h)
VI - | 16 | 117 133 | 11 | 16 27 8 106 }0.688 | 0.137 | 0.203 [0.0005| 0.797
V3 -1 9| 96| 105 3 5 8 27 97 10.333 | 0.052 | 0.076 | 0.002 | 0.924
Fig. 10G)
Ol 4 | 73 (146 219 | 49 32 81 0 138 1 0.671 | 0.219 | 0.370 | 0.000 | 0.630
Fig. 10(m)

will be used as target signatures for classification. This inform#ep vehicle(V;) belongs to V2 and the bottom thréé;, Vs, Vi)

tion allows us to perform a quantitative analysis and compaitaelong to V1.

tive study of various classification algorithms. A smaller scene

shown in Fig. 3, cropped from the lower part of Fig. 2 will bé3- HYDICE Experiments

also used for more detailed studies. It is the exact same imag&ince the exact locations of all the vehicles and man-made
scene studied in [6], [7], [19], [31] and has a different GSD 0.78bjects in Fig. 2 are available, we can extract target center
meters with the image turned upside down. It contains only fopixels masked by BLACK and mixed pixels masked by
vehiclesV, Vi, V4, andV; and one man-made obje@b. The WHITE directly from the image scene for each vehicle. The



CHANG AND REN: EXPERIMENT-BASED QUANTITATIVE AND COMPARATIVE ANALYSIS OF TARGET DETECTION 1057

0.2 T T T
oVl
x 1 V2
0.15 o V3
o 1 V4
: o Wh
0.1 4 Vb 1
i [= IR

0.05

0 50 100
Band Number

Fig. 9. Spectral signatures of the ten targets in Fig. 2.

Obj v

A Tree . Road
L
th : Fig. 11. Images generated by MD using B pixels.
L i HYDICE data. Since both OBSP and MLE generate an iden-
tical estimation error given by (25) and (28), a fact also reported
- in [21], [23] and [24], we will only focus our experiments on
Grass OSP, OBSP and SSP. It is interesting to note that if we apply

a scaled OSP classifigfd? P+d)~tg4p to model (2), it re-
sults in the same equations given by Egs. (24) and (28) with
both &ope p, andamre,, replaced byw,. This implies that if

the knowledge about the abundance veetds givena priori,

then OBSP and MLE are reduced to OSP. On the other hand, if
the abundance vectoris not known and needs to be estimated
by &, then OBSP and MLE will be used to replace OSP. Conse-
quently, OSP can be viewed as thpriori version of OBSP and
MLE, while OBSP and MLE can be thought of agosteriori
version of OSP. So, the experiments done in [15] were actually
based on tha posterioriversion of OSP.

As shown in (4) and (20), OSP and OBSP produced an iden-
tical classification vectokl” P2+ with an extra scaling constant
average radiances for three types of vehicles were calculatdd P;-d)~* appearing in OBSP classifier. As reported in [23]
and plotted in Fig. 4. The spectral signatures in Fig. 4 weeand [24], this scaling constant accounts for the amount of the
used as the desired target information in implementation abundance fractions resident in classified pixels and results in
the algorithms. two completely different gray level ranges for OSP and OBSP.

Example 1: The theoretical studies on comparative analysidowever, an interesting finding was observed. The scaling con-
among subspace projection methods were investigated prestant does not have impact on images displayed on computer
ously and separately in [15], [16], [20], [21] based on AVIRIS®ecause the images generated by OSP and OBSP for computer
data. In this example, we conduct an experiment-based cadisplay are all scaled to 256 gray levels. In this case, the scaling
parison among OSP, OBSP, MLE and SSP using standardizedstant(d” P;-d)~! is absorbed in the scaling process for

Tree Road

Fig. 10. Images generated by ED using B pixels.
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Fig. 12. Images generated by LDAED using B pixels. Fig. 13. Images generated by LDAMD using B pixels.

computer display. So, from a display point of view, they all praerest, the images in Fig. 6(b) contain more random noise which
duce identical results as shown in Fig. 5(a) and (b), where thkirs the targets, and particularly, the classification of the ob-
man-made object O2 and a small portion of O4 in the scenej@tt. Unfortunately, such improvements and differences cannot
Fig. 3 were classified. In addition, this scaling process is alé& visualized on a 256-gray scale computer display device be-
invariant to the abundance percentage, as mentioned in the eadse the dynamic range of the abundance is far beyond 256
of Section V. This is because the abundance percentage is sakles, ranging from some negative values due to noise to num-
culated based on relative proportions among abundance frhers in thousands. So, when we display the OSP, the OBSP
tions. In order to overcome this problem, we took their absand SSP-generated images by scaling down to a 256-gray level
lute differences to substantiate the difference between the abrarge, their differences are suppressed and cannot be substanti-
dance fractions generated by OSP and OBSP and display tla@d. As a result, the images turned out to be identical as shown
error images in 256 gray scales in Fig. 6(a). If OSP and OB&PFig. 5(a)—(c). This further simplifies our comparative anal-
generate identical results, their absolute difference should bg<gis where the OSP can be selected as a representative for com-
and their corresponding error images should be all black. Garison in the following experiments. Nevertheless, it should be
viously, this is not true as we can see in Fig. 6(a), where ontpted that the superior performance of OBSP and SSP to that of
targets to be classified are shown in the images. This furth@6P in abundance estimation has been demonstrated by com-
justifies the subtle difference between OSP and OBSP. On fhgter simulations in [35].

other hand, SSP is quite different from OBSP in that SSP in-Example 2: This example is designed to demonstrate the dif-
cludes an additional signature subspace projdétpin its clas- ference betweern priori knowledge anda posteriori knowl-

sifier. As a result, the SSP-generated estimation error given &yge as used in the algorithms. In the casa pfiori knowl-

(16) is different from (25). In [20], it was shown via ROC (re-edge, we assume that the B pixels are availabla.pgbsteriori
ceiver operating characteristic) analysis that SSP greatly iknrowledge is assumed, the target pixels will be extracted di-
proved OSP in terms of signal to noise ratio if the additive noisectly from an image scene by manual sampling (OSP), or by
is assumed to be Gaussian. An error theory using ROC analysisnputer (ATDCA) which may include either B or W pixels or

for a posterioriOSP and OSP is further investigated in [34]both. If the signatures are not correctly extracted from the data,
The error images resulting from the absolute difference between, no B pixels, what is the effect on the detection and classifi-
the OBSP-generated and SSP-generated images are showgaiion performance and how robust are OSP and ATDCA? Four
Fig. 6(b). Unlike Fig. 6(a), which largely shows targets of insignature extraction methods were compared, (1) the use of B
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Fig. 14. (a) Abundance-based gray scale images generated by OSP using B pixels, (b) binary images of Fig. 14(a) resulting from WTAMPC, (c) alseddance-b
gray scale images generated by OSP using B and W pixels, and (d) binary images of Fig. 14(c) resulting from WTAMPC.

pixels provided by the standardized data set; (2) the use of sillal inspection. ATDCA deserves more attention here. Unlike
masking pixels, i.e., both B and W pixels provided by the sta®SP which made use of sample pixels for target detection and
dardized data set; (3) manual sampling by visual inspection@assification, ATDCA does not require any sualpriori in-
done in previous research [6], [15], [16], [20], [21]; (4) unsuformation. It automatically searched for all targets of interest
pervised ATDCA which requires no human intervention [22Jand further detected and classified the targets. So, Fig. 8(i)
Three types of vehicles, V1, V2, V3, and two types of objectshows the target detection and classification results generated
01, 02, were used for classification where the desired sigrar ATDCA based on 15 target signatures it found in the image
tures were the average values of all target sample pixels of ggene. Since ATDCA does not have prior knowledge about ve-
terest. For instance, to classify V1 (i.e., the vehicles of Type Hicles and objects, it detected all possible targets and then clas-
the desired signature was obtained by averaging target pixelsified them subsequently. For instance, Fig. 8(iii) shows the ob-
all four vehicles:V;, V», V3, V4. Similarly, the target pixels of ject O, while Fig. 8(x) shows the vehiclds,, V> and the ob-
O, andO3 were averaged to generate the desired signature fect O, . Similarly, both Fig. 8(xi) and (vi) show the vehicles
01, etc. Fig. 7(a) is the results of using B pixels for OSP, whet& and V3 while Fig. 8(xiii) only showsO;. So, Table 1V is
a total of 16 000 pixels in Fig. 2 were used for classification. Idifferent from Tables I-IIl. The first column of the table spec-
order to tally target pixels detected, we need to convert abufies different types of targets in separate images as indicated
dance-based mixed pixels to pure target pixels. and tabulates the number of detected target pixels and their cor-
Table | is a tally of target pixels in Fig. 7(b) resulting fromresponding detection rates using WTAMPC. In all the figures,
WTAMPC where target B pixels were used the sample pixeisages labeled by (a) are abundance-based images, images la-
for OSP. Similarly, Table Il is a tally of target pixels and theibeled by (b) are binary images thresholded by WTAMPC. As
detection rates resulting from WTAMPC where target B and \8hown in these figures, there is no visible difference between
pixels were used the sample pixels for OSP. Table Ill is atally aking B pixels and manual sampling in abundance-scaled im-
target pixels and their detection rates resulting from WTAMP@&ges. However, when we used full masks including B and W
where the sample target pixels were selected manually by gixels in our experiments, the results were very poor and are
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not comparable to the results obtained by manual sampling and
ATDCA. This is because W pixels are target-background mixed
pixels and their number is much greater than that of B pixels.

As a consequence, the W pixels dominate target signatures and
smeared the purity of target signatures. Also shown in this ex-
ample, ATDCA is comparable to OSP by visually interpreting 7 O (51
their abundance-based images. This observation demonstrate:
that the unsupervised OSP can do as well as OSP and allows
us to replace OSP with ATDCA in unknown or blind environ-
ment where na@& priori knowledge is required. This advantage
is substantial in many real applications because obtaining the
prior information about the signatures is considered to be very
difficult or sometimes impossible. L
One worthy comment is the following. Although the targets
shown in Fig. 2 are ten different targets, their spectral character-
istics are not necessarily very distinct. As shown in Fig. 9, the
spectral signatures of some targets are very similar even though
the targets themselves are completely distinct. For example, the
signature ol is very close to those df;, V5, V> and the signa-
ture of V1 is also very close to those &%, V3, andVs. However,
they belong to completely different vehicle types. But if we clas- m
sify V; using its spectral signature, it was extracted along with &
Vs as shown in the above experimental results, and vice versa.
Similarly. it is also true foVy, V;, V3, andV;. Some studies on 1
this phenomenon were reported in [6] and [31]. More detailed i
analysis on the results on Figs. 2 and 7-9 can be found in [31]. * .
Example 3: In the previous two examples, comparisons were
made among abundance estimated-based algorithms for mixed
pixel classification. The example presented here will compafFg. 15. (a) Abundance-based gray scale images generated by the ATDCA and
these algorithms against popular pure-pixel classification alg8} Pinary images resulting from WTAMPC.
rithms widely used in pattern classification as described in Sec-
tion IV. In order to make the experiments simple, we again usadhile images in Figs. 14(c)—(d) and 15(b) are binary images
the image scene in Fig. 3, which is of sigé x 60 and has a thresholded by WTAMPC. Tables V-X tabulate the number
total of 3600 pixels. In addition to vehicles and the object, waf detected target pixels and their corresponding detection
also included signatures of tree, road and grass field in the sigtes for ED, MD, LDAED, LDAMD, OSP and ATDCA
nature matrix}/. So, a total of 6 classes will be considered forespectively. It should be noted that the tallies for OSP and
this example with each class represented by a distinct signatX€DCA were calculated after WTAMPC was applied. Their
Since each target (including the man-made objects) contafi¥rall detection and classification ratésp and Roc were
no more than 16 B pixels whose number is far less than tAtso calculated by (49)—(51) and are tabulated in Table XI. The
number of bands. Supervised second-order minimum distan€¥periments demonstrate several facts.
based classification algorithms are generally not applicable be-1) The abundance-based gray scale images in
cause the ranks of covariance matrices used in (35) and (36) Figs. 14(a)-(b) and 15(a) produced by mixed pixel
will be very small due to a very limited set of training sam- classification algorithms, OSP and ATDCA are among
ples. Similarly, it is also true for LDA using MD described by the best since the gray levels provide significant visual
(42), referred to as LDAMD. Under this circumstance, we need  information, which improves the classification results
to create more samples to augment the training pool. One way considerably.
to do so is to adopt an approach proposed in [36] which uses2) If the abundance-based gray scale images in
the second-order statistics to generate additional nonlinear cor- Figs. 14(a)-(b) and 15(a) are thresholded by the
related samples from the available samples. These new gen- WTAMPC, the resulting images along with tallies shown
erated samples can improve the classification performance. In  inFigs. 14(c)—(d), 15(b), and Tables IX—X are better than
order to further simplify experiments, ED and MD were used for those in Figs. 10 and 11 with tallies given in Tables V-VI
comparisons because they are representatives of the first-order (produced by the minimum distance-based classifiers,
and second-order minimum distance-based classification algo- ED and MD), but not as good as those in Figs. 12—13 with

i)

rithms. We refer for details to [31]. tallies given in Tables VII-VIII (produced by LDAED
Figs. 10-13 are results generated by ED, MD, LDAED and LDAMD). Among these cases, LDA produced the
(LDA using ED) and LDAMD respectively. The images in best results. This can be also seen in Table XI where

Figs. 14(a)—(b) and 15(a) are abundance-based gray scale the overall target detection rate of WTAMPC is right
images generated by OSP and ATDCA using six signatures in between LDA and minimum distance classification.
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TABLE V
TALLIES OF TARGET PIXELS FOR ED-DETECTION USING B PIXELS WITH DETECTION RATES

N [Nw Naow | Nep| ¥ wp IV @ewid| N rer | N 1em [Remp | R win| R m | Ravr | Rom
A" 12| 86 | 98 2 4 6 28 92 10.167 | 0.047 [ 0.061 [0.008]0.939
V2 3 21 24 2 1 3 90 21 0.667 | 0.048 1 0.125 [ 0.025 [0.875
Obj | 19 | 81 | 100 | 17 18 35 0 65 10.895(0.222 0.350 |0.000 | 0.650

TABLE VI

TALLIES OF TARGET PIXELS FOR MD-DETECTION USING B PIXELS WITH DETECTION RATES

Ne N w Ngow|¥eo| ¥Nwp IV @ewin] Nrer | N1em | R | R win| B i | R 1er | Romt
Vi 12 | 86 | 98 2 4 6 13 92 10.167 | 0.047 | 0.061 | 0.004 | 0.939
V2 |3 |21} 24 |1 3 4 115 20 [0.33310.143 | 0.167 | 0.0320.833
Obj [ 19 [ 81 | 100 | 16 16 32 0 68 10.84210.198 | 0.320 (0.000 | 0.680

TABLE VII
TALLIES OF TARGET PIXELS FOR LDAED-DETECTION USING B PIXELS WITH DETECTION RATES

Ne [Nw Waaw (Nep |Nwp [V eawid| N ee [N e |[Rem [ R win | R m |R1ee [B1em

Vi 12 [ 86 | 98 12§ 30 42 32 56 [1.000 | 0.349 | 0.429 | 0.009 [ 0.571

V2 | 3 {21 24| 3 0 3 3 21 |1.000| 0.000 | 0.125 | 0.001 |0.875
Obj |19 | 81| 100 {19 | 19 38 0 62 [1.000{0.235 | 0.380 |0.000 | 0.620
TABLE VIlI

TALLIES OF TARGET PIXELS FOR LDAMD-D ETECTION USING B PIXELS WITH DETECTION RATES

N INw Neaw [Neo [V wo [V eowid| ¥ 1ee [N 1em |[Rem |R win | R |Rer |R1em

V1 12| 8 | 98 12 31 43 55 56 |1.000 | 0.368 | 0.439 [0.015}0.561

V2 |3 12124 |31]0 3 0 21 [1.000 { 0.000 | 0.125 | 0.000|0.875
Obj 119 | 8110019 | 19 38 0 62 | 1.000 | 0.000 | 0.380 | 0.000| 0.620
TABLE X
TALLIES OF TARGET PIXELS FOROSP-DETECTION USING B AND W PIXELS AND MANUAL SAMPLING AFTER WTAMPC wiTH DETECTION RATES
vern| V8 1Y w N gw | Nan! ¥ wp IV @ewon| N er | Nrem [ R | R | B | B er | R 1eu
vi | 1218 |98 | 7 | 14 21 4 77 10.583 [0.163 | 0.214 | 0.001 | 0.786
v2 |3 |21] 24 3]0 3 4 21 |1.000 | 0.000 |0.125 |0.001 |{0.875
Obj [ 1981|100 [19 | 19 38 0 62 | 1.000 | 0.235 | 0.380 | 0.000 | 0.620

It makes sense since LDA is based on the criterion of  pixel classification as demonstrated in Figs. 14(a), (c)
class separability. It further showed that the minimum and 15(a). The visual information generated by abun-
distance-based pure pixel classification is among the dance-based gray scale images offers very useful and
worst. This means that without taking advantage of the  valuable knowledge that can significantly help interpret
visual information provided by abundance-based gray classification results.

levels, the minimum distance-based classification simply 3) There is no obvious advantage of using the second-order
cannot compete against LDA and WTAMPC. These statistic-based classifier MD over the first order statistics-
results justify a very important conclusion. Pure pixel based classifier ED, as shown in Tables VII-VIIIl. This
classification is generally not as informative as mixed is probably due to the fact that there is not much spatial
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TABLE X
TALLIES OF TARGET PIXELS FORATDCA USING 6 SGNATURES AFTERWTAMPC WITH DETECTION RATES
vehic Ng [Nw|Ngw| Nep| Nwp N(B+W)D NTPF NTPM Rgm RWTD R'[H R TPF RTPM
V1 1218 | 98 5 9 14 1 84 10.416 (0.105 | 0.143 ] 0.003 | 0.857
V2 3 121 24 2 0 2 10 22 |0.667 | 0.000 ]0.083 {0.003 [0.917
Obj | 19 | 81 | 100 {19 [ 23 42 0 58 1.000 | 0.284 | 0.420 | 0.000 | 0.580
TABLE XI ventional pure pixel classification techniques could be readily

OVERALL DETECTION AND CLASSIFICATION RATES FORED, MD, LDAED, applied. AIthough WTAMPC performed better than the min-
LDAMD, OSP AND ATDCA . : ; e .
imum distance-based pure pixel classification against a stan-

s Mb | LDAED | LDAMD OSP Apca  dardized data set, it unfortunately did not do as well as the class
rete B | W [Moal separability-based LDA due to the fact that WTAMPC results
R | 0618 | 0ss7 | 1000 | 1.000 |0853 0971 0912 | 0765 in the loss of gray level information about abundance fractions.
Such information, provided by the abundance-based gray scale
R o 0.5195 0.4996 | 0.6992 0.7103 |0.7511|0.7604 | 0.6598 | 0.7081 images that are generated by mixed pixe| classification a|go_

rithms, contains very useful visual features which can substan-
tially improve image interpretation of classification results. Pure
correlation, that a second-order statistic-based classifiikel classification algorithms cannot provide such information.
can take advantage, because the pool of training targgispite our effort to conduct comprehensive and rigorous com-
samples is relatively small. parative analysis of various classification algorithms for hyper-
4) For the purpose of illustration, all the images producegpectral imagery, completion is not claimed. In particular, the
by pure pixel classification and WTAMPC were binarywTA-based converter used in this paper for tallying target pixels
to show a specific classified target. was a simple thresholding technique and may not necessarily
However, as shown in [31] this is not always the case for pube optimal. There may exist an effective MPC which can pro-
pixel classification. There are in some experiments where seitice better pure pixel classification performance. Many thresh-
eral targets were detected in a single binary image but could méding algorithms are available in the literature [37]. Most of
be discriminated from one another. For instance, for an unsupgrem, however, were developed based on pure pixel image pro-
vised LDAED (i.e., ISODATA(LDAED)), the three targets V1,cessing and may not be directly applicable to our problem. A
V2, and Object were detected in a single binary image with dierther study on this issue may be worth pursuing. Finally, it
tection rates defined by (44) as high as 100%, 100%, and 95%ould be noted that all the algorithms considered in this paper
respectively. At the same time, the number of false alarm target unconstrained in the sense that no constraints are imposed
pixels was also very high, e.g., 87 false alarm pixels as oppos#dsignature abundances, such as the abundance fractions must
to 12 B-pixels for V1, 125 false alarm pixels as opposed toe summed to one or must be nonnegative. Investigation of con-
3 B-pixels for V2 and 95 false alarm pixels as opposed to ¥rained mixed pixel classification problems is a separate issue
B-pixels for Object. As a result, the overall classification ratand has been recently reported in [35], [38].
among three targets can be as low as 5% while each target de-

te_ction rate is very high close to 100%. This dgmonstrat_es that ACKNOWLEDGMENT
higher target detection rates do not necessarily result in high _
C|assification rates. For detaHS, we refer to [31] The authOI‘S W0u|d I|ke to thank Dr. M. L. G. A|th0use and

A. Ifarragaerri for proofreading this paper and the anonymous
reviewers for their comments which helped to improve the paper
quality and presentation.

Many hyperspectral target detection and image classification
algorithms have been proposed in the literature. Comparing one
relative to another has been very challenging due to a lack of

standardized data. Another difficulty arises from the fact that[l] R. O. Duda and P. E. HarRattern Classification and Scene Anal-
h . iteria t bstantiat | ithm. Thi ysis  New York: Wiley, 1973.
there are no rigorous criteria to substantiate an algorithm. Thisy 3™ 6. Mok, Digital Processing off Remotely Sensed

paper first considered the mixed pixel classification problem  Images Washington, DC: NASA SP-431, 1980.

and then reinterpreted mixed pixel classification from a pure[3] R. A. SchowengerdfTechniques for Image Processing and Classifica-
tion in Remote Sensing New York: Academic, 1983.

pixel classification point of view by imposing some constraints_ [4] J.A.RichardsRemote Sensing Digital Image Analygisd ed. Berlin,
on the signature abundances. As a result, the classes of classifi- Germany: Springer-Verlag, 1993.

cation algorithms to be evaluated in this paper were reduced td?! J- R. Jenserintroductory Digital Image Processing_: A Remote Sensing
h 9 ies: OSP-b d mixed bi Fi Fl) if .. Perspective2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
three categories: -based mixed pixel classiers, mmlmunlﬁ] C.-l Chang, T.-L. E. Sun, and M. L. G. Althouse, “An unsupervised

distance-based pure pixel classifiers and Fisher's LDA. In ad-  interference rejection approach to target detection and classification for
.. . p p . . H

dition, a winner-take-all based mixed-to-pure pixel converter _ hyperspectral imageryOpt. Eng, vol. 37, pp. 735-743, Mar. 1998.
WTAMPC d | d to translate a mixed pixel classifica- [7] C.-I Chang and Q. Du, “Interference and noise adjusted principal com-
( ) was develope Ixed pix m ponents analysis,[EEE Trans. Geosci. Remote Sensingl. 37, pp.

tion problem into a pure pixel classification problem so thatcon-  2387-2396, Sept. 1999.

VIl. CONCLUSION
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