SC H 0 I—A R S H I P AT H A RVA R D Office for Scholarly Communication

DASH.HARVARD.EDU

DIGITAL ACCESS 10
HARVARD LIBRARY

Radiosity and Relaxation Methods

Citation
Gortler, Steven J., Michael F. Cohen, and Philipp Slusallek. 1994. Radiosity and relaxation
methods. IEEE Computer Graphics and Applications 14(6): 48-58.

Published Version
http://dx.doi.org/10.1109/38.329094

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2634390

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:2634390
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Radiosity%20and%20Relaxation%20Methods&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=976332dcf48d7d8d624b34ef7c5c17f3&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

"©1993 IEEE. Personal use of this material is permitted. However, permission to reprint/
republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE."

Radiosity and Relaxation Methods

Progressive Refinement is Southwell Relaxation

Steven Gortler and Michael F. Cohen
Department of Computer Science
Princeton University

Philipp Slusallek
Wilhelm-Schickard-Institut fiir Informatik
Universitat Tubingen

February 3, 1993

Abstract

The radiosity method for realistic image synthesis has been described in the computer graph-
ics literature since 1984. This paper discusses the various algorithms which have been developed
for solving the radiosity problem and places them in the context of the literature on solving sys-
tems of linear equations. The progressive radiosity method developed in 1988 is shown to be
equivalent to a numerical technique known as Southwell iteration. A proof of convergence for
this method when used for the radiosity problem is presented in the appendix. A new overshoot-
ing (similar to over relaxation) method is developed as a means of accelerating the convergence
of the iterative radiosity methods.

1 Introduction

In 1984, Goral et al. introduced the radiosity method as a way of obtaining an approximate solution
to the global illumination problem of image synthesis [6]. The radiosity solution is obtained by
solving a system of linear equations resulting from a discrete approximation of the illumination
across surfaces in an environment.

The original paper used a Gaussian elimination scheme to solve the linear system. In [3] Cohen
and Greenberg introduced the hemicube algorithm for computing interaction coefficients, or form
factors, in environments with occluded surfaces. They also recognized that the matrix was diag-
onally dominant, and suggested the use of Gauss-Seidel (GS) iteration to obtain the solution of
the linear system of equations. In 1988, Cohen et al. introduced the progressive refinement (PR)
approach to obtaining a radiosity solution, presenting a different method for solving the same linear
system [2]. The PR method has the advantages of quickly converging to an accurate image, and
displaying an approximate image while the computation proceeds. A modification to this method
uses overshooting to more rapidly approach an accurate solution [4].

To date, there has been some confusion in the computer graphics community about where the
Progressive Radiosity method sits in relation to the numerical methods literature on solutions of
linear systems of equations. In this paper we show that PR is actually equivalent to a numerical
analysis technique know as Southwell relaxation. In section 2 we discuss GS, PR, and overshooting
methods from the point of view of radiosity. We also develop a new overshooting method which has
faster convergence than PR for radiosity problems. In section 3 we discuss GS, Southwell, Jacobi
iteration, and over relaxation from the point of view of linear systems in general. In section 4 we
show that PR is actually an implementation of Southwell relaxation followed by a Jacobi sweep. In
section 5 and in the appendices we rigourously show that Southwell’s method converges for radiosity
problems. In section 6 we present experimental results comparing the available algorithms on a
variety of test cases.

2 Radiosity Solutions with Gauss-Seidel and Progressive Refine-
ment Radiosity

2.1 Gathering and Shooting

The radiosity formulation results in the system of n linear equations (where n is the number of
discrete patches) given by,

Bi = Ei + piy_ BjFi; (1)
J
or in matrix form:
[1—pit1a -piFie —pitis . . —pit 1 Bl [B]
—p2ly L—=pobao —pakas . . —paka, By E,
—,On—1Fn—1,1 . B, E, 4
_pnFn,l . . B e pnFn,n 4 L Bn . L En .

where:

B; = the radiosity of the i*" patch
P = the reflectivity of the i*" patch
E; = the emission of the i*" patch
F; ;= the form factor from patch 7 to patch j
= the fraction of energy leaving patch ¢ arriving directly at patch j
A; the area of the i*" patch (appears later in the paper)

We will now briefly review and describe the PR and GS methods for solving radiosity problems.
Let us begin with the GS method.

1 for all ¢

2 B, =F;

3 while not converged

4 for each ¢ in turn

5 B; :Erl-PiZ]‘;eiBsz’j

6 display the image using B; as the intensity of patch ¢.

There is a simple physical interpretation for this algorithm. In line 5 we obtain a new estimate for
the radiosity of patch ¢ by adding its emitted radiosity, and all the radiosity that this patch reflects
from incoming radiosity. We estimate this incoming radiosity by “gathering” the radiosity from
the other patches, using the most recent estimates (B;) as the radiosities of all the other patches.

Fach gathering step (line 5) updates the radiosity of only one patch, gathering for the patches i
in order. A gathering step takes O(n) operations and can be viewed as the dot product of the
vector B, with the appropriate row of the radiosity matrix. For all patches to have gathered some
radiosity, all rows must be processed. In fact, the solution converges after some number of complete
passes through the matrix.

Let us contrast this with the PR algorithm.

1 for all ¢

2 B;=F;

3 AB; = F;

4 while not converged

5 pick i, such that AB; * A; is largest
6 for every patch j

7 Arad = AB; x p; F};

8 AB]‘ = AB]‘ + Arad

9 B]‘ = B]‘ + Arad

10 AB; =0

11 display the image using B; as the intensity of patch i.

The above algorithm has the following physical interpretation. All patches i have a value B; which is
the radiosity calculated so far for that patch, and AB; which is the portion of that patch’s radiosity
which has yet to be “shot”. During one iteration, the patch with the most unshot radiosity is chosen
and its radiosity is shot through the environment. As a result of the shooting, the other patches 7,
may receive some new radiosity, Arad. This Arad is added to B;. This Arad is also added to AB;
since this newly received radiosity is unshot. As a result of the shooting, patch ¢ has no unshot
radiosity so AB; = 0.

In this algorithm one shooting step (lines 6-10) updates all the other patches. We shoot from the
patch that currently has the most unshot radiosity. One shooting step takes O(n) operations, and
can be viewed as as multiplying the scalar B;, by a column of the form factor matrix. Cohen et
al.[2] showed that in many cases only a small fraction of n shooting steps is required to closely
approximate a solution.

At first glance these two algorithms seem to be very distinct. One gathers, the other shoots. One
updates a single patch, the other updates all of them. One uses rows of the matrix, the other uses
columns. In this paper we will show that these two methods are quite related.

2.2 Overshooting

In the PR algorithm, as each patch shoots its unshot radiosity, all other patches may receive some
portion of that radiosity, of which some is reflected back into the environment and some absorbed.
Some of that reflected radiosity will return to the shooting patch. In addition, some energy will
arrive at the shooter from other unshot radiosity sources in subsequent steps. This may result in
the need to shoot radiosity from the same patch multiple times. An alternative would be to shoot

the current unshot radiosity plus an estimate of future reflected radiosity. This modification to the
PR algorithm has been discussed by Feda [4].

2.2.1 Overshooting Using The Ambient Term

In [2], an ambient term estimated from the total unshot radiosity in the environment was added
for display purposes only; this term was not used as part of the itererative solution method. Feda
used this ambient term to do overshooting. If we call the overshooting amount ABZ', then the PR
algorithm becomes,

1 for all ¢

2 B, = F;

3 AB; = F;

4 while not converged

5 pick i, such that (AB; + ABZ) * A; is largest
6 for each patch j

7 Arad = (ABZ' + ABZ) * ijji

8 AB]‘ = AB]‘ + Arad

9 B]‘ = B]‘ + Arad

10 AB; = -AB;

11 display the image using B; as the intensity of patch i.

Note that after shooting, the unshot radiosity of patch ¢ is the negative of the overshooting amount.
The hope is that as other patches shoot their radiosity, this value will tend back towards zero. It
may, however, be necessary to shoot a negative amount of radiosity back into the environment if

the radiosity to overshoot was overestimated.

One would like an estimate of the radiosity which will arrive at a patch in the future, to determine
the best value for overshooting. Feda used the ambient term described in [2] defined as the area
weighted average unshot radiosity, AB, increased by the geometric series of the average reflectivity,
p, (to account for multiple reflections),

Ambient = AB x (14+p+p>+p" 4 oon..) = AB « - (2)

This estimate may become too high, particularly if p is close to unity. The estimate also ignores
form factor information available just before shooting.

2.2.2 Overshooting Using Known Information

In this section we present an alternative method which can account in advance for some of the
radiosity that will return due to interaction with the environment but only uses known information,
and does not rely on any estimations. Since computing the form factors is the most expensive part
of a shooting step, it makes sense to exploit these calculations as much as we can.

When a patch ¢ is chosen for shooting and its form factors are computed, we can obtain both a row
and a column of the form factor matrix using the reciprocity relationship.

FijAi = FjiAj. (3)

With this information we can shoot all of i’s unshot radiosity into the environment, compute how
much radiosity is shot from all other patches, j, to the patch ¢ (gathering), how much of that
radiosity is shot back into the environment, how much of that radiosity is returned directly to the
chosen patch, and so on ad infinitem. In other words we can shoot, then gather, then shoot, etc.
Let us call this step involving an infinite series, a SuperShootGather, or simply (SG'). See figure 1.

To compute the (5G) we must solve the following radiosity subproblem:

[1 0 _plFl,i 17 (SG)l 1 [ABl 1
1 —pQFQJ' 0 (SG)Q ABQ
—pilin —piFia . 1 o =pilin1 —piFin (5G)i | = | AB;
0 _pn—an—l,i 1 (SG)n—l ABn—l
i —pu P]| 5@ | | AB.

In this radiosity subproblem our selected patch ¢ can interact with all the other patches and vice
versa, but the other patches cannot interact with each other. The unshot radiosity replaces the
“emissions”. This system has the following closed form solution (where 7 is the chosen patch);

Figure 1: Super_Shoot_Gather: a) shoot unshot energy from 7 to all j. b) gather unshot energy to
i from all j. ¢) shoot this energy. d) re-gather, etc. e) NO energy transfer between patches j.

ABi+) ;2 pikij * AB; (4)
L=z pitijpiFji
(SG)jzi = ABj + piFji (5G); (5)

(5G); =

(5G); is the radiosity of a patch that results from the unshot radiosity bouncing around our
restricted environment. As a result of this interaction, patch j’s radiosity will increased by (SG); —
AB;. AB; is now 0 since we have just shot from patch 7 into the environment, and no unshot
radiosity remains. In addition, the other patches have no more radiosity to shoot to patch «.

However, we cannot set the AB; to zero, since they now have (SG); — AB; more unshot radiosity
to shoot towards each other. Thus, there is no single value of “unshot radiosity” for each patch.
We must keep track of an unshot radiosity matriz where AB;; is the amount of radiosity unshot
from patch j to patch k. Row j of this matrix indicates how much unshot radiosity patch 7 has to
shoot to every other patch, and column j represents how much unshot radiosity each other patch
has to shoot towards patch j.

Fortunately, we do not have to maintain a full matrix of unshot radiosity, requiring quadratic
storage, and quadratic time to update during each step. Instead, we explicitly store VB;;, the
amount of radiosity already shot from j to k. We can compute the unshot radiosity from patch j
to patch k as ABj, = B; — VBj,. By storing the shot radiosity we only have to update a linear
number of matrix entries after each step.

Also, the actual stored matrix will only have non-zero entries in the rows and columns of patches
which have previously been selected. Thus, after shooting from a small number of patches (as is
usually the case in PR) the matrix will not require exorbitant storage.

When computing the (SG) radiosity subproblem, we replace the “emissions” of patch j with AB;;,
(patch ¢ is the only patch that j can interact with). Patch ¢ however interacts with all the patches
and has a different amount of radiosity unshot to each of them. We thus first do a shooting
operation from patch 7 (shooting different amounts to each patch), and then compute (SG) (with
patch ¢ having no unshot radiosity.)

Here is the complete algorithm (recall that AB;, = B; — VBj;):

1 forall j 10 /*compute (SG) */
Z ; piFij*ABj;
2 Bj = Ej 11 (SG)i = 1—Zji¢im‘Fi]ijji
3 while not converged 12 B; = B; + (5G);
4 pick a patch ¢ 13 for every other patch j
5 /* do a shoot */ 14 (5G); = ABji 4 piFji % (SG);
6 for every other patch j 15 Arad; = (5G); — ABy;
7 Aradj = ABZ']‘ * ijji 16 B]‘ = B]‘ + Aradj
8 B]‘ = B]‘ + Aradj 17 VB]‘Z' = B]‘
9 VB;; = B; 18 VB;; = B;

19 display the image using B; as the intensity of patch i.

In line 4, we should choose the patch whose row and column of unshot radiosity sum to the greatest
number (possibly weighted by area).

This implementation of the overshooting algorithm requires linear time for each step.

3 Relaxation

3.1 Gauss-Seidel and Southwell

In this section we will briefly review the concept of Relaxation as it applies to solving linear systems.
We will discuss two related methods, GS iteration, and Southwell relaxation. For a more complete
discussion see [8][5].

We wish to solve the linear system

Mx=b (6)

where M is an n by n matrix. Given the approximate solution at the & step of the algorithm,

k)

x®) we define the k" error as

e® = x — x(¥), (7)

and we define the k' residual as

v =p - Mx®, (8)

Notice

r0) = Me®, (9)

We would like some method of moving from an approximate solution x(®) to an approximation
x&+1) which is closer to the correct solution x. If, when using this method, the residuals r(K)
converge to zero, then we have converged to the correct solution. One method that attempts to
(k)
K3

find a solution this way is relaxation. Given the approximation x, we pick one of the "/ to change

in such a way that rl(»k-l_l) = 0. Of course the other r;k) may increase, but we hope that we have

made an improvement on the whole.

A little algebra shows that if we wish to relax z;, we should set

wgk-l—l) = (bz — ZMZ']‘ * w;k))/M“ (10)
J#
Alternatively, since
Tl(k) = bi — Z Mij * ac;k) (11)
J
we can set
xgk-l_l) = acgk) + rl(k)/M“'. (12)

This step takes O(n) operations. It involves taking the dot product of x with a row of the matrix.
If we relax the ¢’s in order, we obtain the following algorithm.

for all ¢
x; =0
while not converged
for each 7 in turn
zi = (b = 3250 v Mij) [M

output x

O TR W N

This is the GS iteration algorithm. It is easy to see that this is the same as the gathering algo-
rithm presented above. The z; here corresponds to the radiosities, the b; here corresponds to the
emittances, and the matrix M corresponds to the radiosity matrix defined above.

Suppose that instead of sweeping the i’s in order, we decide to relax the ¢ with the greatest residual
;. This ordering is called Southwell iteration [5]. At first you might think that we would have to
spend O(n?) operations to compute all the r;’s before picking the greatest one. (The computation
of each r; above involves computing the dot product of x with the row M;).

Fortunately, there is a better way. If we know, at some step k, r® for a given x(K)

our next approximation as:

, We can express

xk+1) — (k) 4 Ax(k) (13)

and we can compute the updated residual as:

pktl) —p M(x(k) + Ax(k)) =1 - M Ax® (14)
since
r®) = b — Mx®), (15)
In our case Ax¥) is a vector with zeros everywhere except for the i component which is rl(k)/Mii.
Thus,
r§k+1) = r;k) - % * rl(k). (16)

Updating r takes only O(n) steps. This step involves multiplying a scalar by a column of the
matrix.

The only thing we must still show is that we are able to compute r(® easily at the start of the
algorithm. This is simple. If we choose x(9) to be 0 (the zero vector), then

rl® =b-Mx®=b-Mx0=h. (17)

We can write the Southwell relaxation method as follow.

1 for all ¢
2 x; =0
3 r; = b;

4 while not converged
5 pick i, such that r; is largest
6 x;=ax; 471/ M

7 temp = r;

8 for all 5

9 T IT]‘—M]‘i/Mii*temp
10 output x

To summarize, we have presented two methods which solve linear systems by relaxing one variable
at a time. The only difference between the two methods is how the variable to be relaxed is chosen.
One chooses variables in order. The other chooses the variable with the largest corresponding
residual. Both methods require O(n) operations per relaxation step. One performs a row operation,
the other performs a column operation.

3.2 Jacobi Iteration

There is another iteration algorithm known as Jacobi iteration. It differs from GS in the following
way. In Jacobi iteration we keep two copies of all the variables x;, one old and the other new.
When we update a variable using xgk-l_l)

of z;, and we continue using the old copy in all further computation. Only after we have updated

= (bi =302 Mij = wﬁk))/M“ we update only the new copy

all n variables, do we begin using the new copies. We then use these fixed values for the next sweep
through all the variables.

We can also express Jacobi iteration as updating variables using x£k+1) = ycgk) —|—r2(k)/Mii. But unlike
GS where we compute new values for all the r; after we update one variable, in Jacobi iteration we

add all the residuals to their variables before we compute any new r;.

3.3 Over Relaxation

Over relaxation techniques are similar to the relaxation methods described above with one excep-
tion. When relaxing a particular residual, the change in the solution vector is increased by a factor
w (or equivalently the residual is considered to have been larger than it actually is). Equation 13
becomes,

) =) 4 AR (18)

and the /" residual being relaxed is now not set to zero, but rather,

rl(k-l_l) =(1-w)=* rz(k) (19)

Over relaxation involves a value for w greater than 1, while under relaxation involves a value
between 0 and 1. In cases where GS methods converge, over relaxation will often increase the
convergence rate. This has been the experience with radiosity algorithms [1]. The overshooting
methods of section 2.2 fall into this class of algorithm.

4 Transforming Progressive Radiosity to Southwell

The PR algorithm is similar to Southwell in that both operate with one column of the matrix
during one step. The algorithms are different in that PR appears to update all of the variables in
one step, whereas Southwell updates only one of the variables per step.

However, we can make the following transformation. Define a new variable VB; where VB; =
B; — AB;. VB; is the amount of “shot” radiosity while AB; is the amount of “unshot” radiosity.
Naturally VB; + AB; = B;. Here is the rewritten algorithm:

10

1 for all ¢
2 VB; =0
3 AB; = F;
4 while not converged
pick i, such that AB; x A; is largest
VB, = VB, + AB;
for every other patch j
AB]‘ = AB]‘ + p]‘Fji * AB;
AB; =0
10 display the image using VB; + AB; as the intensity of patch i.

O 0 =~ O Ot

This algorithm is equivalent to the first algorithm, and will display the same sequence of images.
But in this form it is clear that we are actually implementing Southwell relaxation. AB is simply
the residual r, and VB is the vector of variables (unknowns) that we are solving for x. The matrix
M is equivalent to the original matrix given at the beginning of the paper.

The only difference between Southwell and our PR algorithm is that at the end of PR, instead of
outputting VB ,which is the variable vector we are solving for, we output VB + AB, which is the
variables added to their residuals. This makes sense within our physical interpretation. When the
algorithm is finished, we have the “unshot” radiosities stored in AB, so adding them to our image
should give us a more correct image. This also makes sense from a numeric point of view. By
outputting the residuals added to the variables, we are performing one complete sweep of Jacobi
iteration. In other words, performing m shooting operations is the same as performing m Southwell
relaxation steps followed by one complete Jacobi sweep. The numerical significance of these steps
will be discussed in the next section. (There is one other minor difference. In Southwell the variable
with the largest residual is chosen. In PR the variable with the largest area weighted residual is
chosen. This will also be adressed in the next section).

5 Discussion of Convergence

5.1 Southwell Converges for Radiosity Problems

In this section, we will briefly discuss the convergence properties of Southwell and use those prop-
erties to show that PR converges for radiosity problems. We will also discuss the significance of the
final Jacobi sweep. A full discussion of the necessary and sufficient conditions for the convergence
of Southwell’s relaxation is also beyond the scope of this paper. Much of the literature discussing
Southwell restricts itself to symmetric positive definite matrices [5].

In appendix A, we show that Southwell relaxation converges to the correct solution of Mx = b,
and that at each step, the error decreases, for certain row diagonally dominant matrices which
include radiosity matrices. (A matrix is strictly column diagonally dominant (CDD) if for all

11

Jo | My |> 3,z | Mij |, and a matrix is strictly row diagonally dominant (RDD) if for all i,
| Mii |> 30,2 | Mij |.) As noted in [3] the matrix in the radiosity is strictly row diagonally
dominant. This is true since the reflectivity terms, p; are always less than unity, and the sum of
the form factors in any row is by definition equal to unity in a closed environment, (or less than
unity in an open environment).

Since Southwell’s method converges for our system, VB (the variable) converges to the correct
solution and AB (the residual) converges to 0, and therefore VB 4+ AB (the output of the PR algo-
rithm) converges to the correct solution. (The proof in the appendix includes PR’s area weighted
patch choice).

In the appendix B, we show that Southwell relaxation converges to the correct solution of M x = b,
and that at each step, the amount of residual decreases, if the matrix is column diagonally dominant.
Radiosity matrices are not necessarily CDD. If the radiosity matrix has a column that sums to more
than 1, and the corresponding variable is relaxed, the total amount of residual will actually increase.
This means that after a shooting operation, it is possible for the total amount of unshot radiosity
to increase.

However non-intuitive this may seem, it does not contradict the fact that our system is physically
dissipative, since after each shooting step, the amount of unshot energy; does decrease. This can
be shown as follows. Instead of solving the system:

Bi = Ei+piY_ Bl (20)

J

solve the equivalent system:

BiAi = E;Ai+p; Y B;AFji (21)

J

These systems are equivalent due to the reciprocity relationship. Ignoring time, the first system
expresses the equation with variables B; having units of radiosity (energy/area). The second system
expresses the exact same equation with variables B; A; having units of energy. The matrix from the
first system is RDD, while the matrix from the second system is CDD. So if we apply Southwell’s
method to the second system, by the arguments in the appendix it will converge. And after each
step, the amount of residual, which in the second system is the total amount of unshot energy,
will decrease. It is easy to see that relaxing a variable in the second system is computationally
equivalent to relaxing a variable in the first system. The only difference is that Southwell’s method
applied on the second system will pick the patch with the most unshot energy. This explains the
patch choice made in the PR algorithm above, where the patch with the greatest amount of unshot
energy was selected.

What is the significance of the Jacobi sweep?

Jacobi iteration is guaranteed to converge to the correct solution if the matrix is CDD or RDD [8].
Extending arguments similar to those of the appendix, we can show that in radiosity problems, one
Jacobi sweep brings us closer to a correct solution, reducing the error for each variable, and and

12

reducing the total amount of residual.

One full Jacobi sweep is n “under-relaxation” steps. (Jacobi steps are not full relaxation steps
as defined above, since by using old values in its computation, the Jacobi “relaxation” will not
set the current residual of a variable to 0.) In PR we obtain this Jacobi sweep at no extra cost,
although generally a full sweep should cost us O(n?). If we were already doing some large number
of relaxation steps, then n free steps may not be very significant, But in PR, we typically do
some relatively small number of relaxation steps so this free Jacobi sweep is a relatively significant
advantage. This free sweep is what allows us to update all the variables and arrive at a radiosity
solution without even going through n full relaxation steps.

In appendix C we outline the correspondence between the overshooting method of section 2.2.2 and
the application of block relaxation techniques to an extended linear system.

5.2 Comparison of Shooting and Gathering

Gathering is an implementation of GS, while shooting is an implementation of Southwell followed
by one Jacobi sweep. Why is shooting better?

GS and Southwell are both sequences of relaxations. The algorithms differ only in the method they
use to choose variables. Southwell has the advantage of using a greedy heuristic when choosing
variables. It chooses the largest residual, in hopes of reducing the total residual by a large amount.
Also since M;; = 1 and variables are relaxed by x; = x; + r;/M;;, Southwell’s choice of largest
residual is also the choice that changes any variable by the largest amount possible. And since
in radiosity problems the z; are always increasing, that is we never overshoot the correct answer,
moving it by the most possible, is also removing the most error possible in any step. It is important
to note that this does not imply that Southwell must always do better than GS in the long run.
One can show cases where making a “worse” choice now would allow us to remove more error in
later steps.

Southwell’s method is not well known or extensively used in numerical analysis practice. This is
perhaps due in part to the extra overhead needed in Southwell to pick the maximum, and the fact
that as the problem moves towards exact convergence Southwell may not do any better than GS.

In radiosity problems, the advantages of Southwell are more clear since the initial residual is very
concentrated at the light sources, i.e., the emission vector, F., usually has only a few non-zero
terms. As the problem continues, much of the radiosity is supplied by a few bright reflecting
surfaces. At these early stages many of the patches have no or little residual, so GS spends a
lot of time updating variables that don’t change by too much. This advantage is accentuated by
the fact that the cost of the form factor computation is generally much more significant than the
matrix solution, thus Southwell provides an approximate solution without having to precompute
the full matrix. Southwell concentrates its effort on variables where a lot of change will occur. Once
the radiosity becomes more distributed through the environment (and the advantages of picking
the max each time is not as significant) we stop the method and add on an approximation of the
ambient radiosity.

The final free Jacobi sweep is the other advantage of shooting over gathering. We are in possession

13

of all the current residuals and so we can add them on to obtain a Jacobi sweep. The Jacobi sweep
is n “relaxation” steps, which is quite significant since our hope is to avoid doing many GS or
Southwell steps.

6 Experimental Results

The methods described above were run on a number of test cases and their performance was
compared.

After each iteration, the output of each method was compared to a converged solution. We report

the error as

Ky _ 2ilBP — BM)
2i(Bf — Ei)

(where B is the correct radiosity of patch ¢). There is no need to use the root mean square formula,

since all errors are always positive. In the denominator we subtract all the emitted radiosity. With

this definition of error, we measure the percentage of “reflected” radiosity that each method accounts

for. If a method has not yet accounted for all of the emitted radiosity, then its error is greater than
1.

Error (22)

We compared the following 6 algorithms:

Gauss-Seidel-0 The initial guess for all variables is 0. The variables are then relaxed in order.

Gauss-Seidel+4Jacobi The initial guess is 0. The variables are relaxed in order. The output is
defined as the variables added to their residuals. (This is equivalent to shooting in order).

Southwell This is just like Gauss-Seidel-0, except that the variable with the largest residual at
any time is relaxed.

Southwell4Jacobi This is like Southwell except the output is defined as the variables added to
their residuals. (This is equivalent to Progressive Radiosity).

Gauss-Seidel-E The initial guess for all variables is set to be the emissivity of that patch. The
variables are then relaxed in order. (This is equivalent to gathering).

Overshooting This is an implementation of the overshooting method described in section 2.2.2.
The algorithms were run on the following cases:

o A matrix of form factors was derived from the geometric description of an office environment.
(See figure 2 for a rendered image of the environment). (This system had 270 variables).

o A matrix of form factors was derived from the geometric description of the interior of an
empty cube with a few emitting polygons on the “ceiling” of the cube. (This system had 390
variables). The p; were first set to be around 0.3, giving us a dim cube. The p; were then set
to be around 0.8, giving us a bright cube.

14

e A random sparse 390 by 390 row diagonally dominant matrix was generated. We first (ran-
domly) chose a small number of variables to emit random amounts of radiosity. (This is a
realistic assumption for many radiosity problems, since only a small number of the polygons
usually emit radiosity). We later set all of the variables to emit random amounts of radiosity..

See figures 3-8 for the results of the experiments.

The different methods behaved similarly across many of the test cases. The worst behaved solution
was Gauss-Seidel-0. It often did not account for all the emitted radiosity until nearly a full sweep
through the matrix.

Gauss-Seidel+Jacobi, Gauss-Seidel-E, and Southwell behaved similarly to each other.

Southwell+Jacobi (progressive radiosity) faired much better than the above algorithms. As ex-
pected, this method outperformed the above methods by the greatest amounts in the early itera-
tions. Its advantages were less pronounced when the polygons were all emitters.

The new overshooting algorithm showed the best performance in all cases. This was particularly
the case in environments with bright surfaces.

We measured performance in error/iteration. This is the correct metric if the form factor com-
putations dominate the cost of an iteration. But since overshooting does more (although still a
linear amount of) arithmetic operations per iteration than the other methods, it may or may not
fair better than the other methods measured in error/cpu-time if the form factors are already
computed.

7 Conclusion

This paper has attempted to put the various algorithms which have been developed for solving the
radiosity problem into the context of the literature on solving systems of linear equations. We have
shown the equivalence of the PR method with a numerical technique known as Southwell iteration
and have presented a proof of convergence for this method. Overshooting (over relaxation) methods
have also been discussed as a means of accelerating the convergence of this iterative method.

Further study should be devoted to placing the hierarchical methods which have recently been
developed into a traditional context as well [7]. A more complete study of over relaxation factors
is also worth investigation. The authors hope this paper can answer some of the questions which
have surrounded the development of radiosity algorithms.

8 Acknowledgements

Pat Hanrahan, Peter Schroeder and David Ohsie gave us many useful comments on the paper. The
office model was created by Larry Aupperle. The form factors and rendered image were computed
with Larry’s program and the help of S. V. Krishnan.

15

Figure 2: Office environment from Hanrahan et al. Computer Graphics 1991

16

o 200 400 600 800 1e+03 1.2e+03 1.4e+03
iteration number

Figure 3: Error at each iteration, office environment

Dim Cube

o 200 400 600 800 1e+03 1.2e+03 1.4e+03
iteration number

Figure 4: Error at each iteration, dim cube environment

17

Bright Cube

(o] 200 400 600 800 1e+03 1.2e+03 1.4e+03
iteration number

Figure 5: Error at each iteration, bright cube environment

GSE GSo Random Dim Matrix Few Emitters

0.6

error

o 200 400 600 800 1e+03 1.2e+03 1.4e+03
iteration number

Figure 6: Error at each iteration, random dim matrix with few emmiters

18

Random Bright Matrix Few Emitters

(o]
o 200 400 600 800 1e+03 1.2e+03 1.4e+03
iteration number
Figure 7: Error at each iteration, random bright matrix with few emmiters
,
Random Dim Matrix Many Emitters
0.8
0.6
error
0.4
0.2
o

o 200 400 600 800 1e+03 1.2e+03 1.4e+03
iteration number

Figure 8: Error at each iteration, random dim matrix with many emmiters

19

References

[1] ConEN, M. Masters Thesis: The Radiosity Method for the Realistic Image Synthesis of Complex
Diffuse Environments. Cornell University.

[2] ConEn, M., CHEN, S. E., WALLACE, J., AND GREENBERG, D. A Progressive Refinement
Approach to Fast Radiosity Image Generation. Computer Graphics 22, 4 (July 1988), 75-84.

[3] ConEN, M., AND GREENBERG, D. The Hemi-cube: A Radiosity Solution for Complex Envi-
ronments. Computer Graphics 19, 3 (July 1985), 31-40.

[4] FEDA, M. Accelerating Radiosity by Overshooting. 1992 Furographics Rendering Workshop
(June 1992).

[6] GASTINEL, N. Linear Numerical Analysis. Academic Press, 1970.

[6] GoraL, C., TorRRANCE, K., GREENBERG, D., AND BATTAILE, B. Illlumination for Computer-
Generated Pictures. Computer Graphics 18, 3 (July 1984), 31-40.

[7] HANRAHAN, P., SALZMAN, D., AND AUPPERLE, L. A Rapid Hierarchical Radiosity Algorithm.
Computer Graphics 22, 4 (July 1991), 197-206.

[8] STOER, J., AND BuLIrscH, R. Introduction to Numerical Analysis. Springer Verlag, 1972.

A Proof of Convergence for Certain Row Diagonally Dominant
Matrices

In this section we prove that Southwell converges when solving the system
M+x=Db

if the following assumptions are true.

e The matrix M is strictly row diagonally dominant (RDD).

e The diagonal elements of the matrix are positive.
The off-diagonal elements are non-positive.

e The vector b has all non-negative elements.

All of these assumptions are valid in radiosity problems.

Since z(® = 0 and 5© > 0.
P =p— M2 >0, (23)

the initial residuals are all non-negative. After a relaxation step in Southwell, we update all the

residuals by
N RTIT

; (24)

20

Forj =1, " =9

(k) 5o

, and so it is non-negative. For j # i, —M;;/M;; is positive and r;

non-negative, so r;kﬂ) is also non-negative. So for all k and for all i
r® > 0. (25)
During a relaxation step, we update one x; by
w5 = 2™ e (26)

. k) . . . v k+1
and since 7‘2(») is non-negative, and M;; is positive, the xf U hever get smaller as we proceed from

step k to step £ 4+ 1. Now let us look at the error at each step,
e =g — 2, (27)

If x is the solution to our linear system, then for all i:

T, = (bi_ZMij *x])/M“ (28)
J#i
We can express this as
$£k+1) te k-l—l b . ZM” " k Ek)))/M“ (29)
JF
But by our method of relaxation
e = (b = 37 Mg+) (30)
JF
So
e = (=37 My x ey /0y (31)
JF
If emaz® is the element of the vector e® with largest absolute value, then
el 1< DT My /M |+ | emaa®) | (32)
J#i
and since the matrix is RDD
| 6£k+1) |<| emaz® | (33)

This implies that all elements of e®*+1) are not-greater in magnitude than the largest element of

e, Using this, we can show by induction that all the elements of e™) for any m are all not-greater
in magnitude than the largest element of (®). From this we can conclude that the values of all the

elements of the error vector are bounded between —emaz(® and emaz(9.

(%)

We showed earlier that x; "’ are never decreasing as we proceed from step k to step & 4 1. so by

definition, the e§k) never increase. Therefore, the e§k) forms a monotonically decreasing sequence
in k, and is bounded, so it must converge to some number (not necessarily 0) as k goes to infinity.

If e®) converges, then by definition xK) also converges.

21

(K) converges, that means that x(¥) — x(K=1) converges to 0. This means that the Tl(k_l)/M“'
k=1)') converges to zero. But in Southwell relaxation we
k)

Now if x
(the number we add to obtain x from x!
are always picking the largest rz(k_l), so if it converges to zero, the entire vector rK) must converge
to 0. (This argument is valid as long as our method always picks a residual with a magnitude that
is within some constant fraction of the largest residual. This allows us to choose the larges area
weighted residual, if we wish.) If the residual has converged to 0 then we have obtained a correct

solution. O

B Proof of Convergence for Column Diagonally Dominant Ma-
trices

In this section we show that Southwell converges to the correct solution of a linear system if the
matrix is strictly column diagonally dominant. This is the case for the modified system (21).

Here is an outline of the proof: At any step, we measure the size of the residual using the ¢; norm.
frl=>" 1
7

Whenever we relax any variable z; it’s residual r; goes to zero. But it is possible that some of the
other r; increase. We show (using the fact that the matrix is column diagonally dominant) that
this total residual increase (from all the other r;) is less (by some constant factor) than the the
decrease in 7, so || r || decreases. Since || r || decreases each step, and must be non-negative, it
must converge to some number.

We can show that || r || converges to 0 if we choose the largest 7; as in the Southwell method. Each
relaxation step reduces || r || by some constant factor times r;, and r; is at least some constant
fraction of || r ||, so || r || is reduced by some constant fraction of itself during each iteration. (The
requirement that we pick the largest residual is actually more restrictive than we need to be. We
could show convergence as long as the residual we pick is larger than some constant fraction of the
total residual.) The formal proof follows.

(k). During step k we relax variable z;. After step

Suppose that at step k , we have the residual r
k, we have
rFTD — g, (34)

K3

We have set the other residuals to

k1)) My
T =7 —M;*TZ» . (35)
SO M
s N D M (36)
i 17
(k+1) (k) (k) (k) M;;
< e = P [+ [3| 57 (37)
]752 ka3

22

Since M is strictly column diagonally dominant,

M;;
p:maxZ|—f|<1 (38)
v Ma
and
e < e ® | =1 = p) [)] (39)

Now, since Southwell picks the r; which is largest, it must be true that

[E

— <[] (40)
$0 (1)
- P
=D < e R | (41)
[< g |)| (42)
where)
q:l—(;p)<1 (43)
and thus after m steps
et < g][2O (44)

since ¢ converges to 0, so does || r("™) ||. O

C Overshooting

In section 2.2.2 we introduced an overshooting method based on computing the amount of radiosity
a patch shoots, then receives, then reshoots etc. This method can also be understood (and analyzed
more rigorously) from a numerical analysis perspective,

Given the linear radiosity system with n unknowns,

B; = Ei + piy_ B; Fj (45)
J

we can create a new linear system with n? unknowns. We replace each variable B; with n variables
B;.. We replace the F; with n identical numbers F;;,. And we solve the system:

By = Ey + pi »_ Bji Fj. (46)

J

The matrix of this new system has n? * n? elements. It is made up of n? blocks, each having n?
elements. In general, the ij*" element of the I.J*" block is —p;Fyy. If j = J add 1 to the diagonal
entries. The remaining entries are 0. For example, if the original matrix had 3 entries, the new
matrix would be:

23

[11— p1dia —p1di —p1fi3 i
—p1dia 1 —p1di —p1fi3
—p1dia 1 —p1di —p1fi3
—p2ly 1 —p2tyo —p2ly3
—p2ly L —patyp —p2ly3
—p2ly —p2tyo 1 —p2ly3
—p3lz; —p3lss 1 —p3l33
—p3f3q —p3l3 1 —p3l33
L —,03F3,1 —P3F3,2 - P3F3,3 i

This new system has the same solution as the original system, but we can use this system to derive
the overshooting algorithm. The n? variables of this system correspond to the n? values of shot
radiosity VB;r. The n? residuals of this system correspond to the n? values of unshot radiosity

AB]‘k.

If we relax one variable in this system, we are effectively “shooting” from a single patch to a single
other patch. Instead of relaxing a single variable, we can relax a block of variables. Relaxing m
variables entails changing those m variables simultaneously such that their m residuals all go to
zero [8]. If we choose patch 7 and simultaneously relax the 2n — 1 variables {B;;,B;;} we find
that we can solve for this relaxing step in O(n) time. The computation done in this simultaneous
relaxation step is the same as the computation done in an overshooting step.

If the original matrix is RDD, the extended matrix will also be RDD; relaxation and block relaxation
will converge to the correct solution.

24

