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Abstract—Over the past years, many algorithms have been de-
veloped for multispectral and hyperspectral image classification.
A general approach to mixed pixel classification is linear spectral
unmixing, which uses a linear mixture model to estimate the abun-
dance fractions of signatures within a mixed pixel. As a result, the
images generated for classification are usually gray scale images,
where the gray level value of a pixel represents a combined amount
of the abundance of spectral signatures residing in this pixel. Due
to a lack of standardized data, these mixed pixel algorithms have
not been rigorously compared using a unified framework. In this
paper, we present a comparative study of some popular classifica-
tion algorithms through a standardized HYDICE data set with a
custom-designed detection and classification criterion. The algo-
rithms to be considered for this study are those developed for spec-
tral unmixing, the orthogonal subspace projection (OSP), max-
imum likelihood, minimum distance, and Fisher's linear discrimi-
nant analysis (LDA). In order to compare mixed pixel classification
algorithms against pure pixel classification algorithms, the mixed
pixels are converted to pure ones by a designed mixed-to-pure pixel
converter. The standardized HYDICE data are then used to eval-
uate the performance of various pure and mixed pixel classification
algorithms. Since all targets in the HYDICE image scenes can be
spatially located to pixel level, the experimental results can be pre-
sented by tallies of the number of targets detected and classified for
quantitative analysis.

Index Terms—Linear discriminant analysis (LDA), linear un-
mixing, maximum likelihood estimator (MLE), minimum distance,
mixed-to-pure pixel (M/P) converter (M/P converter), oblique sub-
space projection (OBSP), orthogonal subspace projection (OSP),
signature space projection (SSP), winner-take-all M/P converter
(WTAMPC).

I. INTRODUCTION

MAGE classification is a segmentation method that aggre-
gates image pixels into a finite number of classes by certain
rules so that each class represents a distinct entity with spe-
cific properties [1]. In general, it can be viewed as a label
assignment by which image pixels sharing similar properties
will be assigned to the same class. Since multispectral images
are acquired at different spectral wavelengths, a multispectral
image pixel can be represented by a pixel vector, in which
each component corresponds to a specific wavelength. As
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a result, criteria used for multispectral image classification
are usually designed to explore spectral characteristics rather
than spatial properties, as used in digital image processing
[2]–[5]. A unique feature of multispectral image classification
that does not exist in standard image processing is the occur-
rence of spectral mixtures within pixels. Spectral unmixing is
particularly important with high spectral resolution imaging
spectrometers. These sensors use as many as 200 contiguous
bands and can uncover narrow-band diagnostic spectral fea-
tures of materials that cannot be resolved by multispectral
imagers. Two such important imagers currently in use are
the NASA Jet Propulsion Laboratory's 224-band Airborne
Visible/InfraRed Imaging Spectrometer (AVIRIS) and the
Naval Research Laboratory's 210-band HYperspectral Digital
Imagery Collection Experiment (HYDICE) sensor. One of
major challenges in hyperspectral image processing is how
to process the enormous amount of information provided by
hyperspectral images without spending effort on undesired/un-
wanted information [6]. Additionally, the data dimensionality
of hyperspectral imagery is generally tens of times more than
that of multispectral imagery. As a consequence, methods
developed for multispectral image processing such as principal
components analysis/canonical analysis [7], minimum distance
[1], maximum likelihood (ML) classification [8]–[13], and
decision boundary-based feature extraction [14] can be further
improved for hyperspectral imagery.

Harsanyi and Chang [15], [16] introduced an orthogonal sub-
space projection (OSP)-based classifier for hyperspectral image
classification. It implemented an orthogonal subspace projector
in conjunction with a matched filter to derive a classifier for
mixed pixel classification. It has been successfully applied for
HYDICE data exploitation [17]–[19]. A variety of OSP-based
classifiers were also developed, such as thea posterioriOSP
(LSOSP) classifier [20], the oblique subspace projection clas-
sifier (OBC) [21], the desired target detection and classifica-
tion algorithm (DTDCA) and the automatic target detection and
classification algorithm (ATDCA) [22]. In particular, the OSP-
based methods were also shown in [21], [23], [24] to be equiv-
alent to the maximum likelihood classifier, given that the noise
is additive and Gaussian. So all of these classifiers turned out to
perform the same spectral unmixing.

There is a lack of standardized data that can be used to
evaluate individual algorithms. In addition, no unified crite-
rion has been accepted for rigorous and impartial compar-
isons. The importance of this issue cannot be understated.
Without standardized data and effective evaluation criteria,
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the performance of any new algorithm cannot be substanti-
ated. In this paper, we take a first step by conducting a com-
parative study of performance analysis among several classi-
fication algorithms. We confine our study to linear spectral
mixing problems only. Additionally, we consider two types
of classification: mixed pixel classification and pure pixel
classification. A general approach to mixed pixel classifica-
tion (such as spectral unmixing) is to estimate the abundance
fraction of a material of interest present in an image pixel,
and then the estimated abundance fraction is used to clas-
sify the pixel. However, this generally requires visual inter-
pretation. Such human intervention is rather subjective and
may not be reliable or repeatable. With no availability of
standardized data or objective criteria, a quantitative analysis
for mixed pixel classification is almost impossible. By con-
trast, pure pixel classification does not have such a problem.
Unlike mixed pixel classification, it does not require abun-
dance fractions of spectral signatures to be used for class
assignment. Its performance is completely determined by the
criteria used for classification. So, two major contributions
of this paper are 1) to establish a link between pure and
mixed pixel classification by designing a mixed-to-pure pixel
(M/P) converter and 2) to conduct experimental comparisons
among a set of selected pure and mixed classification algo-
rithms, including quantitative performance analysis. In order
to validate such a study, a standardized HYDICE data set
is used where all man-made targets present in image scenes
have been precisely located to the pixel level and designated
as either target center pixels or target masking pixels. The
reason for using target masking pixels is to include partial
target pixels, target background pixels, and target shadow
pixels to account for all possible pixels that may have im-
pacts on targets of interest. In addition, a custom-designed
criterion for target detection and classification is also intro-
duced for the purpose of tallying target pixels detected and
classified. By making use of this data set, along with the
designed criterion, a comparative analysis for classification
accuracy becomes possible. The significance of these exper-
imental results is to offer a performance evaluation of the
classification algorithms in a rigorous fashion so that each
algorithm is fairly compared on the same common ground.

A standardized HYDICE data set is used for evaluation. The
experiments show that the OSP-based classification algorithms
resulting from an M/P conversion perform better than the min-
imum distance-based classification algorithms, but not as well
as LDA. On the other hand, the same experiments also show that
the abundance-based images generated by mixed pixel classi-
fication algorithms significantly improve classification results.
These facts substantiate the need for mixed pixel classification
for multispectral/hyperspectral imagery.

This paper is organized as follows. Section II formulates the
mixed pixel classification problem as a linear mixture model.
Section III describes various approaches to abundance estima-
tion for mixed pixel classification (e.g., OSP-based and ML
classifiers). Section IV introduces the concept of mixed-to-pure
pixel conversion to reduce a mixed pixel classification problem
to a conventional pure pixel classification problem. Section V
derives an objective criterion for target detection and classifica-

tion to used for experiments. Section VI presents a comparative
performance analysis for classifiers described in Sections III and
IV, and Section VII concludes with some remarks.

II. L INEAR MIXING PROBLEMS AND OSP APPROACH

Linear spectral unmixing is a widely used approach in re-
motely sensed imagery to determine and quantify individual
components [25], [26]. Since every pixel is acquired by multiple
spectral bands, it can be represented by a column vector where
each component represents a particular band. Suppose thatis
the number of spectral bands. Letbe an column vector
in a multispectral or hyperspectral image where vectors are all
boldfaced. In this case, each pixel is considered to be a pixel
vector of dimension . Assume that is an signature
matrix denoted by , where is an
column vector representing the-th spectral signature resident
in the pixel , and is the number of signatures of interest. Let

be a abundance column vector
associated with, where denotes the fraction of the-th sig-
nature in the pixel .

A. Linear Spectral Mixture Model

A classical approach to solving the mixed pixel classification
problem is linear unmixing, which assumes that the materials
(endmembers) present in a pixel vector are linearly mixed. A
pixel vector can be described by a linear regression model as
follows:

(1)

where is an column vector that can be viewed as either
noise or an error correction term resulting from data fitting.

The algorithms to be used for our comparative study only
include those derived from OSP, minimum distance approaches,
and Fisher's linear discriminant analysis (LDA). This selection
is made for three major reasons.

1) As mentioned earlier, if the noise in a linear mixing
problem is white Gaussian, ML estimation and the OSP
approach for mixed pixel classification are equivalent
and both can be viewed as a spectral unmixing method.

2) The white Gaussian noise assumption also simplifies and
reduces the Gaussian ML classifier to a minimum dis-
tance classifier.

3) Fisher's LDA has been widely used for classification since
its criterion is based on the maximization of class separa-
bility.

These facts allow us to restrict the mixed pixel classification
algorithms to three classes of classification algorithms listed
above (the OSP-based classifiers, minimum distance-based
classifiers, and LDA). The difference between the OSP and the
other approaches (i.e., minimum distance, LDA) is that the OSP
was designed for mixed pixel classification, whereas the latter
is for pure pixel classification. Nevertheless, we will show that
by imposing appropriate constraints on the abundance fractions,
the mixed pixel classification can be reinterpreted and reduced
to pure pixel classification. By means of a mixed-to-pure
pixel (M/P) conversion, mixed pixel classification algorithms
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can then be directly compared with minimum distance-based
classifiers and LDA.

B. Orthogonal Subspace Projection (OSP)

Without loss of generality, we assume that there is a signature
of interest in model (1), . So the signature matrix
can be partitioned into the desired signature vectorand an
undesired signature matrix denoted by. By separating from

, model (1) can be expressed as follows:

(2)

where the subscript is suppressed throughout this paper and
. Let and be the spaces

linearly spanned by , , and respectively. The reason for
separating from in model (2) is to allow us to design an
orthogonal subspace projector to annihilatefrom an observed
pixel prior to classification. One such desired orthogonal sub-
space projector was derived in [15] given by ,
where is the pseudo-inverse of and the
notation indicates that the projector maps the observed
pixel into the range space , the orthogonal complement
of .

Now, applying to model (2) results in a new spectral sig-
nature model

(3)

where the undesired signatures invanish due to orthogonal
projection elimination, and the original noisehas been sup-
pressed to .

Equation (3) represents a standard signal detection problem
and can be solved by a matched filter given by

. So, an orthogonal subspace projection (OSP) classifier
derived in [15] can be implemented by an undesired sig-

nature annihilator , followed by a desired signature matched
filter

(4)

III. H YPERSPECTRALABUNDANCE ESTIMATION ALGORITHMS

FOR MIXED PIXEL CLASSIFICATION

Equation (1) represents a general linear model for mixed pixel
classification where the signature matrix and the abundance
vector are assumed to be knowna priori. In reality, is gen-
erally not known and must be estimated. In order to estimate

, a common approach is spectral unmixing via an inverse of
the linear mixture model given by (1) (e.g., [27]). In this paper,
we will describe two general approaches in Sections III and IV,
the estimation of abundance and the classification of abundance,
with the former closely related to the spectral unmixing and the
latter reduced to distance-based classification.

A. A Posteriori Orthogonal Subspace Projection

In order to estimate , several tech-
niques have been developed in [20]–[24] based ona posteriori
information obtained from the data cube. As a result, model (1)

or (2) can be cast in terms of ana posteriori formulation and
can be given by

(5)

where , , and are estimates of , , and , re-
spectively, based on the observed pixel itself. Because of this,
model (5) is called ana posteriorimodel as opposed to model
(1), which can be viewed as a Bayes ora priori model. For sim-
plicity, the dependency onwill be dropped from all the nota-
tions of estimates throughout the rest of this paper.

1) Signature Subspace Projection (SSP) [20], [21]:Using
the least squares error as an optimal criterion for model (5)
yields the optimal least squares estimate of given by

(6)

Substituting (6) for the estimate of in model (5) results in

(7)

where

(8)

From (6), we define to be the signa-
ture space orthogonal projector that projectsinto the signature
space and apply to model (5), which yields

(9)

(10)

where and the term vanishes in (9) since
annihilates .

By coupling with the OSP classifier given by (4),
a classifier , called signature space projection classifier
(SSC) derived in [21] is given by

(11)

Now we apply to botha priori model (1) anda poste-
riori model (5), we obtain

(12)

and

(13)

Equating (12) and (13) yields

(14)

Dividing (14) by , we obtain the estimate of ,
denoted by .

(15)
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where the last equality holds because .
The estimation error resulting from (15) is given by

(16)

2) Oblique Subspace Projection (OBSP) [21]:In SSP, the
noise is suppressed by making use of , and the undesired
signatures in are subsequently nulled by the projector . It
would be convenient if we could have these two operations done
in one step. One such operator, called an oblique subspace pro-
jection, was developed in [21] and designates as its range
space and as its null space. In this case, the oblique sub-
space projection is no longer orthogonal. Furthermore, it was
shown in [28] that the orthogonal subspace projectorcan be
decomposed as a sum of two oblique projectors, one of which
is the oblique subspace projection.

Let be a projector with its range spaceand null space
. The can be decomposed and expressed by

(17)

with

(18)

(19)

particularly, and .
In analogy with (11), an oblique subspace projection classi-

fier (OBC) denoted by can be constructed via (18) by

(20)

(21)

Applying (20) to model (1) and model (5) results in

(22)

where .
Equating (21) and (22) yields

(23)

and

(24)

So, the estimation error can be obtained from (24) as

(25)

3) Maximum Likelihood Estimation (MLE) [23]:In the sub-
space projection approaches described in Subsections 1 and 2,
we only assumed that the variance of the noiseis given by
and is independent of the signatures. We further assume thatis
an additive white Gaussian noise. Then in model (1) can be
expressed as a Gaussian distribution with mean and vari-
ance (i.e., ). The MLE of for
model (5) can be obtained in [23], [24] and [29] by

(26)

In particular, the estimate of the-th abundance is given by

(27)

and the associated estimation error is

(28)

From (6) and (26), SSC and MLE both generate an identical
abundance estimate , but dif-
ferent noise estimates are produced,
for SSC in (16), and for MLE in (28).
However, if we further compare (24) to (27) and (25) to (28), we
discover that both sets of equations are identical. This implies
that MLE is indeed OBC, given the condition that the noise is
white Gaussian. In this case, MLE can be replaced by OBC in
mixed pixel classification.

B. Unsupervised OSP [22]

Until now, we have made an important assumption that
the signature matrix was givena priori. Due to significantly
improved spectral resolution, hyperspectral sensors generally
extract much more information than what we expect, partic-
ularly more spectral signatures than desired. These include
natural background signatures, unwanted interferers, or clutter.
Under such circumstances, identifying these signatures is
almost impossible and prohibitive in practice. In order to cope
with this problem, an unsupervised OSP was recently devel-
oped in [22], where the undesired and unwanted signatures
can be found automatically via an unsupervised process. One
such algorithm, referred to as Automatic Target Detection and
Classification Algorithm (ATDCA), is a two-stage process con-
sisting of a target generation process and target classification
process and can be summarized as follows.

ATDCA
Stage 1) Target Generation Process (TGP)

Step 1) Initial condition:
Select a pixel vector with the maximum
length as an initial target denoted by ,
i.e.,

Set and .
Step 2) Find the orthogonal projections of all

image pixels with respect to by ap-
plying to all image
pixel vectors , where is the pseudo-
inverse of .

Step 3) Find the first target, denoted by , by
finding
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Step 4) If with ,
go to step 7. Otherwise, let and
continue.

Step 5) Find theth target generated by the
-th stage, i.e.,

Let be the target
matrix generated in theth stage.

Step 6) Stopping rule.
Calculate

(29)

and compare it to the prescribed
threshold . If , go to step 5.
Otherwise, continue. (Note that each
iteration from step 5 to step 6 in the
ATDCA generates and detects one target
at a time.)

Step 7) At this point, the target generation
process will be terminated. In this case,
the process is called to be convergent.
The set
will be the desired target set used for the
next stage of target classification.

Stage 2) Target Classification Process (TCP)
In this stage, the target set gen-
erated by TGP is ready for classification. Let be
the th target for . Apply the OSP classifier

given by (4) to classify , where
is the unde-

sired signature matrix made up of all signatures in
except for the desired signature

.
It is worth noting that the OPCI stopping criterion

given by (29), actually arises from the
constant appearing in the estimation errors derived in
(16), (25) and (28). One comment on OPCI is useful regarding
implementation of ATDCA. The OPCI only provides a guide
to terminate ATDCA. Unfortunately, no optimal number of
targets can be set for TGP to generate. The number of targets
needed to be generated by TGP is determined by the prescribed
error threshold set for OPCI in step 6, which is determined
empirically. Another way to terminate ATDCA is to preset the
number of targets. In this case, there is no need to use OPCI as
a stopping criterion described in step 6. Which one is a better
approach depends upon different applications and varies with
scene-by-scene.

IV. CONVERSION OFHYPERSPECTRALABUNDANCE

ESTIMATION ALGORITHMS TOPURE PIXEL CLASSIFICATION

The objective of mixed pixel classification algorithms is to
estimate in a pixel vector using the
linear mixture model described by (1) or (5). Since the abun-
dance vector in thea priori model (1) is assumed to be known,
there is no need to estimatefor OSP. On the other hand, (5) is

ana posteriorimodel and requires an estimate of. This results
in a posterioriOSP approach where the abundance estimation
is solved as an unconstrained least squares problem. In the latter
case, is an estimate of the abundance fractionof a desired
signature specified by in model (1). The images generated by
these algorithms are presented as gray scale, with the gray level
value used to represent the estimated abundance fraction of a
desired signature present in a mixed pixel vector. The clas-
sification of any given pixel vector is then based on the esti-
mated abundance fraction . In the past, this has been done
by visual interpretation and later supported by ground truth.
So, technically speaking, OSP anda posterioriOSP are signa-
ture abundance estimation algorithms, not classification algo-
rithms. In order to use these algorithms as classifiers, we need
a process, called a mixed-to-pure pixel converter that can con-
vert mixed pixel abundance estimation to mixed pixel classifica-
tion. A similar process, referred to an analog-to-digital converter
(A/D converter) has been widely used in communications and
signal processing. Such an A/D converter is generally imple-
mented by vector quantization. As a matter of fact, the concept
of using vector quantization (VQ) to generate desired targets has
been explored in [30], where each codeword in the VQ-gener-
ated codebook corresponded to one potential target in an image
scene. Furthermore, to make classification fully automated, a
computer-aided classification criterion must be also provided.

A. Winner-Take-All Mixed-to-Pure Pixel Converter
(WTAMPC)

In order to compare pure pixel classification to mixed pixel
classification, we need to interpret a mixed pixel classification
problem in the context of pure pixel classification. One way
is to convert the abundance estimation for mixed pixels to the
classification of pure pixels by considering model (1) as a con-
strained problem with some specific restrictions imposed on the
estimated abundance vector.

Assume that the abundance vectorin model (1) satisfies
constraints for all and . Addi-
tionally, the estimate is constrained to a set of-dimensional
vectors with one in only one component and zeros in the re-
maining components. Such vectors will be denoted by-di-
mensional unit vectors. If is a -dimensional vector with 1 in
the -th component and 0's in all other remaining components
(i.e.,

-
), then is called the

-th -dimensional unit vector. In this case, the estimated abun-
dance vector is forced to be a pure signature. Thus, there are
only choices for . In other words, can be assigned to only
one of classes, which reduces a mixed pixel classification to
a -class classification problem. It then can be solved by pure
pixel classification techniques. With these constraints model (5)
becomes

for some (30)

where is called a mixed-to-pure pixel (M/P) converter
operating on a pixel vector that assigns to signature for
some . It should be noted that the estimated noisein model
(5) has been absorbed into for classification accuracy. So
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if we interpret model (1) by model (30), each signature vector
in represents a distinct class, and any sample pixel vector

will be assigned to one of the signatures in via an M/P
converter in the sense of a certain criterion.
Using (30), we can assign 1 to a target pixel and 0 otherwise. The
resulting image will be a binary image which shows only target
pixels. An important but difficult task is to design an effective
M/P converter for (30), which will preserve as much information
as possible from mixed pixels during the mixed-to-pure pixel
conversion.

A simple M/P converter is to use the abundance percentage
as a cut-off threshold value. If the estimated abundance fraction

of a signature accounts for more than a certain percentage
within , we may classify to the material specified by the sig-
nature . However, in order for such an M/P converter to be
effective, a percentage value needs to be appropriately selected
to threshold an abundance-based image to a binary image with
target pixels assigned by 1 and others by 0. Unfortunately, this
was shown not effective in [31].

An alternative way is the one proposed in [31], called the
WTA thresholding criterion as described later, and is very
similar to the winner-take-all learning algorithm used in neural
networks [32]. This WTA thresholding criterion can be used
as an M/P converter and serve as a mechanism for (30) to
convert a mixed pixel to a pure pixel. Instead of focusing
on the abundance estimation of the desired signature, as
done in all OSP-based classifiers, we look at the complete
spectrum of abundance estimates for all signatures present
in . Assume that there are signatures where

is the -th signature. Let be a mixed pixel vector to be
classified and be the
associated -dimensional abundance vector. Let be the
unconstrained estimated abundance fraction ofcontained
in produced by mixed pixel classifiers. We then compare
all estimated abundance fractions
and find the one with the maximum fraction, say (i.e.,

). It will be used to classify the
by assigning to the -th signature . In other words,

using the WTA thresholding criterion and (30), we can define
a WTA-based M/P converter
(referred to as WTAMPC) by setting and

for . As a result of such assignment,
the mixed abundance vector is then converted to a
pure abundance vector, the-th -dimensional unit vector

-
.

B. Minimum Distance-Based Classification Algorithms

In Section IV.A, we described a WTAMPC that directly con-
verted the abundance estimation of a mixed pixel to the classi-
fication of a pure pixel. In the following two sections, we use
(30) as a vehicle to reinterpret two commonly used pure pixel
classification methods, minimum distance-based classification
and Fisher's linear discriminant analysis, in the context of con-
strained mixed pixel classification.

As noted in (30), there is no noise term present in the equa-
tion. This is because the noise can be interpreted and described

Fig. 1. Typical mask target.

as misclassification error. So, if the noise in model (1) is rein-
terpreted as the error resulting from classification and is also
modeled as a white Gaussian, then the mixed pixel classifiers,
OSP anda posterioriOSP described above, become Gaussian
maximum likelihood classifiers

(31)

where for some , and
for all and (i.e.,

). In
other words, the estimated abundance vectorin (31) must
be a -dimensional unit vector. Since there arecomponents,
there are only options in . Due to the Gaussian structure
assumed in , the classification using (31) can be simplified
to a classifier based on the distance between class means

and a pixel vector as shown later.
Assume that is a general sample

pixel vector to be classified in a hyperspectral image. Let
be the set of classes of interest andbe the

class representing the-th signature .
Assume that is the -th sample vector in class, and

is the set of sample vectors to be used for
classification where is the number of sample vectors in the
-th class, and is the total number of

sample vectors. Two types of distance-based classifiers can be
considered depending upon sample statistics.

1) The first-order statistics classifier.
Minimum distance classifier:

a) Euclidean distance

(32)

Since the quadratic term inof (32) is independent
of class , the Euclidean distance-based minimum
distance classifier is a linear classifier.

b) City block distance

(33)

c) Tchebyshev (maxmimum) distance (TD)

(34)
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Fig. 2. (a) HYDICE image Scene (b) Same scene as Fig. 2(a) but with vehicles masked by BLACK and WHITE.

2) Second-order statistics classifiers.

a) Mahalanobis classifier [33]

(35)

In general, the Mahalanobis classifier is a quadratic
classifier. When for any class , then the
Mahalanobis classifier is reduced to the minimum-
distance classifier with Euclidean distance.

b) Bhattacharyya classifier [33]

(36)

When for classes and , then the Bhat-
tacharyya classifier is reduced to the Mahalanobis
classifier.

If the covariance matrices in (35) and (36) are not of full
rank, their inverses will be replaced by their pseudo-inverses

.

C. Fisher's Linear Discriminant Analysis (LDA)

From Fisher's discriminant analysis [1], we can form total,
between-class and within-class scatter matrices as follows. Let

be the global mean.

(37)

(38)

(39)

From (37)–(39)

(40)

In order to minimize the misclassification error, we maximize
the Raleigh quotient

over (41)
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Fig. 3. Subscene from Fig. 2(a).

Finding the solution to (41) is equivalent to solving the fol-
lowing generalized eigenvalue problem

(42)

or equivalently

(43)

where the eigenvector is called the -th Fisher's linear dis-
criminant.

Since only signatures need to be classified, there are only
nonzero eigenvalues. Assume that

are such values arranged in decreasing order of
magnitude. Then their corresponding eigenvectors re-
sulting from (42) are called Fisher's discriminants. For instance,

corresponding to is the first Fisher's discriminant, cor-
responding to is the second Fisher's discriminant, etc. Using

Fig. 4. Average radiances for target signatures, vehicles of Type 1, Type 2, and
Type 3 and two types of man-made objects.

these Fisher's discriminants , we construct an
eigenmatrix given by to map the
pixel vector into a new vector in a new space lin-
early spanned by . Then the LDA classification is car-
ried out in the space using the minimum distance measures
given by (32)–(36).

D. Unsupervised Classification

Although the distance-based classifiers described above are
supervised based on a set of training samples, they can be
extended to unsupervised classifiers by including a clustering
process such as the nearest neighboring rule [1] or a neural
network-based, self-organization algorithm [32]. For example,
the minimum distance classifier can be implemented by its
unsupervised version, ISODATA [1].

V. CRITERION FORTARGET DETECTION AND CLASSIFICATION

The standardized HYDICE data set used for the following
experiments contains ten vehicles and four man-made objects.
The precise spatial locations of all these targets are provided by
ground truth where two types of target pixels are designated,
BLACK and WHITE. The BLACK-masked (B) pixels are as-
sumed to be target center pixels, while WHITE-masked (W)
pixels may be target boundary pixels or target pixels mixed with
background pixels [see Fig. 2(b)]. The positions of these two
types of pixels were located in the image by coordinates,
where and represent row and column, respectively. The size
of a mask used for a target varies and depends upon the size of
the target. A typical masked target of size is shown in
Fig. 1 where black (B) pixels are centered in the mask that are
considered to be the target center pixels and white (W) pixels
surrounding B pixels are target pixels that may be either target
boundary pixels or target pixels mixed with background pixels.
Here we make a subtle distinction between a targetdetectedand
a targethit. When a target is detected, it means that at least one
B target pixel is detected. When a target is hit, it means that at
least either one B or one W pixel is detected. As long as one
of these B or W pixels is detected, we declare the target is hit.
So, by way of this definition, a target detected always implies a
target hit, but not vice versa. Using these B and W pixels, we
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(a) (b)

(c)

Fig. 5. (a) Images produced by OSP, (b) images produced by OBSP, and (c) Images produced by SSP.



CHANG AND REN: EXPERIMENT-BASED QUANTITATIVE AND COMPARATIVE ANALYSIS OF TARGET DETECTION 1053

(a) (b)

Fig. 6. (a) Error images produced by taking absolute difference between OSP-generated and OBSP-generated images. (b) Error images produced by taking
absolute difference between OBSP-generated and SSP-generated images.

can actually tally the number of target pixels detected or hit by
a particular algorithm.

The criteria that we use in this paper are

1) How many target B pixels are detected;
2) How many target W pixels are detected;
3) How many pixels are detected as false alarms for a

target in which case neither a BLACK-masked pixel or a
WHITE-masked pixel is detected;

4) How many target B pixels are missed.

For example, suppose that the shaded pixels in Fig. 1 are those
detected by a detection algorithm. We declare the target to be
detected with one B pixel as well as hit with one B and two W
pixels. There are no false alarm pixels, but have three B pixels
missed. In order to quantitatively study target detection perfor-
mance, the following definitions are introduced.

total number of sample pixel vectors;
specific target to be detected;
total number of BLACK-masked plus
WHITE-masked pixels;
total number of BLACK-masked pixels;
total number of WHITE-masked pixels;
total number of either BLACK-masked or
WHITE-masked pixels detected;
total number of BLACK-masked pixels
detected;

total number of WHITE-masked pixels
detected;
total number of false alarms pixels, i.e., total
number of pixels which are neither BLACK-
masked nor WHITE-masked pixels de-
tected;

total number of BLACK-masked or
WHITE-masked pixels missed.

Using the above notations, we can further define the detection
rate for B pixels of target by

(44)

and the detection rate for W pixels of target by

(45)

Since B pixels represent target center pixels and W pixels are
target boundary pixels mixed with background pixels, a good
detection algorithm must have a higher rate of target B pixels
detected . On the other hand, detecting a W pixel does
not necessarily mean a target detected. Nevertheless, we can
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declare the target to be hit. For this purpose, we define the target
hit rate for target by

(46)

So from (46) a higher target hit rate does not imply a
higher target detection rate or vice versa. This is be-
cause the number of W pixels are generally much greater than
the number of B pixels. Thus, the W pixels may actually dom-
inate the performance of . As will be shown in the ex-
periments, a detection algorithm may detect all B pixels but no
W pixels. In this case, this algorithm achieves 100% target pixel
detection rate , but . As a result,
its target hit rate is very small because .
On the other hand, if the target hit rate , it implies
that all B and W pixels are detected. In this case, even though the
target is hit, we may still not be able to precisely locate where
the target is. So the B target pixel detection rate is
more important than since it provides the information
about the exact location of the target.

In addition to (44)–(46), we are also interested in target false
alarm rate and target miss rate defined
later

(47)

(48)

If there are targets needing to be classified, the
overall detection rate for a class of targets can be
defined as

(49)

where for . As
will be seen in the following experiments, a higher
does not imply higher classification accuracy, because it may
happen that several targets are detected in one single image due
to their similar signature spectra and it is difficult to discriminate
one from another. This results in poor classification. In order to
account for this phenomenon we define the classification rate
for a specific target , as

(50)

and the overall classification rate as

(51)

where and are defined by (49) and (50) respec-
tively. Now using (44)–(51) as criteria, we can evaluate the
detection and classification performance of various algorithms
through the HYDICE experiments.

(a)

(b)

Fig. 7. (a) Abundance-based gray scale images generated by OSP using
B pixels. (b) Binary images resulting from WTAMPC applied to images in
Fig. 7(a).

Since the target detection and classification algorithms
described in Section III are based on the abundance fractions
of targets estimated from mixed pixels, the images produced
by mixed pixel classification are gray-scale with the gray level
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TABLE I
TALLIES OF TARGET PIXELS FOR OSP-DETECTION USING B PIXELS AFTER WTAMPC, WITH DETECTION RATES

TABLE II
TALLIES OF TARGET PIXELS FOR OSP-DETECTION USING B AND W PIXELS AFTER WTAMPC WITH DETECTION RATES

TABLE III
TALLIES OF TARGET PIXELS FOR OSP-DETECTION USING MANUAL SAMPLING AFTER WTAMPC WITH DETECTION RATES

values representing the abundance fractions of targets present
in mixed pixels. With the availability of standardized data and
the help of the MPC algorithms developed in Section IV, we can
evaluate these algorithms objectively via (44)–(51) by actually
tallying the number of target pixels detected for performance
analysis.

VI. COMPARATIVE PERFORMANCEANALYSIS USING HYDICE
DATA

This section contains a series of experiments which use a HY-
DICE standardized data set to conduct a comprehensive com-
parison among the OSP-based mixed pixel classification and
distance-based pure pixel classification algorithms. Three com-
parative studies are designed. First of all, we describe the HY-
DICE image scene.

A. HYDICE Image Scene

The data used for the experiments are an image scene in
Maryland taken by a HYDICE sensor in August 1995 using 210
bands of spectral coverage 0.4–2.5m with resolution 10 nm.
The scene is of size , shown in Fig. 2(a), taken from a
flight altitude of 10 000 ft within a GSD of approximately 1.5
m. Each pixel vector has a dimensionality of 210. This figure
shows a tree line along the left edge and a large grass field on

the right. This grass field contains a road along the right edge
of the image. There are ten vehicles,

, and parked along the tree line and aligned ver-
tically. They belong to three different types, denoted by V1 for
Type 1, V2 for Type 2 and V3 for Type 3. The bottom four,
denoted by and belong to V1 with size approx-
imately 4 m 8 m. The middle three, denoted by and

belong to V2 with size approximately 3 m6 m. The top
three, denoted by and belong to V3 but have the
same size as V2. In addition to vehicles, four man-made objects
of two types are shown in the image. Two are located in the near
center of the scene, the bottom one denoted byand the top
one by , and another two are on the right edge, the bottom
one denoted by , and the top one by . and belong
to the same type, indicated by O1,, and belong to another
type indicated by O2. In terms of class separation, there are five
distinct classes of targets in the image scene, three for vehicles
and two for man-made objects. It is worth noting that the HY-
DICE scene in Fig. 2(a) was geometrically corrected to precisely
locate the spatial coordinates of all vehicles by either BLACK
or WHITE masks, where the BLACK-masked pixels are center
pixels of targets and WHITE-masked pixels may be part of the
target pixels or target background pixels or target shadow pixels.
So, BLACK-masked target pixels are always in WHITE mask
frames. However, in this paper, the BLACK-masked pixels will
be considered separately from WHITE-masked pixels since they
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Fig. 8. (top) Abundance-based gray scale images generated by ATDCA. (bottom) Binary images resulting from WTAMPC applied to images in Fig. 8(a).

TABLE IV
TALLIES OF TARGET PIXELS FOR ATDCA AFTER WTAMPC WITH DETECTION RATES

will be used as target signatures for classification. This informa-
tion allows us to perform a quantitative analysis and compara-
tive study of various classification algorithms. A smaller scene
shown in Fig. 3, cropped from the lower part of Fig. 2 will be
also used for more detailed studies. It is the exact same image
scene studied in [6], [7], [19], [31] and has a different GSD 0.78
meters with the image turned upside down. It contains only four
vehicles and and one man-made object . The

top vehicle belongs to V2 and the bottom three
belong to V1.

B. HYDICE Experiments

Since the exact locations of all the vehicles and man-made
objects in Fig. 2 are available, we can extract target center
pixels masked by BLACK and mixed pixels masked by
WHITE directly from the image scene for each vehicle. The
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Fig. 9. Spectral signatures of the ten targets in Fig. 2.

Fig. 10. Images generated by ED using B pixels.

average radiances for three types of vehicles were calculated
and plotted in Fig. 4. The spectral signatures in Fig. 4 were
used as the desired target information in implementation of
the algorithms.

Example 1: The theoretical studies on comparative analysis
among subspace projection methods were investigated previ-
ously and separately in [15], [16], [20], [21] based on AVIRIS
data. In this example, we conduct an experiment-based com-
parison among OSP, OBSP, MLE and SSP using standardized

Fig. 11. Images generated by MD using B pixels.

HYDICE data. Since both OBSP and MLE generate an iden-
tical estimation error given by (25) and (28), a fact also reported
in [21], [23] and [24], we will only focus our experiments on
OSP, OBSP and SSP. It is interesting to note that if we apply
a scaled OSP classifier, to model (2), it re-
sults in the same equations given by Eqs. (24) and (28) with
both and replaced by . This implies that if
the knowledge about the abundance vectoris givena priori,
then OBSP and MLE are reduced to OSP. On the other hand, if
the abundance vectoris not known and needs to be estimated
by , then OBSP and MLE will be used to replace OSP. Conse-
quently, OSP can be viewed as thea priori version of OBSP and
MLE, while OBSP and MLE can be thought of asa posteriori
version of OSP. So, the experiments done in [15] were actually
based on thea posterioriversion of OSP.

As shown in (4) and (20), OSP and OBSP produced an iden-
tical classification vector, with an extra scaling constant

appearing in OBSP classifier. As reported in [23]
and [24], this scaling constant accounts for the amount of the
abundance fractions resident in classified pixels and results in
two completely different gray level ranges for OSP and OBSP.
However, an interesting finding was observed. The scaling con-
stant does not have impact on images displayed on computer
because the images generated by OSP and OBSP for computer
display are all scaled to 256 gray levels. In this case, the scaling
constant is absorbed in the scaling process for
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Fig. 12. Images generated by LDAED using B pixels.

computer display. So, from a display point of view, they all pro-
duce identical results as shown in Fig. 5(a) and (b), where the
man-made object O2 and a small portion of O4 in the scene in
Fig. 3 were classified. In addition, this scaling process is also
invariant to the abundance percentage, as mentioned in the end
of Section V. This is because the abundance percentage is cal-
culated based on relative proportions among abundance frac-
tions. In order to overcome this problem, we took their abso-
lute differences to substantiate the difference between the abun-
dance fractions generated by OSP and OBSP and display their
error images in 256 gray scales in Fig. 6(a). If OSP and OBSP
generate identical results, their absolute difference should be 0
and their corresponding error images should be all black. Ob-
viously, this is not true as we can see in Fig. 6(a), where only
targets to be classified are shown in the images. This further
justifies the subtle difference between OSP and OBSP. On the
other hand, SSP is quite different from OBSP in that SSP in-
cludes an additional signature subspace projectorin its clas-
sifier. As a result, the SSP-generated estimation error given by
(16) is different from (25). In [20], it was shown via ROC (re-
ceiver operating characteristic) analysis that SSP greatly im-
proved OSP in terms of signal to noise ratio if the additive noise
is assumed to be Gaussian. An error theory using ROC analysis
for a posterioriOSP and OSP is further investigated in [34].
The error images resulting from the absolute difference between
the OBSP-generated and SSP-generated images are shown in
Fig. 6(b). Unlike Fig. 6(a), which largely shows targets of in-

Fig. 13. Images generated by LDAMD using B pixels.

terest, the images in Fig. 6(b) contain more random noise which
blurs the targets, and particularly, the classification of the ob-
ject. Unfortunately, such improvements and differences cannot
be visualized on a 256-gray scale computer display device be-
cause the dynamic range of the abundance is far beyond 256
scales, ranging from some negative values due to noise to num-
bers in thousands. So, when we display the OSP, the OBSP
and SSP-generated images by scaling down to a 256-gray level
range, their differences are suppressed and cannot be substanti-
ated. As a result, the images turned out to be identical as shown
in Fig. 5(a)–(c). This further simplifies our comparative anal-
ysis where the OSP can be selected as a representative for com-
parison in the following experiments. Nevertheless, it should be
noted that the superior performance of OBSP and SSP to that of
OSP in abundance estimation has been demonstrated by com-
puter simulations in [35].

Example 2: This example is designed to demonstrate the dif-
ference betweena priori knowledge anda posteriori knowl-
edge as used in the algorithms. In the case ofa priori knowl-
edge, we assume that the B pixels are available. Ifa posteriori
knowledge is assumed, the target pixels will be extracted di-
rectly from an image scene by manual sampling (OSP), or by
computer (ATDCA) which may include either B or W pixels or
both. If the signatures are not correctly extracted from the data,
i.e., no B pixels, what is the effect on the detection and classifi-
cation performance and how robust are OSP and ATDCA? Four
signature extraction methods were compared, (1) the use of B



CHANG AND REN: EXPERIMENT-BASED QUANTITATIVE AND COMPARATIVE ANALYSIS OF TARGET DETECTION 1059

(a) (b)

Fig. 14. (a) Abundance-based gray scale images generated by OSP using B pixels, (b) binary images of Fig. 14(a) resulting from WTAMPC, (c) abundance-based
gray scale images generated by OSP using B and W pixels, and (d) binary images of Fig. 14(c) resulting from WTAMPC.

pixels provided by the standardized data set; (2) the use of all
masking pixels, i.e., both B and W pixels provided by the stan-
dardized data set; (3) manual sampling by visual inspection as
done in previous research [6], [15], [16], [20], [21]; (4) unsu-
pervised ATDCA which requires no human intervention [22].
Three types of vehicles, V1, V2, V3, and two types of objects,
O1, O2, were used for classification where the desired signa-
tures were the average values of all target sample pixels of in-
terest. For instance, to classify V1 (i.e., the vehicles of Type 1),
the desired signature was obtained by averaging target pixels of
all four vehicles: . Similarly, the target pixels of

and were averaged to generate the desired signature for
O1, etc. Fig. 7(a) is the results of using B pixels for OSP, where
a total of 16 000 pixels in Fig. 2 were used for classification. In
order to tally target pixels detected, we need to convert abun-
dance-based mixed pixels to pure target pixels.

Table I is a tally of target pixels in Fig. 7(b) resulting from
WTAMPC where target B pixels were used the sample pixels
for OSP. Similarly, Table II is a tally of target pixels and their
detection rates resulting from WTAMPC where target B and W
pixels were used the sample pixels for OSP. Table III is a tally of
target pixels and their detection rates resulting from WTAMPC
where the sample target pixels were selected manually by vi-

sual inspection. ATDCA deserves more attention here. Unlike
OSP which made use of sample pixels for target detection and
classification, ATDCA does not require any sucha priori in-
formation. It automatically searched for all targets of interest
and further detected and classified the targets. So, Fig. 8(i)
shows the target detection and classification results generated
by ATDCA based on 15 target signatures it found in the image
scene. Since ATDCA does not have prior knowledge about ve-
hicles and objects, it detected all possible targets and then clas-
sified them subsequently. For instance, Fig. 8(iii) shows the ob-
ject while Fig. 8(x) shows the vehicles and the ob-
ject . Similarly, both Fig. 8(xi) and (vi) show the vehicles

and while Fig. 8(xiii) only shows . So, Table IV is
different from Tables I–III. The first column of the table spec-
ifies different types of targets in separate images as indicated
and tabulates the number of detected target pixels and their cor-
responding detection rates using WTAMPC. In all the figures,
images labeled by (a) are abundance-based images, images la-
beled by (b) are binary images thresholded by WTAMPC. As
shown in these figures, there is no visible difference between
using B pixels and manual sampling in abundance-scaled im-
ages. However, when we used full masks including B and W
pixels in our experiments, the results were very poor and are
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not comparable to the results obtained by manual sampling and
ATDCA. This is because W pixels are target-background mixed
pixels and their number is much greater than that of B pixels.
As a consequence, the W pixels dominate target signatures and
smeared the purity of target signatures. Also shown in this ex-
ample, ATDCA is comparable to OSP by visually interpreting
their abundance-based images. This observation demonstrates
that the unsupervised OSP can do as well as OSP and allows
us to replace OSP with ATDCA in unknown or blind environ-
ment where noa priori knowledge is required. This advantage
is substantial in many real applications because obtaining the
prior information about the signatures is considered to be very
difficult or sometimes impossible.

One worthy comment is the following. Although the targets
shown in Fig. 2 are ten different targets, their spectral character-
istics are not necessarily very distinct. As shown in Fig. 9, the
spectral signatures of some targets are very similar even though
the targets themselves are completely distinct. For example, the
signature of is very close to those of and the signa-
ture of is also very close to those of and . However,
they belong to completely different vehicle types. But if we clas-
sify using its spectral signature, it was extracted along with

as shown in the above experimental results, and vice versa.
Similarly. it is also true for and . Some studies on
this phenomenon were reported in [6] and [31]. More detailed
analysis on the results on Figs. 2 and 7–9 can be found in [31].

Example 3: In the previous two examples, comparisons were
made among abundance estimated-based algorithms for mixed
pixel classification. The example presented here will compare
these algorithms against popular pure-pixel classification algo-
rithms widely used in pattern classification as described in Sec-
tion IV. In order to make the experiments simple, we again used
the image scene in Fig. 3, which is of size and has a
total of 3600 pixels. In addition to vehicles and the object, we
also included signatures of tree, road and grass field in the sig-
nature matrix . So, a total of 6 classes will be considered for
this example with each class represented by a distinct signature.

Since each target (including the man-made objects) contains
no more than 16 B pixels whose number is far less than the
number of bands. Supervised second-order minimum distance-
based classification algorithms are generally not applicable be-
cause the ranks of covariance matrices used in (35) and (36)
will be very small due to a very limited set of training sam-
ples. Similarly, it is also true for LDA using MD described by
(42), referred to as LDAMD. Under this circumstance, we need
to create more samples to augment the training pool. One way
to do so is to adopt an approach proposed in [36] which uses
the second-order statistics to generate additional nonlinear cor-
related samples from the available samples. These new gen-
erated samples can improve the classification performance. In
order to further simplify experiments, ED and MD were used for
comparisons because they are representatives of the first-order
and second-order minimum distance-based classification algo-
rithms. We refer for details to [31].

Figs. 10–13 are results generated by ED, MD, LDAED
(LDA using ED) and LDAMD respectively. The images in
Figs. 14(a)–(b) and 15(a) are abundance-based gray scale
images generated by OSP and ATDCA using six signatures

Fig. 15. (a) Abundance-based gray scale images generated by the ATDCA and
(b) binary images resulting from WTAMPC.

while images in Figs. 14(c)–(d) and 15(b) are binary images
thresholded by WTAMPC. Tables V–X tabulate the number
of detected target pixels and their corresponding detection
rates for ED, MD, LDAED, LDAMD, OSP and ATDCA
respectively. It should be noted that the tallies for OSP and
ATDCA were calculated after WTAMPC was applied. Their
overall detection and classification rates and were
also calculated by (49)–(51) and are tabulated in Table XI. The
experiments demonstrate several facts.

1) The abundance-based gray scale images in
Figs. 14(a)–(b) and 15(a) produced by mixed pixel
classification algorithms, OSP and ATDCA are among
the best since the gray levels provide significant visual
information, which improves the classification results
considerably.

2) If the abundance-based gray scale images in
Figs. 14(a)–(b) and 15(a) are thresholded by the
WTAMPC, the resulting images along with tallies shown
in Figs. 14(c)–(d), 15(b), and Tables IX–X are better than
those in Figs. 10 and 11 with tallies given in Tables V–VI
(produced by the minimum distance-based classifiers,
ED and MD), but not as good as those in Figs. 12–13 with
tallies given in Tables VII–VIII (produced by LDAED
and LDAMD). Among these cases, LDA produced the
best results. This can be also seen in Table XI where
the overall target detection rate of WTAMPC is right
in between LDA and minimum distance classification.
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TABLE V
TALLIES OF TARGET PIXELS FOR ED-DETECTION USING B PIXELS WITH DETECTION RATES

TABLE VI
TALLIES OF TARGET PIXELS FOR MD-DETECTION USING B PIXELS WITH DETECTION RATES

TABLE VII
TALLIES OF TARGET PIXELS FOR LDAED-DETECTION USING B PIXELS WITH DETECTION RATES

TABLE VIII
TALLIES OF TARGET PIXELS FOR LDAMD-D ETECTION USING B PIXELS WITH DETECTION RATES

TABLE IX
TALLIES OF TARGET PIXELS FOROSP-DETECTIONUSING B AND W PIXELS AND MANUAL SAMPLING AFTER WTAMPC WITH DETECTION RATES

It makes sense since LDA is based on the criterion of
class separability. It further showed that the minimum
distance-based pure pixel classification is among the
worst. This means that without taking advantage of the
visual information provided by abundance-based gray
levels, the minimum distance-based classification simply
cannot compete against LDA and WTAMPC. These
results justify a very important conclusion. Pure pixel
classification is generally not as informative as mixed

pixel classification as demonstrated in Figs. 14(a), (c)
and 15(a). The visual information generated by abun-
dance-based gray scale images offers very useful and
valuable knowledge that can significantly help interpret
classification results.

3) There is no obvious advantage of using the second-order
statistic-based classifier MD over the first order statistics-
based classifier ED, as shown in Tables VII–VIII. This
is probably due to the fact that there is not much spatial
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TABLE X
TALLIES OF TARGET PIXELS FOR ATDCA USING 6 SIGNATURES AFTERWTAMPC WITH DETECTION RATES

TABLE XI
OVERALL DETECTION AND CLASSIFICATION RATES FORED, MD, LDAED,

LDAMD, OSP AND ATDCA

correlation, that a second-order statistic-based classifier
can take advantage, because the pool of training target
samples is relatively small.

4) For the purpose of illustration, all the images produced
by pure pixel classification and WTAMPC were binary
to show a specific classified target.

However, as shown in [31] this is not always the case for pure
pixel classification. There are in some experiments where sev-
eral targets were detected in a single binary image but could not
be discriminated from one another. For instance, for an unsuper-
vised LDAED (i.e., ISODATA(LDAED)), the three targets V1,
V2, and Object were detected in a single binary image with de-
tection rates defined by (44) as high as 100%, 100%, and 95%
respectively. At the same time, the number of false alarm target
pixels was also very high, e.g., 87 false alarm pixels as opposed
to 12 B-pixels for V1, 125 false alarm pixels as opposed to
3 B-pixels for V2 and 95 false alarm pixels as opposed to 19
B-pixels for Object. As a result, the overall classification rate
among three targets can be as low as 5% while each target de-
tection rate is very high close to 100%. This demonstrates that
higher target detection rates do not necessarily result in high
classification rates. For details, we refer to [31].

VII. CONCLUSION

Many hyperspectral target detection and image classification
algorithms have been proposed in the literature. Comparing one
relative to another has been very challenging due to a lack of
standardized data. Another difficulty arises from the fact that
there are no rigorous criteria to substantiate an algorithm. This
paper first considered the mixed pixel classification problem
and then reinterpreted mixed pixel classification from a pure
pixel classification point of view by imposing some constraints
on the signature abundances. As a result, the classes of classifi-
cation algorithms to be evaluated in this paper were reduced to
three categories: OSP-based mixed pixel classifiers, minimum
distance-based pure pixel classifiers and Fisher's LDA. In ad-
dition, a winner-take-all based mixed-to-pure pixel converter
(WTAMPC) was developed to translate a mixed pixel classifica-
tion problem into a pure pixel classification problem so that con-

ventional pure pixel classification techniques could be readily
applied. Although WTAMPC performed better than the min-
imum distance-based pure pixel classification against a stan-
dardized data set, it unfortunately did not do as well as the class
separability-based LDA due to the fact that WTAMPC results
in the loss of gray level information about abundance fractions.
Such information, provided by the abundance-based gray scale
images that are generated by mixed pixel classification algo-
rithms, contains very useful visual features which can substan-
tially improve image interpretation of classification results. Pure
pixel classification algorithms cannot provide such information.
Despite our effort to conduct comprehensive and rigorous com-
parative analysis of various classification algorithms for hyper-
spectral imagery, completion is not claimed. In particular, the
WTA-based converter used in this paper for tallying target pixels
was a simple thresholding technique and may not necessarily
be optimal. There may exist an effective MPC which can pro-
duce better pure pixel classification performance. Many thresh-
olding algorithms are available in the literature [37]. Most of
them, however, were developed based on pure pixel image pro-
cessing and may not be directly applicable to our problem. A
further study on this issue may be worth pursuing. Finally, it
should be noted that all the algorithms considered in this paper
are unconstrained in the sense that no constraints are imposed
on signature abundances, such as the abundance fractions must
be summed to one or must be nonnegative. Investigation of con-
strained mixed pixel classification problems is a separate issue
and has been recently reported in [35], [38].
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