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c1 = 32a2b2(x2j1 + x2j2) + 64b4vi1(vi1 � xj1)

+ 64a4vi2(vi2 � xj2)

+ 32a2b2(b2 � a2 � v2i1 � v2i2) (4)

c2 = 16a2b2(b2x2j1 � a2x2j2 + a4 + b4 � b2v2i2)

+ 80a2b2(a2v2i2 � b2v2i1)

� 80a6v2i2 + 16b2v2i1

� 32b2(b4xj1vi1 � a4xj2vi2)

+ 64b4a4 + 80b6v2i1 (5)

c3 = 32a4b4(b2 � a2) (6)

c4 = 16a6b6 (7)
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RMS Slope of Exponentially Correlated Surface Roughness
for Radar Applications

Wolfgang Dierking

Abstract—In radar signature analysis, the root mean square (RMS) sur-
face slope is utilized to assess the relative contribution of multiple scattering
effects. For an exponentially correlated surface, an effective RMS slope can
be determined by truncating the high frequency tail of the roughness spec-
trum. The choice of the cutoff frequency and the effect on surface scattering
simulations are discussed.

Index Terms—Electromagnetic scattering, radar, rough surfaces.

I. INTRODUCTION

In theoretical modeling of microwave surface scattering, the root
mean square (RMS) slope is regarded as useful in order to examine
which scattering model can be applied for a particular type of surface
roughness and to assess whether the contribution of multiple scattering
to the backscattered signal can be neglected (e.g., [1, p. 231]; [2, Ch.
12]). The ACF’s of many natural surfaces such as soil or sea ice can
often be well fitted by an exponential function or combinations of ex-
ponential and Gaussian functions [1], [3]–[5]. The simple exponential
functionR(x) = s2 exp(�jxj=l) (wheres is the RMS height, andl
is the correlation length) is common in surface scattering simulations,
since it has an analytical form for its spectrum. However, for an ex-
ponentially correlated roughness, the RMS slope is infinite (e.g., [1, p.
119]). Considering the fact that the radar is not affected by components
of the surface roughness spectrum with length scales much smaller than
the radar wavelength, an “effective” RMS slope of an exponentially
correlated surface can be evaluated by truncating the roughness spec-
trum at higher spatial frequencies. This effective RMS slope may then
be applied to assess the applicability of a scattering model and to sepa-
rate single and multiple scattering regimes. Details are discussed in the
following sections.

II. DETERMINATION OF THERMS-SLOPE AND RADIUS OF CURVATURE

The ACFR(x) and the spectral density of surface roughnessS(fx)
are related by [6, p. 123]

R(x) =
1

0

S(fx) cos(2�fxx) dfx (1a)

S(fx) =4
1

0

R(x) cos(2�fxx) dx (1b)

wherefx is the spatial frequency, andS(fx) is the one-sided roughness
spectrum(fx � 0). For the exponential ACF, the pairR(x)$ S(fx)
is given by

R(x) = s2 exp(�jxj=l)$ S(fx) =
4s2l

(1 + 4�2l2f2x)
(2)

wheres is the RMS height, andl is the correlation length. The spectrum
of an exponentially correlated surface is depicted in Fig. 1 in compar-
ison with a Gaussian spectrumS(fx) = 2ls2

p
� exp(��2l2f2x). At

large spatial frequencieslfx > 1, the exponential spectrum approaches
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a power law of the formf�2x , whereas in the case of the Gaussian spec-
trum, the spectral densitiesS(fx) of roughness elements withlfx � 1
are smaller than the exponential spectrum by orders of magnitude. The
RMS slopem of one-dimensional (1-D) profiles can be obtained from
the second derivative of the ACF at the originx = 0 [6, p. 158]

m2 = � d2R

dx2 x=0

=
1

0

4�2f2xS(fx)dfx: (3)

For the Gaussian ACF,m =
p
2s=l. For the exponential ACF,m is

infinite.
For the use in radar signature analysis,m can be determined from a

limited range of the roughness spectrum, excluding the high frequency
components, which do not affect the radar waves. In certain cases, it
may also be necessary to truncate low frequency surface components
that are much larger than the radar wavelength (e.g., if the radar signa-
tures are measured over surfaces with a large scale topography). Large
scale undulations are sensed by the radar as effective variations of the
incidence angle relative to the surface normal. In this short commu-
nication, large scale topographic effects are not considered, and it is
assumed that the radar incidence angle on the surface is constant.

By substitutingS(fx) given by (2) into (3), and evaluating the inte-
gral in the interval[0; fx;max], one obtains the RMS slope for a rough-
ness spectrum truncated at the high frequency end

m2(fx;max) =
4s2

l
fx;max � 1

2�l
arctan(2�lfx;max) : (4)

Here,s andl are the values valid for the whole spectral range[0; 1].
The contributions of roughness components withf > fx;max to the
scattered radar signal can be neglected, and the RMS slope “seen” by
the radar ism(fx;max). The remaining problem is to find the appro-
priate value forfx;max. The height variation of a horizontal profile
segment is negligible if the segment length is equal to or smaller than
one tenth of the radar wavelength (i.e., a profile should be sampled
with a spacing�x � 0:1�radar [2, p. 823]). Considering the Nyquist
Theorem, the highest spatial frequency of the roughness spectrum that
can be determined with a sampling interval of�x = 0:1�radar is
fx;max = 5=�radar = 5k=(2�) (k—radar wavenumber). Equation
(4) then reads

m =
2

�

s

l
5kl� arctan(5kl): (5)

By truncating the high frequency part of the roughness spectrum, the
value of the RMS heights is reduced according to

s2rd =
f

0

S(fx)dfx =
2

�
s2 arctan(2�lfx;max): (6)

The ACF of the second derivative of a roughness profile [which is
marked asz00, wherez(x) is the elevation along the profile] is given
by [6, p. 158]

Rz z (0) = � d4R

dx4 x=0

=
1

0

16�4f4xS(fx)dfx: (7)

For the spectrum of an exponentially correlated roughness,Rz z (x =
0) evaluated in the interval[0; fx;max], is

Rz z (0; fx;max) =
4s2

l3
4

3
�2l2f2x;max � 1 fx;max

+
1

2�l
arctan(2�lfx;max) : (8)

Fig. 1. Roughness spectra for surfaces with Gaussian (“gau”) and exponential
(“exp”) ACF. The spectra are normalized by a factor ofl , whereby it is
assumed thats = �l. Here,l is correlation length,s is RMS height, and� is
a constant. The vertical lines indicate the position of the cutoff frequency at
f = �=� with � = 2.5, 5, and 10 (positions 1–3 from left to right).

Scattering models based on the Kirchhoff Theory require that the av-
erage radius of curvature is larger than the radar wavelength [2, Ch.
12]. According to Ulabyet al. [2, pp. 1011–1013], the average radius
of curvature for RMS slopes�1 is

�c =
2

�
Rz z (0)

�1=2

(9)

which following the above given arguments is to be evaluated at
fx;max = 5=�radar .

III. U TILIZATION OF TRUNCATED SPECTRA

In general, the intensity of multiple scattering depends on the surface
characteristics and on the radar frequency and incidence angle. As a
rule of thumb, multiple scattering contributions to the received radar
signal are neglected if the RMS slope of a surface is smaller thanm =
0.4 [1, p. 231]. The resulting separation line in akl–ks diagram is
shown in Fig. 2 for a Gaussian and an exponential ACF, using (5) in the
latter case. For a given correlation length, multiple scattering effects on
an exponentially correlated surface occur at significantly lower values
of the RMS height than in the case of a Gaussian roughness spectrum,
provided that the threshold ofm = 0.4 is valid independent of the shape
of the ACF and of the radar frequency.

In Fig. 1, the spectra are shown as functions oflfx. For smaller
values oflfx, a part of the roughness spectrum that is too large might
be truncated. Hence, for a fixed value offx;max, there is also a lower
limit of the correlation lengthl for the application of (4). Following
again the argument that the radar is not sensitive to height variations of
the surface elevation within intervals shorter than one tenth of the radar
wavelength [2], the radar “recognizes” a correlation between surface
elements only ifl > 0:1�radar (kl > 0:6). This is in agreement with
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Fig. 2. Separation of single and multiple scattering regime for surfaces with
Gaussian (“gau”) and exponential (“exp”) ACF, using a cutoff frequency of
f = 5=� . Solid lines mark the borders between both regions,
respectively. Long dashed lines indicate values ofks for which the surface
can be regarded as smooth at incidence angles of 20� and 60� (Fraunhofer
criterion). Short dashed lines outline validity regions of the single scattering
integral equation model (IEM-SS) and of the geometrical optics approximation
(GO).

a numerical study by Ogilvy and Foster [7], who showed that the sam-
pling interval of a profile must be at least as small as one tenth of the
surface correlation length for the inherent exponential nature of the sur-
face to be measured. In addition, one might consider that the amplitudes
of the roughness elements have to be large enough to be detected by the
radar. A surface can be regarded as specular (completely smooth) at
values ofks smaller than between 0.2–0.4, dependent on the incidence
angle (Fraunhofer criterion [2, p. 827]), which is indicated in Fig. 2. For
a given value ofm, the corresponding values ofkl can be determined
by applying (5). If, for example, the RMS slope ism = 0.4, one obtains
a value ofkl = 2.85 forks = 0.4. Forkl = 0.6 (as the lowest threshold
for l), the value ofks is 0.23. Hence, only for surfaces with larger RMS
slopes might it be necessary to deal with correlation lengths as small
as the threshold ofl � 0:1�radar . Considering this, a reasonable and
conservative lower limit of the correlation lengthl for the truncation
of the high frequency tail isl = 1=k, which giveslfx;max = 0.8 for
fx;max = 5=�radar (�x = 0:1�radar). Different values oflfx;max
are shown as vertical lines in Fig. 1. They indicate that a surface sam-
pling rate of�x = 0:2�radar (fx;max = 2:5=�radar) is not suffi-
cient, since even in the case of the Gaussian spectrum, high frequency
roughness elements with spectral densities smaller by only a factor of
approximately five compared to the low frequency spectral densities
are truncated.

In theks–kl diagram shown in Fig. 3, the curves ofks (kl; m =
0.4) obtained withfx;max = 2:5=�radar andfx;max = 10=�radar
are compared to the “standard” cutoff offx;max = 5=�radar . With
increasing cutoff frequencies, the value ofs for a given value ofl at
m = 0.4 decreases. It is clear that a definition of the RMS slope for
exponentially correlated surfaces has to be based on a fixed value of
fx;max in order to be of practical use. In the case of exponential and
Gaussian spectra truncated atfx;max = 2:5=�radar , it is recognized
that for small values ofkl (<2), the value ofs required to give an RMS
slope ofm = 0.4 for a given correlation length is larger than the RMS
heights = ml=

p
2 resulting from an ideal Gaussian roughness spec-

trum. This is because the cutoff frequency of the roughness spectrum
is too low.

Fig. 3. Separation between single and multiple scattering regime for different
cutoff frequencies. Forkl < 2 andf = 2:5=� , the separation
line for a Gaussian correlated surface is also significantly affected by a high
frequency truncation of the roughness spectrum (lower short dashed line).

Fig. 4. Autocovariance functions of an exponential roughness spectrum with
sharp cutoff, shown for different values oflf . The ACF’s are normalized to the
height variances over the spatial frequency range[0; 1]. The caself =0.8
corresponds tokl = 1, f = 5=� , andlf = 1.6 corresponds to
kl = 1; f = 10=� . If lf = 8.0, possible values arekl = 10 and
f = 5=� , or kl = 1 andf = 50=� , for example.

The ACF’s of an exponential spectrum truncated at different values
of lfx;max are depicted in Fig. 4. Since the high frequency part of
the spectrum is lacking, the form of the ACF near the origin becomes
quadratic. Forlfx;max � 8, this change is restricted to a very narrow
region around the origin and is hardly visible in the figure. The spectral
density of high frequency roughness elements, which are neglected in
this case, are smaller by more than two orders of magnitude compared
to the spectral densities at low frequencies (Fig. 1). Because of the trun-
cation, the effective RMS heights aresrd =0.87s forlfx;max = 0.8,
srd = 0.94s forlfx;max = 1.6, andsrd = 0.99s forlfx;max = 8.0.

“Real” surfaces can often well be approximated by a self-affine
structure of the fractal formS(fx) = c=f�x , whereS(fx) is assumed
to be band-limited [8]. Also in this case, the evaluation of RMS slope
and average radius of curvature from a roughness spectrum with a
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high frequency cutoff (dependent on the radar wavelength) might be
a useful concept.

IV. EFFECT ONSCATTERING SIMULATIONS

Surface scattering models are sensitive to changes in the shape of
the ACF. In the low frequency region (small roughness elements),
the scattering coefficients depend on a wide range of the roughness
spectrum. Model simulations for the backscattering coefficient as
a function of incidence angle (between20–60�) were carried out
using the single scattering model of the IEM [1] with exponential
ACF’s and the ACF’s of the corresponding truncated roughness
spectra such as the ones shown in Fig. 4. In the latter case,
the required Fourier transforms of thenth power of the surface
correlation functions were evaluated numerically. In the simulations,
ks was gradually changed from 0.3 to 0.9, andkl from 1.3
to 3.8, with corresponding values oflfx;max between 1.0–3.0.
The Gaussian RMS slope was fixed to 0.35, whereas the RMS
slope according to (5) varies between 0.4–0.8 (which means that
the single scattering approximation may not be sufficient). The
differences between simulations with the full and the truncated
roughness spectra are smaller than 0.3 dB. In the low frequency
scattering region, the changes of the shape of the exponential ACF
caused by neglecting the high frequency roughness not detected
by the radar are very small even forlfx;max = 0.8 (where the
changes of the shape of the ACF are largest) and do not have to be
considered in practical applications. In the high frequency region
(geometrical optics approximation, GO, which requiresks cos � >
1:6 and kl > 6, where � is the radar incidence angle relative to
the surface normal [2 , Ch. 12]), the scattering coefficients are
determined by the shape of the ACF at the origin (x = 0). For an
exponentially correlated surface, the GO cannot be applied, since
the ACF is not differentiable atx = 0. Although for ACF’s of
truncated roughness spectra the derivative at the origin exists, the
GO model is nevertheless not applicable for the cutoff frequency
proposed here. Formally, this can be seen by evaluating the radius
of curvature [using (8) and (9)], which is much smaller than the
radar wavelength forkl > 6, whereas�c > �radar is required for
the GO. The high frequency roughness (in the regionfx < fx;max,
to which the radar is sensitive and which is not truncated by
the proposed method) is considerably larger relative to the low
frequency undulations for an exponentially correlated surface than
for a surface with a Gaussian ACF. This means that the existence
of specular facets on the surface cannot be assumed.

V. CONCLUSIONS

For surfaces for which the RMS slope does not exist theoretically, it
is suggested to determine an effective RMS slope by truncating the high
frequency tail of the roughness spectrum to which the radar is not sen-
sitive. A cutoff frequency offx;max = 5=�radar , which corresponds
to a surface sampling interval of�x = 0:1�radar is a reasonable
choice (�radar—radar wavelength). This sampling interval is viewed
as the largest acceptable for radar applications [2, p. 823]. With the pro-
posed cutoff frequency, the effective RMS slopem of a surface with
a Gaussian ACF can be well approximated bym =

p
2s=l(s-RMS

height,l-correlation length). It was shown that the effective RMS slope
of an exponentially correlated surface ism = cs=l, wherec is a func-
tion of kl (k-radar wavenumber). The evaluation of the effective RMS
slope requires that the correlation length of the surface must be about

l = 1=k or larger, otherwise, a part of the roughness spectrum that is
too large is truncated.

In scattering simulations in which the IEM is applied to exponen-
tially correlated surfaces with small to moderate roughness, the scat-
tering coefficients for a roughness spectrum truncated atfx;max =

5=�radar are only slightly affected in comparison to calculations con-
sidering the whole spectrum. The differences can be neglected in prac-
tice. As a result of the truncation, the exponential ACF becomes dif-
ferentiable at the origin. Nevertheless, the GO approximation cannot
be applied because of the high frequency roughness elements, which
remain after the truncation.

It has still to be investigated in experiments or by means of scattering
models whether an effective RMS slope ofm = 0.4 is a sufficient
criterion for separating single- and multiple scattering regimes. It has
also to be confirmed that the value ofm = 0.4 is valid not only for the
Gaussian ACF but also for the exponential ACF or, for example, for
ACF’s of surfaces with a band limited self-affine roughness.
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