
Because of the fast ra te of te ch n o l o g i c a l

p ro gress, the amount of data sto red in

databases increases rapidly. This proves true for tradi-

tional relational databases and comp l ex 2D and 3D

multimedia databases that sto re images, CAD draw-

ings, ge o graphic info rmation, and molecular biology

data. We can view relational databases as high-dimen-

sional databases, since the attri b u tes correspond to th e

dimensions of the data set. The same also holds true fo r

multimedia data. For efficient ret ri eval, such data must

usually be transformed into high-dimensional feature

ve c to rs such as color histo gra m s ,1 shape descri pto rs ,2

Fo u rier ve c to rs ,3 and text descri pto rs .4 M a ny of th e

mentioned applications re ly on ve ry large data b a s e s

consisting of millions of data objects with several tens

to a few hundreds of dimensions.

C l u ste ring in high-dimensional

d a tabases poses an imp o rtant pro b-

lem. Howeve r, we can apply a num-

ber of diffe rent cluste ring algori th m s

to high-dimensional data. The most

p rominent re p re s e n ta t i ves include

p a rtitioning algori thms such as

C l a ra n s ,5 h i e ra rchical cluste ri n g

a l g o ri thms, and locality-based clus-

te ring algori thms such as (ge n e ra l )

d e n s i t y-based spatial cluste ring of

applications with noise, called

( G ) D B S c a n ,6 and dist ri b u t i o n - b a s e d

c l u ste ring of large spatial data b a s e s

( D B C LA S D ) .7

The basic idea of p a rtitioning algo -

ri th m s is to const ruct a partition of

the database into k clusters repre-

s e n ted by the gravity of the cluster (k-means) or by one

re p re s e n ta t i ve object of the cluster (k-medoid). H i e ra r -

chical cluste ring algori th m s d e c o mpose the database into

s eve ral levels of partitionings usually re p re s e n ted by a

d e n d ro gram—a tree that splits the database re c u rs i ve ly

i n to smaller subsets. The th i rd class of algori thms, l o c a l -

i t y-based cluste ring algori th m s, usually group neighbor-

ing data elements into cluste rs based on local conditions.

Un fo rt u n a te ly, most appro a ches are n’t designed to

c l u ster high-dimensional data, thus the perfo rmance of

ex i sting algori thms dege n e ra tes ra p i d ly with incre a s-

ing dimensions. To imp rove effic i e n c y, re s e a rch e rs have

p roposed optimized cluste ring te ch n i ques. Exa mp l e s

include grid-based cluste ri n g ;8 balanced ite ra t i ve re d u c-

ing and cluste ring using hiera rchies (Birch ) ,9 w h i ch

builds on the cluste r- fe a t u re tree; sta t i stical info rm a t i o n

grid (Sting), which uses a qu a d t re e - l i ke st ru c t u re con-

taining additional sta t i stical info rm a t i o n ;10 and density-

based cluste ring (DenClue), which uses a regular grid to

i mp rove effic i e n c y.11 Un fo rt u n a te ly, the curse of dimen-

sionality also seve re ly affects the resulting cluste ri n g ’s

e ffe c t i veness. A detailed comp a rison of the ex i st i n g

m ethods shows problems in effe c t i veness, especially in

the presence of noise. Elsew h e re ,12 we showed that th e

ex i sting cluste ring methods either suffer from a marke d

b re a k d own in efficiency (which proves true for all index -

based methods) or have notable effe c t i veness pro b l e m s

( w h i ch is basically true for all other meth o d s ) .

Our idea, pre s e n ted in this article, is to combine an

advanced cluste ring algori thm with new visualization

m ethods for a more effe c t i ve inte ra c t i ve cluste ring of

the data. The sta rting point is a novel and efficient clus-

te ring algori thm called Opt i G ri d ,12 w h i ch builds on a

ge n e ralized multidimensional grid and uses contra c t-

ing projections as well as comp l ex hy p e rp o lyg o n a l

objects as separa to rs in the multidimensional space (see

the section “Visual finding of projections and separa-

to rs”). Choosing the contracting projections and speci-

fying the separa to rs for building the multidimensional

grid, howeve r, are two difficult problems that can’t be

done fully auto m a t i c a l ly.

Visualization te chnology can help in perfo rming th e s e

ta s ks. A large number of potential visualization te ch-

n i ques can be used in data mining (for more info rm a-

tion see the “Visual Data Mining Te ch n i ques” sidebar).

E xa mples include ge o m et ric projection te ch n i ques such

as prosection matrices and parallel coord i n a tes, icon-

based te ch n i ques, hiera rchical te ch n i ques, gra p h - b a s e d

te ch n i ques, pixe l - o ri e n ted te ch n i ques, and combina-

tions th e reof. In ge n e ral, the visualization te ch n i qu e s
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wo rk in conjunction with some inte raction te ch n i qu e s

and also some disto rtion te ch n i qu e s .

Un fo rt u n a te ly, the ex i sting te ch n i ques, don’t effe c-

t i ve ly support the projection- and separa to r- fi n d i n g

p rocess needed for an efficient cluste ring in high-

dimensional space. There fo re, we developed a num-

ber of new visualization te ch n i ques that re p resent th e

i mp o rtant fe a t u res of a large number of pro j e c t i o n s .

These te ch n i ques help identify the most inte re st i n g

p rojections and select the best separa to rs. For 1D pro-

jections we developed a pixe l - o ri e n ted re p re s e n ta t i o n

of the point-density projections. Given a large number

of inte re sting projections, the user may also emp l oy a

d i ffe rent visualization that re p resents the most imp o r-

tant maxima of the point-density projections and th e i r

s e p a ration potential by small polygonal icons. The

iconic re p re s e n tation reduces the info rmation in th e

p i xe l - o ri e n ted visualization and allows a qu i ck

ove rv i ew of the data .

For 2D projections, we use a similar iconic re p re s e n-

tation to help users find inte re sting projections and 2D

p i xel re p re s e n tations that also lets users dire c t ly speci-

fy comp l ex hy p e rp o lygonal separa to rs within the visu-

alization. Due to the large number of projections in th e

h i g h e r-dimensional case, only the iconic visualization

can be used.

We inte gra ted all visualization te ch n i ques by using a

t re e - l i ke visualization of the projection and separa to r

h i e ra rchy. To show the effe c t i veness of our new visual-

ization te ch n i ques, we used the system for cluste ri n g

real data from molecular biology. The ex p e riments show

the effe c t i veness of our appro a ch .

O v e rview of the HD-Eye approach
The HD-Eye appro a ch builds on an advanced clus-

te ring algori thm called Opt i G ri d .12

Basic considerations
We sta rt with a we l l - k n own and widely accepted def-

inition of cluste ring. To do this, we need a point-densi-

ty function, which can be dete rmined based on ke rn e l

density est i m a t i o n .13 ,14

Definition 1: Density function-kernel density

estimation. Let D denote a set of n d-

dimensional points and h the smoothness level.

Then, we can define the density function based

on the kernel density estimator K as

    

ˆ f D ( x) =
1

nhd
K

x − x i

h

 

 
  

 

 
  

i=1

n

∑

3

Geometric projection techniques aim to find interesting
projections of multidimensional data sets. The class of
geometric projection techniques includes techniques of
e x p l o r a t o ry statistics such as principal component analysis,
factor analysis, and multidimensional scaling, many of
which are subsumed under the term projection pursuit.1

Geometric projection techniques also include the parallel
coordinate visualization technique.2 The basic idea is to map
the k-dimensional space onto the two display dimensions by
using k equidistant axes parallel to one of the display axes.
The axes correspond to the dimensions and are linearly
scaled from the minimum to the maximum value of the
corresponding dimension. Each data item is presented as a
polygonal line, intersecting each of the axes at that point
that corresponds to the value of the considered dimension.

Another class of techniques for visual data mining are the
icon-based techniques (or iconic display techniques). The
idea is to map each multidimensional data item to an icon.
An example is the stick figure technique.3 It maps two
dimensions to the display dimensions and the remaining
dimensions are mapped to the angles and/or limb lengths
of the stick figure icon. This technique limits the number
of dimensions that can be visualized. The shape-coding
approach,4 an icon-based technique, visualizes an arbitrary
number of dimensions. The icon used in this approach
maps each dimension to a small array of pixels and
arranges the pixel arrays of each data item into a square or
rectangle. The pixels corresponding to each of the
dimensions are mapped to gray scale or color according to
the dimension’s data value. The small squares or rectangles
corresponding to the data items are then arranged

successively in a line-by-line fashion.
Pixel-oriented techniques aim to map each data value to

a colored pixel and present the data values belonging to
one attribute in separate windows. Since the pixel-oriented
techniques use only one pixel per data value, the
techniques allow a visualization of the largest amount of
data, which is possible on current displays (up to about
1,000,000 data values). If one pixel represents each data
value, the main question is how to arrange the pixels on
the screen. The pixel-oriented techniques use different
arrangements for different purposes. An overview of pixel-
oriented techniques can be found elsewhere.5 , 6

The hierarchical techniques subdivide the k- d i m e n s i o n a l
space and present the subspaces in a hierarchical fashion.
The dimensional stacking technique,7 for example,
subdivides the k-dimensional space into 2D-subspaces.
Another example is the Cone Tr e e8 technique. The basic
idea of the graph-based techniques lies in effectively
presenting a large graph using specific layout algorithms,
q u e ry languages, and abstraction techniques. Examples
appear elsewhere.9 , 1 0

In addition to the visualization technique, effective data
exploration requires using some interaction and distortion
techniques. The interaction techniques let the user directly
interact with the visualization. Examples of interaction
techniques include interactive mapping, projection,1 1

fil t e r i n g ,1 2 z o o m i n g ,1 3 and interactive linking and
b r u s h i n g .1 4 Interaction techniques allow dynamic changes
of the visualizations according to the exploration
objectives, but they also make it possible to relate and

Visual Data Mining Te c h n i q u e s
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Ke rnel density estimation provides a powe rful fra m e-

wo rk for finding cluste rs in large data sets. Re s e a rch e rs

h ave proposed various ke rnels K in the sta t i stics lite ra-

t u re. Exa mples include squ a re wave functions or Gauss-

ian functions. Fi g u re 1 shows an exa mple for the density

function of a 2D data set using a squ a re wave and Gauss-

ian ke rn e l .

A detailed introduction to ke rnel density est i m a t i o n

lies beyond the scope of this article, but you can fi n d

m o re info rmation elsew h e re .13 ,14 P rev i o u s ly, we showe d

that cluste rs can be defined as the maxima of the density

function, which lie above a certain noise level ξ.11

Definition 2: Center-defined cluster. A center-

defined cluster for a maximum x* of the density

function f̂ D is the subset C ⊆ D, with x ∈ C being

density-attracted by x* and f̂ D (x*)≥ξ. We call

points x ∈ D outliers if they’re density-attracted

by a local maximum x*0 with f̂ D (x*0)≥ξ.

Ac c o rding to this definition, each local maximum of

the density function that lies above the noise level ξ
becomes a cluster of its own and consists of all points

d e n s i t y- a t t ra c ted by the maximum. In the exa mple pre-

s e n ted in Fi g u re 1, we obtained four cluste rs for most

4

combine multiple independent visualizations. Note that
connecting multiple visualizations by linking and brushing,
for example, provides more information than considering
the component visualizations independently.

The distortion techniques finally help in the interactive
exploration process by providing means for focusing while
p r e s e rving an overview of the data. Distortion techniques
show portions of the data with a high level of detail while
others are shown with a much lower level of detail. A
number of simple and complex distortion techniques may
be used for this purpose. Examples include fisheye views1 5

and the hyperbolic tree.1 6
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1 Example for
density func-
tions: (a) data
set, (b) square
wave, and 
(c) Gaussian.

(a)

(b)

(c)



possible noise levels. The notion of

d e n s i t y- a t t ra c t i o n is defined by th e

gradient of the density function. The

d e finition can be ex tended to clus-

te rs defined by multiple maxima

and can approx i m a te arbitra ri ly

shaped cluste rs .

Definition 3: Multicenter-defined

cluster. A multicenter-defined

cluster for a set of maxima X is

the subset C ⊆ D, where ∀x ∈ C

exists a x* ∈ X with f̂ D
B (x*)≥ξ, x

is density-attracted to x* and

∀x*1, x*2 ∈X exists with a path P

⊂ Fd from x*1 to x*2 above noise

level ξ.

Fi g u re 2 shows the multicente r-

d e fined cluste rs for diffe rent ξ. Wi th

an increasing ξ, more and more clus-

te rs get separa ted. Note that th e

resulting cluste rs may have an arbi-

t ra ry shape.

P rojections and separators
Determining clusters essentially

i nvo lves data points condensing into

groups and separating from other

groups of data points. Using the point

density for clustering, clusters

become separated by the valleys

b et ween the maxima. In the Opt i G ri d

a p p ro a ch, we use lower dimension-

al projections of the high-dimen-

sional data to effe c t i ve ly dete rm i n e

the separations. Useful pro j e c t i o n s

m u st be contracting, since only con-

tracting projections provide the

upper bound pro p e rty (see Lemma

5) necessary for detecting the sepa-

rating valleys corre c t ly.

Definition 4: Contracting

projection. A contracting

projection for a given d-

dimensional data space S and

an appropriate metric ||.|| is a linear

transformation P defined on all points x ∈ S

Fi g u re 3 shows an exa mple of the diffe rence bet we e n

ge n e ral and contracting pro j e c t i o n s .

Lemma 5 sta tes that the density at a point x′ in a pro-

j e c ted space of the data is an upper bound for the den-

sity on the plane orthogonal to the projection plane in

the original fe a t u re space. The lemma shows a way of

d ete rmining separa to rs that partition the data with o u t

dividing the cluste rs. Info rm a l ly, Lemma 5 sta tes that a

s et of data points that can be separa ted in a contra c t i n g

p rojection (with a small error) are also separa ted in th e

o riginal data space (without a larger erro r ) .

Lemma 5: Upper bound property of contracting

density projections. Let P(x) = Ax be a

contracting projection, P(D) the projection of

the data set D, and  ̂f P(D)(x ′) the density for a

point x′ ∈ P(S). Then, using the same kernel for

f̂ D and f̂ P(D),

Definition 6: Separator. A separator is a

    ∀x ∈S w i t hP( x) = ′ x : ˆ f P(D )( ′ x ) ≥ ˆ f D ( x)

    

P( x) = Ax w i t h A m a x
y ∈s

Ay

y

 

 

 
  

 

 

 
  

≤ 1
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2 Example of
m u l t i c e n t e r -
d e fi ned clusters
for different ξ.
(a), (b) ξ = 4 ;
(c), (d) ξ = 2 ;
and (e), (f) ξ =
1 .

(a) (b)

(c) (d)

(e) (f)

3 General (a)
and contracting
(b) projections.



geometric object that partitions Rd into two

half spaces h0, h1. The decision function

H(x)determines the half space, where a point x

∈ Rd is located:

To dete rmine the decision function effic i e n t ly, we use

c o n t racting projections of the fo rm P : Rd → Rd′, d′ < d.

E xa mples for separa to rs are (d − 1)-dimensional hy p e r-

planes defined by a split value xs or multidimensional

c yl i n d e rs defined by a closed polygon p. The fo rm u l a s

for the decision functions fo l l ow:

1. H y p e rplane P:

2 . C ylinder P:

Multidimensional grid
The combination of seve ral separa to rs results in a

multidimensional grid. Since we can’t sto re the gri d

ex p l i c i t ly in high-dimensional space, we need a coding

function c that assigns a label to all points belonging to

the same grid cell. We define a ge n e ral notion of arbi-

t ra ry (nonequ i d i stant, irregular) grids as fo l l ow s .

Definition 7: Multidimensional grid. A

multidimensional grid G for the data space S is

defined by a set H = {H1, …, Hk} of separators.

We define the coding function cG:S → N  as

follows (where N stands for the space of

natural numbers):

The grid notation lets us dete rmine the re l evant sub-

s ets effic i e n t ly. Exa mples of a regular and an irre g u l a r

grid appear in Fi g u re 4.

The HD-Eye algorithm
The HD-Eye algori thm builds on

the Opt i G rid algori thm for cluste r-

ing high-dimensional data sets. The

O pt i G rid algori thm wo rks re c u r-

s i ve ly. In each step, it partitions th e

actual data set into a number of sub-

s ets if possible. The algori thm tre a t s

the subsets containing at least one

c l u ster re c u rs i ve ly. The part i t i o n i n g

uses a multidimensional gri d

d e fined by a number of separa to rs .

O pt i G rid chooses the separa to rs in

regions with minimal point density.

The re c u rsion stops for a subset if no good separa to rs

can be found. Another similar appro a ch, Classific a t i o n

and Re gressions Trees (CA RT ) ,15 also auto m a t i c a l ly par-

titions the data in a re c u rs i ve way, but uses additional

d a ta to guide the part i t i o n i n g .

The Opt G rid algori thm, as described so far, mainly

d etects cente r- d e fined cluste rs. Howeve r, it easily

ex tends to also detect multicente r- d e fined cluste rs

a c c o rding to Definition 3. The algori thm just has to ev a l-

u a te the density bet ween the cente r- d e fined cluste rs

d ete rmined by Opt i G rid and link the cluste rs if the den-

sity is high enough.

D ete rmining good projections and finding comp l ex

s e p a ra to rs necessary for building the multidimension-

al grid proves difficult. In addition, it can’t be done auto-

m a t i c a l ly because of the dive rse cluster ch a ra c te ri st i c s

of diffe rent data sets. Visualization te ch n i ques can

i mp rove the effe c t i veness of the cluste ring process con-

s i d e ra b ly and find cluste rs oth e rwise missed.

Now we’ll give a brief ove rv i ew of our visual cluste r-

ing tool, HD-Eye. Two main ta s ks need visual support:

first, finding the appro p ri a te contracting projections fo r

p a rtitioning the data and second, finding and specify-

ing good separa to rs based on these projections. Both

ta s ks re qu i re the user’s intuition and creativity and can’ t

be done auto m a t i c a l ly. The main diffe rence bet ween th e

O pt i G rid and the HD-Eye appro a ch lies in the visual

d ete rmination of the projections and separa to rs .

T h rough visual fe e d b a ck, users gain a deeper under-

standing of the data set. There fo re, th ey can identify

additional projections and separa to rs that the ori g i n a l

O pt i G rid algori thm can’t fin d .

The HD-Eye algori thm wo rks as fo l l ows for a data 

s et D:

1. Initialize the cluster hiera rchy with ro ot ← D

2 . While a node v w i th the data set Dv can be split

■ Vi s u a l ly find projections usable for separating data →
P = {P1, … , Pk}

■ Vi s u a l ly find separa to rs → {H = H1, … , Hr}

■ C o n st ruct multidimensional grid G d e fined by th e

s e p a ra tor set H and insert all data point x ∈ Dv i n to G

■ D ete rmine cluste rs, that is, dete rmine highly popu-

l a ted grid cells in G

■ Re fine the cluste rs

■ Add the cluste rs as child nodes of v to the cluste r

h i e ra rchy

    

x ∈S, c(x ) = 2i

i =1

k

∑ ⋅ Hi (x )

    

R d → R2, H(x ) = 1 P( x) i n s i d eof polygonp

0 else

 
 
 

  

    

R d → R1, H(x ) = 1 P( x) ≥ x s

0 else

 
 
 

  

    

H(x ) = 1 x ∈ h1

0 x else
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4 Examples of
2D grids: 
(a) regular and 
(b) irregular.



The HD-Eye algori thm splits th e

d a ta set re c u rs i ve ly. The re c u rs i o n

t ree fo rms a cluster hiera rchy th a t

re p resents the cluster st ru c t u re intu-

i t i ve ly. The projection and separa to r

t ree (or simp ly cluster tree) appears

in the main ove rv i ew window of th e

H D - E ye system (see Fi g u re 5). The

a l g o ri thm lets the user partition th e

d a ta set first using a set of simple 1D

and 2D orthogonal projections, th e n

using a set of comp l ex hy p e rp o lyg-

onal separa to rs. Multiple levels of

the cluster hiera rchy use comp l ex

s e p a ra to rs that re c u rs i ve ly re fine th e

c l u ster st ru c t u re using diffe re n t

noise levels (NL). Note that the sep-

a ra to rs allow the user to find clus-

te rs of arbitra ry shape and comp l ex

( l i n e a r, qu a d ratic, and higher ord e r )

d e p e n d e n c i e s .

Visual finding of projections and
s e p a r a t o r s

One of the essential parts of the HD-Eye algori thm is

to find a set of projections P = {P1, … , Pk}, useful for sep-

a rating the data into cluste rs. In other wo rk12 we showe d

that axe s - p a rallel projections suffice for detecting cen-

te r- d e fined cluste rs with no linear dependencies

b et ween the attri b u tes. Cluste rs with linear or higher

o rder dependencies bet ween the dimensions (arbitra ry-

shaped cluste rs) re qu i re ge n e ral projections and sepa-

ra to rs. Fi g u re 6 shows an exa mple. You can see that th e

a xes parallel projections don’t pre s e rve the info rm a t i o n

well, which is necessary for cluste ri n g .

Visual te ch n i ques that pre s e rve some ch a ra c te ri st i c s

of the data set can be invaluable for obtaining good sep-

a ra to rs. In contra st to dimension reduction appro a ch e s

s u ch as principal component analyses (Fa st M a p16) or

p rojection purs u i t ,17 our appro a ch doesn’t re qu i re th a t

a single projection pre s e rve all cluste rs. In the pro j e c-

tions some cluste rs may ove rlap and th e re fo re not be

d i stinguishable. For our appro a ch, we only need pro-

jections that separa te the data set into at least two sub-

s ets without dividing any cluste rs. The subsets may th e n

be re fined using other projections and possibly part i-

tioned further based on separa to rs in other pro j e c t i o n s .

Since we only use contracting projections, part i t i o n i n g

the data set in the minima of the projections doesn’ t

cause large erro rs in the cluste ring (see Lemma 5).

Based on the visual re p re s e n tation of the pro j e c t i o n s ,

i t’s possible to find cluste rs with unex p e c ted ch a ra c te r-

i stics (shapes, dependencies) ve ry difficult or imp o s s i-

ble to find by tuning the para m eter settings of auto m a t i c

c l u ste ring algori th m s .

The most imp o rtant info rmation about a pro j e c t i o n

is whether it contains we l l - s e p a ra ted cluste rs. Note th a t

we l l - s e p a ra ted cluste rs in the projection could re s u l t

f rom more than one cluster in the original space. If it’s

possible to partition the data into subsets, the more com-

p l ex st ru c t u re can be dete c ted re c u rs i ve ly using oth e r

p rojections. In our appro a ch we code the imp o rta n t

i n fo rmation (whether the projection contains we l l -

s e p a ra ted cluste rs) in th ree diffe rent ways :

1. a b st ract iconic display

2 . c o l o r-based point density

3 . c u rve-based point density

M ethod 1 has two variants. The first applies to pro j e c-

tions P : Rd → R1, while the second applies to ge n e ra l

c o n t racting projections P : Rd → Rd′, d′ ≤ d. Methods 2

and 3 are limited to d′ ≤ 2 .

Next we’ll describe the th ree methods and discuss

h ow th ey can aid in finding inte re sting projections of

the fo rm P : Rd → Rd′, d′ ≤ 2. Then we’ll bri e fly descri b e

h ow the separa to rs may be specified dire c t ly within th e

v i s u a l i z a t i o n s .

Abstract iconic visualizations of pro j e c t i o n s
The large number of possible contracting pro j e c t i o n s

demand a visualization te ch n i que for displaying th e

main pro p e rties of the data dist ribution of as many pro-

jections as possible. Since we’re inte re sted in fi n d i n g
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5 Examples of a
projection and
separator tree.
Clockwise from
the top: a pro-
jection and
separator tree,
iconic represen-
tation for 1D
p r o j e c t i o n s ,
c u rv e - b a s e d
density plots,
c o l o r - b a s e d
density plots,
iconic represen-
tation for 2D
projections, and
a color-based
2D density plot.

6 Example of
the need for
general projec-
tions. 



p rojections that partition the data set well, the main

p ro p e rties include

■ the number of maxima of the pro j e c ted data ’s densi-

ty function,

■ the number of data items belonging to the maxima,

a n d

■ h ow well the maxima are separa ted from each oth e r. 

In our appro a ch we dete rmine these pro p e rties based

on histo gram info rmation of the point density in the pro-

j e c ted space. The abst ract iconic display method uses

an icon-based te ch n i que to display the pro p e rties. The

number of data points belonging to the maxima corre-

sponds to the icon’s color. The color fo l l ows a given color

table, ranging from dark colors for large maxima to

b right colors for small maxima.

The measure of how well a maxi-

ma is separa ted from the oth e rs cor-

responds to the icon’s shape. The

degree of separation varies from

s h a rp pikes for we l l - s e p a ra ted maxi-

ma to blunt pikes for we a k- s e p a ra te d

maxima (see Fi g u re 7). The icons fo r

the maxima of a projection are

a rra n ged in a ve rtical line. In the 1D

case (variant 1), a natural order of

the maxima ex i sts and the degree of

s e p a ration can be measured in two

directions (left and right). The

d e gree of separation to the left cor-

responds to the height of the small-

e st bin bet ween the current maxima

and the next maxima on the left, and

a n a l o g o u s ly for the separation to th e

right. In the multidimensional case,

the direction of the separation with

respect to other cluste rs doesn’t make

sense. There fo re, in the visualization

we order the maxima to obtain a

good contra st bet ween the imp o rta n t

maxima and the less imp o rtant ones.

The used heuristic determines the

d e gree of separation of a cluster in a

p rojection by the highest peak at th e

b o rder of the cluste r, which means

the smaller the maximum density at

the bord e r, the bet ter the separa t i o n

of the cluste r. For the cluster dete c-

tion in the pro j e c ted space we emp l oy a variant of th e

DenClue algori th m .11 Fi g u re 7 shows the st ru c t u re of th e

icons, and Figure 8 shows examples of visualizations

resulting from a 1D and a 2D pro j e c t i o n .

The iconic re p re s e n tation of the density function’s

maxima serves for identifying the inte re sting pro j e c-

tions and for finding good separa to rs. Fi g u re 9 show s

an exa mple with a larger number of 2D projections. The

i n te re sting projections have at least two we l l - s e p a ra te d

maxima (dark, sharp icons).

Color- and curve-density visualizations of
p ro j e c t i o n s

The abst ract iconic visualizations of the pro j e c t i o n

help in finding inte re sting projections among a large

number of projections. For further ex p l o ration such as

te sting whether the projections allow useful separa to rs ,
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7 Structure of
the icons: 
(a) one dimen-
sional and 
(b) multidimen-
s i o n a l .

8 Examples of
the icons: 
(a) one dimen-
sional and 
(b) multidimen-
s i o n a l .

(a)

(b)

9 Iconic repre-
sentation of a
large number of
p r o j e c t i o n s .



we can use color-density and curve-density plots. Fi g-

u re 10 shows 1D exa mples. The darkness of the color

i n c reases with higher point density. The exa mples cor-

respond to the exa mple of the abst ract 1D iconic visu-

alization method (Fi g u re 8a). We used color- d e n s i t y

p l ots in the fo rm of an arc to prevent confusion among

d i ffe rent plots in cases of ove rv i ew displays .

In addition to the 1D plots, we also support 2D color-

density plots. The basic idea is to code the point densi-

ty of the projection by color. Fi g u re 11 shows an exa mp l e

of a 2D color-density plot, which corresponds to th e

a b st ract iconic re p re s e n tation in Fi g u re 8b. The user can

also use color-density plots to specify comp l ex hy p e r-

p o lygonal separa to rs intuitive ly (see the section “Vi s u-

al finding of separa to rs ” ) .

Methodology for preselecting intere s t i n g
p ro j e c t i o n s

Since the number of pote n t i a l ly inte re sting pro j e c t i o n s

is ve ry large (infin i te for arbitra ry multidimensional pro-

jections), we must have some pro c e d u re for pre s e l e c t-

ing projections. The HD-Eye system uses an inte ra c t i ve

o ptimization pro c e d u re, which sta rts by proposing some

p rojections to the user. The initial set of projections con-

s i sts of all axes parallel projections, some diagonal pro-

jections, and some random combinations of prev i o u s

p rojections. From this set, the user can select the inte r-

e sting projections. In case the pre s e n ted projections don’ t

s u ffice, the user can ge n e ra te other combinations fro m

the selected ones using cro s s over and mutation opera-

to rs applied to the projection matrices. During a tra n s i-

tion from an ite ration to the next, the algori th m

p re s e rves the selected projection and ge n e ra tes new ones

by applying the cro s s over and mutation operta to rs to th e

s e l e c ted projections. The pro c e d u re acts as a sort of

ge n etic algori thm where the user’s selections define th e

fitness function. The ite ration for good projections sto p s

when the user finds satisfying projections or realizes th a t

the data set can’t be partitioned furth e r.

Visual finding of separators
When users find a good projection that separa tes data

points into clusters, they can use the visualization to

directly specify one or multiple separators. Due to

u n k n own ch a ra c te ri stics of the cluste rs, finding separa-

to rs can’t be done effe c t i ve ly in an automatic way. In th e

H D - E ye system, users visually specify the separa to rs with

i n te ra c t i ve tools. A separa tor can be defined by simp l e

ge o m et ric objects such as split lines or closed split poly-

gons in the projected space. The borders of the split

objects are best placed in regions of re l a t i ve ly low point

d e n s i t y. Using the upper bound pro p e rty (Lemma 5), th e

point density in a projection re p resents an approx i m a-

tion of the point density in the data space. For finding sep-

arators in 1D projections, we use the color and curve

density plots introduced prev i o u s ly with a high gra n u-

l a rity (that is, with a large number of grid cells). Users

place split lines for the separa to rs dire c t ly in the visual-

izations using the mouse. In the 2D case, the split poly-

gons can be drawn dire c t ly into the 2D color density plot s .

Fi g u re 12 shows exa mples of separa tor lines in 1D color-

and curve-density plots and a 2D color-density plot .
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1 0 Examples of
the 1D density
plots: (a) color
and (b) cur v e .

(a)

(b)

1 1 Example of
the 2D color
density plots.

1 2 Examples of
separators: 
(a) 1D color
density plot, 
(b) 1D cur v e
density plot,
and (c) 2D color
density plot.

(a)

(b)

(c)



E x p e r i m e n t s
H e re we present the results of applying the HD-Eye

s ystem to real high-dimensional data from molecular

b i o l o g y. The ex p e riments demonst ra te the effe c t i ve n e s s

of our visual te ch n i qu e s .

The data used for the ex p e riment comes from a com-

p l ex simulation of a ve ry small but fl exible pept i d e .18

The data ge n e ra ted by the simulation describe the con-

fo rmation of the peptide as a 19-dimensional point. The

simulation cove rs a period of 50 nanoseconds with two

s n a p s h ots ta ken eve ry picosecond, resulting in about

100,000 data points. (The simulation took seve ral we e ks

of CPU time.) The simulation’s purpose was to dete r-

mine the molecule’s behavior in the confo rmation space.

The large amount of high-dimensional data makes it dif-

ficult to find, for exa mple, the molecule’s pre fe rred con-

fo rmations. This proves imp o rtant for applications in

the pharmaceutical indust ry, since small, flexible pep-

tides fo rm the basis for many medications. The flex i b i l-

ity of the peptides, howeve r, results in peptides with

m a ny inte rm e d i a te, unstable confo rmations. The pre-

fe rred confo rmations correspond to large cluste rs and

i n te rm e d i a te confo rmations show up as noise.

At first, we used 1D projections to the coord i n a te axe s

of the data. The icon-based ove rv i ew plot (Fi g u re 13 a )

s h ows that only the dimensions 0, 1, 2, 4, 5, 12, 15, 16 ,

17, and 18 separa te cluste rs effe c t i ve ly. The color- d e n s i t y

p l ots (Fi g u re 13b) allow users to specify the separa to rs .

In the second step, we used 2D projections. The icon-

based ove rv i ew plot (Fi g u re 14) shows many 2D pro j e c-

tions with we l l - s e p a ra ted cluste rs. The 2D density plot s

( Fi g u re 15) offer good possibilities for polygonal separa-

to rs. The plots also allow deeper insight into the corre l a-

tions bet ween the dimensions.

C o n c l u s i o n s
In this article we propose a new appro a ch to visual

c l u ste ring in high-dimensional data sets. Imp l e m e n ted in

the HD-Eye system, our appro a ch combines the st re n g th s

of an advanced automatic cluste ring algori thm with new

visualization te ch n i ques that effe c t i ve ly support the clus-

te ring process by re p resenting the imp o rtant info rm a-

tion visually. The visualization te ch n i ques use a

combination of pixe l - o ri e n ted density plots and iconic

re p re s e n tations of the data and allow users to dire c t ly

specify cluster separa to rs in the visualizations. Experi-

m e n tal evaluation shows that the combination of auto-

matic and visual te ch n i ques signific a n t ly imp roves th e

e ffe c t i veness of the data mining process and provides a

b et ter understanding of the re s u l t s .

We believe our new appro a ch of combining th e

st re n g ths of automatic and visual methods will not i c e-

a b ly affect ways of cluste ring high-dimensional data in

the future. Our plans for future wo rk include fin e - t u n i n g

our method for specific applications and ex tending it to

include other visual re p re s e n ta t i o n s . ■
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(a) (b)
1 4 Separators for the molecular biology data (19 dimensional).

1 5 2D density
plots of the
separators for
the molecular
biology data (19
d i m e n s i o n a l ) .

1 3 S e p a r a t o r s
for the molecu-
lar biology data
set (19 dimen-
sional): (a) icon
groups and 
(b) color-
density plots.
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