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HD-Eye: Visual
Mining of High-
Dimensional Data

Because of the fast rate of technological
progress, the amount of data stored in
databases increases rapidly. This proves true for tradi-
tional relational databases and complex 2D and 3D
multimedia databases that store images, CAD draw-
ings, geographic information, and molecular biology
data. We can view relational databases as high-dimen-
sional databases, since the attributes correspond to the
dimensions of the data set. The same also holds true for
multimedia data. For efficient retrieval, such data must
usually be transformed into high-dimensional feature
vectors such as color histograms,® shape descriptors,?
Fourier vectors,® and text descriptors.* Many of the
mentioned applications rely on very large databases
consisting of millions of data objects with several tens
to a few hundreds of dimensions.

Clustering in high-dimensional

An advanced clustering
algorithm combined with
new visualization methods

interactively clusters data

more effectively.

Experiments show these

techniques improve the data

mining process.

databases poses an important prob-
lem. However, we can apply a num-
ber of different clustering algorithms
to high-dimensional data. The most
prominent representatives include
partitioning algorithms such as
Clarans,® hierarchical clustering
algorithms, and locality-based clus-
tering algorithms such as (general)
density-based spatial clustering of
applications with noise, called
(G)DBScan,® and distribution-based
clustering of large spatial databases
(DBCLASD).”

The basic idea of partitioning algo -
rithms is to construct a partition of
the database into k clusters repre-
sented by the gravity of the cluster (k-means) or by one
representative object of the cluster (k-medoid). Hierar -
chical clusteringalgorithms decompose the database into
several levels of partitionings usually represented by a
dendrogram—a tree that splits the database recursively
into smaller subsets. The third class of algorithms, local -
ity-based clustering algorithms, usually group neighbor-
ing data elementsinto clusters based on local conditions.
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Unfortunately, most approaches aren't designed to
cluster high-dimensional data, thus the performance of
existing algorithms degenerates rapidly with increas-
ing dimensions. To improve efficiency, researchers have
proposed optimized clustering techniques. Examples
include grid-based clustering;® balanced iterative reduc-
ing and clustering using hierarchies (Birch),® which
builds on the cluster-feature tree; statistical information
grid (Sting), which uses a quadtree-like structure con-
taining additional statistical information;° and density-
based clustering (DenClue), which uses aregular grid to
improve efficiency.™ Unfortunately, the curse of dimen-
sionality also severely affects the resulting clustering’s
effectiveness. A detailed comparison of the existing
methods shows problems in effectiveness, especially in
the presence of noise. Elsewhere,'? we showed that the
existing clustering methods either suffer froma marked
breakdown in efficiency (which proves true for all index-
based methods) or have notable effectiveness problems
(which is basically true for all other methods).

Our idea, presented in this article, is to combine an
advanced clustering algorithm with new visualization
methods for a more effective interactive clustering of
the data. The starting pointis a novel and efficient clus-
tering algorithm called OptiGrid,*? which builds on a
generalized multidimensional grid and uses contract-
ing projections as well as complex hyperpolygonal
objects as separatorsin the multidimensional space (see
the section “Visual finding of projections and separa-
tors™). Choosing the contracting projections and speci-
fying the separators for building the multidimensional
grid, however, are two difficult problems that can’t be
done fully automatically.

Visualization technology can help in performing these
tasks. A large number of potential visualization tech-
niques can be used in data mining (for more informa-
tion see the “Visual Data Mining Techniques” sidebar).
Examples include geometric projection techniques such
as prosection matrices and parallel coordinates, icon-
based techniques, hierarchical techniques, graph-based
techniques, pixel-oriented techniques, and combina-
tions thereof. In general, the visualization techniques
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Visual Data Mining Techniques

Geometric projection techniques aim to find interesting
projections of multidimensional data sets. The class of
geometric projection techniques includes techniques of
exploratory statistics such as principal component analysis,
factor analysis, and multidimensional scaling, many of
which are subsumed under the term projection pursuit.

Geometric projection techniques also include the parallel

coordinate visualization technique.? The basic idea is to map
the k-dimensional space onto the two display dimensions by

using k equidistant axes parallel to one of the display axes.
The axes correspond to the dimensions and are linearly
scaled from the minimum to the maximum value of the
corresponding dimension. Each data item is presented as a
polygonal line, intersecting each of the axes at that point
that corresponds to the value of the considered dimension.

Another class of techniques for visual data mining are the

icon-based techniques (or iconic display techniques). The
idea is to map each multidimensional data item to an icon.
An example is the stick figure technique.® It maps two
dimensions to the display dimensions and the remaining
dimensions are mapped to the angles and/or limb lengths
of the stick figure icon. This technique limits the number
of dimensions that can be visualized. The shape-coding

approach,* an icon-based technique, visualizes an arbitrary

number of dimensions. The icon used in this approach
maps each dimension to a small array of pixels and
arranges the pixel arrays of each data item into a square or
rectangle. The pixels corresponding to each of the
dimensions are mapped to gray scale or color according to

the dimension’s data value. The small squares or rectangles

corresponding to the data items are then arranged

successively in a line-by-line fashion.

Pixel-oriented techniques aim to map each data value to
a colored pixel and present the data values belonging to
one attribute in separate windows. Since the pixel-oriented
techniques use only one pixel per data value, the
techniques allow a visualization of the largest amount of
data, which is possible on current displays (up to about
1,000,000 data values). If one pixel represents each data
value, the main question is how to arrange the pixels on
the screen. The pixel-oriented techniques use different
arrangements for different purposes. An overview of pixel-
oriented techniques can be found elsewhere.>®

The hierarchical techniques subdivide the k-dimensional
space and present the subspaces in a hierarchical fashion.
The dimensional stacking technique,” for example,
subdivides the k-dimensional space into 2D-subspaces.
Another example is the Cone Tree® technique. The basic
idea of the graph-based techniques lies in effectively
presenting a large graph using specific layout algorithms,
query languages, and abstraction techniques. Examples
appear elsewhere.®1°

In addition to the visualization technique, effective data
exploration requires using some interaction and distortion
techniques. The interaction techniques let the user directly
interact with the visualization. Examples of interaction
techniques include interactive mapping, projection,*
filtering,*? zooming,*® and interactive linking and
brushing.** Interaction techniques allow dynamic changes
of the visualizations according to the exploration
objectives, but they also make it possible to relate and

continued onp. 4

work in conjunction with some interaction techniques
and also some distortion techniques.

Unfortunately, the existing techniques, don't effec-
tively support the projection- and separator-finding
process needed for an efficient clustering in high-
dimensional space. Therefore, we developed a num-
ber of new visualization techniques that represent the
important features of a large number of projections.
These techniques help identify the most interesting
projections and select the best separators. For 1D pro-
jections we developed a pixel-oriented representation
of the point-density projections. Given a large number
of interesting projections, the user may also employ a
different visualization that represents the most impor-
tant maxima of the point-density projections and their
separation potential by small polygonal icons. The
iconic representation reduces the information in the
pixel-oriented visualization and allows a quick
overview of the data.

For 2D projections, we use a similar iconic represen-
tation to help users find interesting projections and 2D
pixel representations that also lets users directly speci-
fy complex hyperpolygonal separators within the visu-
alization. Due to the large number of projections in the
higher-dimensional case, only the iconic visualization
can be used.

We integrated all visualization techniques by using a
tree-like visualization of the projection and separator
hierarchy. To show the effectiveness of our new visual-
ization techniques, we used the system for clustering
real data from molecular biology. The experiments show
the effectiveness of our approach.

Overview of the HD-Eye approach
The HD-Eye approach builds on an advanced clus-
tering algorithm called OptiGrid.*?

Basic considerations

We startwith a well-known and widely accepted def-
inition of clustering. To do this, we need a point-densi-
ty function, which can be determined based on kernel
density estimation.34

Definition 1: Density function-kernel density
estimation. Let D denote a set of n d-
dimensional points and h the smoothness level.
Then, we can define the density function based
on the kernel density estimator K as

2 _ 1 = Ox-xC
fD(x)—WZK%—h :
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combine multiple independent visualizations. Note that
connecting multiple visualizations by linking and brushing,
for example, provides more information than considering
the component visualizations independently.

The distortion techniques finally help in the interactive
exploration process by providing means for focusing while
preserving an overview of the data. Distortion techniques
show portions of the data with a high level of detail while
others are shown with a much lower level of detail. A
number of simple and complex distortion techniques may
be used for this purpose. Examples include fisheye views'®

and the hyperbolic tree.®
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Kernel density estimation provides a powerful frame-
work for finding clusters in large data sets. Researchers
have proposed various kernels K in the statistics litera-
ture. Examples include square wave functions or Gauss-
ian functions. Figure 1 shows anexample for the density
function of a 2D data setusing a square wave and Gauss-
ian kernel.

A detailed introduction to kernel density estimation
lies beyond the scope of this article, but you can find
more information elsewhere.*** Previously, we showed
that clusters can be defined as the maxima of the density
function, which lie above a certain noise level §.**

Definition 2: Center-defined cluster. A center-
defined cluster for a maximum x* of the density
function fPis the subset C 0D, with x 0 C being
density-attracted by x* and f° (x*)=£. We call
points x 00 D outliers if they're density-attracted
by a local maximumxg with f° (x8)=E.

According to this definition, each local maximum of
the density function that lies above the noise level ¢
becomes a cluster of its own and consists of all points
density-attracted by the maximum. In the example pre-
sented in Figure 1, we obtained four clusters for most



possible noise levels. The notion of
density-attraction is defined by the
gradient of the density function. The
definition can be extended to clus-
ters defined by multiple maxima
and can approximate arbitrarily
shaped clusters.

Definition 3: Multicenter-defined
cluster. Amulticenter-defined
cluster for a set of maxima X is
the subset C 0D, where Ox OC
exists ax* O X with 8 (x*)=£, x
is density-attracted to x* and
Ox* x3 DX exists with a path P
OF9 from x*¥to x3 above noise
level €.

(G

Figure 2 shows the multicenter-
defined clusters for different £. With
anincreasing &, more and more clus-
ters get separated. Note that the
resulting clusters may have an arbi-
trary shape.

Projections and separators

Determining clusters essentially
involves data points condensing into
groups and separating from other
groupsof data points. Using the point
density for clustering, clusters O
become separated by the valleys
between the maxima. Inthe OptiGrid
approach, we use lower dimension-
al projections of the high-dimen-
sional data to effectively determine
the separations. Useful projections
must be contracting, since only con-
tracting projections provide the
upper bound property (see Lemma
5) necessary for detecting the sepa-
rating valleys correctly.

(RRRRNRNNRRRRIN]

Definition 4: Contracting

projection. A contracting {a}
projection for a given d-

dimensional data space S and

an appropriate metric -l is a linear
transformation P defined on all pointsx 0 S

0
P(x) = Ax with A Tg%@ésl

Figure 3 shows an example of the difference between
general and contracting projections.

Lemma 5 states that the density ata point X’ in a pro-
jected space of the data is an upper bound for the den-

sity on the plane orthogonal to the projection plane in

the original feature space. The lemma shows a way of
determining separators that partition the data without

{b}

dividing the clusters. Informally, Lemma 5 states thata
set of data points that can be separated in a contracting
projection (with asmall error) are also separated inthe
original data space (without a larger error).

Lemma 5: Upper bound property of contracting
density projections. Let P(x) =Ax be a
contracting projection, P(D) the projection of
the data set D, and f"®(x") the density for a
pointx’ O P(S). Then, using the same kernel for
fPand fP®),

Ox OS withP(x) = x": TP®)(x")= F°(x)

Definition 6: Separator. A separator is a

2 Example of
multicenter-
defined clusters
for different ¢&.
@, () £=4
(©).(d) &§=2;
and (e), () &€=
1.

3 General (a)
and contracting
(b) projections.



4 Examples of
2D grids:

(a) regular and
(b) irregular.
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geometric object that partitions RY into two
half spaces ho, h;. The decision function
H(x)determines the half space, where a point x
ORYis located:

H(x)= %

To determine the decision function efficiently, we use
contracting projections of the formP: RY - RY, d’' <d.
Examples for separators are (d — 1)-dimensional hyper-
planes defined by a split value x; or multidimensional
cylinders defined by a closed polygon p. The formulas
for the decision functions follow:

x O h1
X else

1. HyperplaneP:

Rd —>R1,H(X)=§ P(X)ZXS

else

2. Cylinder P:

RY _ R2 H(x):a P(x)insidef polygop

else

Multidimensional grid

The combination of several separators results in a
multidimensional grid. Since we can’t store the grid
explicitly in high-dimensional space, we need a coding
function c that assigns a label to all points belonging to
the same grid cell. We define a general notion of arbi-
trary (nonequidistant, irregular) grids as follows.

Definition 7: Multidimensional grid. A
multidimensional grid G for the data space Sis
defined by aset H ={Hy, ..., Hc} of separators.
We define the coding functionc®:S - N as
follows (where N stands for the space of
natural numbers):

k
x 08, ¢(x)= ZZ‘ Hi(x)

The grid notation lets us determine the relevant sub-
sets efficiently. Examples of a regular and an irregular
grid appear in Figure 4.

The HD-Eye algorithm

The HD-Eye algorithm builds on
the OptiGrid algorithm for cluster-
ing high-dimensional data sets. The
OptiGrid algorithm works recur-
sively. In each step, it partitions the
actual data set into a number of sub-
sets if possible. The algorithm treats
the subsets containing at least one
cluster recursively. The partitioning
uses a multidimensional grid
defined by a number of separators.
OptiGrid chooses the separators in
regionswith minimal point density.
The recursion stops for a subset if no good separators
can be found. Another similar approach, Classification
and Regressions Trees (CART),*® also automatically par-
titions the data in a recursive way, but uses additional
data to guide the partitioning.

The OptGrid algorithm, as described so far, mainly
detects center-defined clusters. However, it easily
extends to also detect multicenter-defined clusters
according to Definition 3. The algorithm just has to eval-
uate the density between the center-defined clusters
determined by OptiGrid and link the clusters if the den-
sity is high enough.

Determining good projections and finding complex
separators necessary for building the multidimension-
al grid proves difficult. Inaddition, it can’t be done auto-
matically because of the diverse cluster characteristics
of different data sets. Visualization techniques can
improve the effectiveness of the clustering process con-
siderably and find clusters otherwise missed.

Now we'll give a brief overview of our visual cluster-
ing tool, HD-Eye. Two main tasks need visual support:
first, finding the appropriate contracting projections for
partitioning the data and second, finding and specify-
ing good separators based on these projections. Both
tasks require the user’s intuition and creativity and can't
be done automatically. The main difference between the
OptiGrid and the HD-Eye approach lies in the visual
determination of the projections and separators.
Through visual feedback, users gain a deeper under-
standing of the data set. Therefore, they can identify
additional projections and separators that the original
OptiGrid algorithm can't find.

The HD-Eye algorithm works as follows for a data
setD:

1. Initialize the cluster hierarchy with root — D
2. While a node v with the data set D, can be split

m Visually find projections usable for separating data —

P={Ps,...,P}

Visually find separators — {H=H,, ..., H}

Construct multidimensional grid G defined by the

separator set H and insert all data point x 0 Dyinto G

m Determine clusters, that is, determine highly popu-

lated grid cellsin G

Refine the clusters

m Add the clusters as child nodes of v to the cluster
hierarchy
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The HD-Eye algorithm splits the
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data set recursively. The recursion
tree forms a cluster hierarchy that
represents the cluster structure intu-
itively. The projection and separator
tree (or simply cluster tree) appears
in the main overview window of the
HD-Eye system (see Figure 5). The
algorithm lets the user partition the
data set first using a set of simple 1D
and 2D orthogonal projections, then
using a set of complex hyperpolyg-
onal separators. Multiple levels of
the cluster hierarchy use complex
separatorsthat recursively refine the
cluster structure using different
noise levels (NL). Note that the sep-
arators allow the user to find clus-
ters of arbitrary shape and complex
(linear, quadratic, and higher order)

m

] Maxima Visualization (Axis)] (EEEEES'E

mmo -
w: A A
1D: P-DZ;P-DE, M-10% e 2 -G
w 4 A
p AR

I s tograms (axis)1 (100000) RS

Hist 4

X[ &

X

dependencies.

Visual finding of projections and
separators

One of the essential parts of the HD-Eye algorithm is
tofind aset of projectionsP={Py, ..., Py}, useful for sep-
arating the data into clusters. In other work'? we showed
that axes-parallel projections suffice for detecting cen-
ter-defined clusters with no linear dependencies
between the attributes. Clusters with linear or higher
order dependencies between the dimensions (arbitrary-
shaped clusters) require general projections and sepa-
rators. Figure 6 shows an example. You can see that the
axes parallel projections don’t preserve the information
well, which is necessary for clustering.

Visual techniques that preserve some characteristics
of the data set can be invaluable for obtaining good sep-
arators. In contrast to dimension reduction approaches
such as principal component analyses (FastMap®®) or
projection pursuit,’’ our approach doesn’t require that
a single projection preserve all clusters. In the projec-
tions some clusters may overlap and therefore not be
distinguishable. For our approach, we only need pro-
jections that separate the data set into at least two sub-
sets without dividing any clusters. The subsets may then
be refined using other projections and possibly parti-
tioned further based on separators in other projections.
Since we only use contracting projections, partitioning
the data set in the minima of the projections doesn'’t
cause large errors in the clustering (see Lemma 5).
Based on the visual representation of the projections,
it's possible to find clusters with unexpected character-
istics (shapes, dependencies) very difficult or impossi-
ble to find by tuning the parameter settings of automatic
clustering algorithms.

The most important information about a projection
is whether it contains well-separated clusters. Note that
well-separated clusters in the projection could result
from more than one cluster in the original space. If it’s
possible to partition the data into subsets, the more com-
plex structure can be detected recursively using other
projections. In our approach we code the important

information (whether the projection contains well-
separated clusters) in three different ways:

1. abstract iconic display
2. color-based point density
3. curve-based point density

Method 1 has two variants. The first applies to projec-
tions P : RY = R, while the second applies to general
contracting projections P : R? - RY, d' < d. Methods 2
and 3 are limited tod' <2.

Next we’'ll describe the three methods and discuss
how they can aid in finding interesting projections of
theformP: RY - RY, d' <2. Then we'll briefly describe
how the separators may be specified directly within the
visualizations.

Abstract iconic visualizations of projections

The large number of possible contracting projections
demand a visualization technique for displaying the
main properties of the data distribution of as many pro-
jections as possible. Since we're interested in finding

5 Examples of a
projection and
separator tree.
Clockwise from
the top: a pro-
jection and
separator tree,
iconic represen-
tation for 1D
projections,
curve-based
density plots,
color-based
density plots,
iconic represen-
tation for 2D
projections, and
a color-based
2D density plot.

6 Example of
the need for
general projec-
tions.



7 Structure of
the icons:

(a) one dimen-
sional and

(b) multidimen-
sional.

8 Examples of
the icons:

(a) one dimen-
sional and

(b) multidimen-
sional.

9 Iconic repre-
sentation of a
large number of
projections.
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projections that partition the data set well, the main
properties include

m the number of maxima of the projected data’s densi-
ty function,

m the number of data items belonging to the maxima,
and

m how well the maxima are separated from each other.

In our approach we determine these properties based
on histogram information of the point density in the pro-
jected space. The abstract iconic display method uses
an icon-based technique to display the properties. The
number of data points belonging to the maxima corre-
sponds to the icon’s color. The color follows a given color
table, ranging from dark colors for large maxima to
bright colors for small maxima.

Separafion

Sepuration

The measure of how well a maxi-
ma is separated from the others cor-
responds to the icon’s shape. The
degree of separation varies from
sharp pikes for well-separated maxi-
ma to blunt pikes for weak-separated
maxima (see Figure 7). Theicons for
the maxima of a projection are
arranged in a vertical line. In the 1D
case (variant 1), a natural order of
the maxima exists and the degree of
separation can be measured in two
directions (left and right). The
degree of separation to the left cor-
responds to the height of the small-
est bin between the current maxima
and the next maximaon the left,and
e wdke analogously for the separation to the
i right. In the multidimensional case,

the direction of the separation with

e
4 A
il

o respect to other clusters doesn't make
e sense. Therefore, in the visualization

we order the maxima to obtain a
A4

good contrast between the important
maxima and the less important ones.
The used heuristic determines the
degree of separation of a cluster ina
projection by the highest peak at the
border of the cluster, which means
the smaller the maximum density at
the border, the better the separation
of the cluster. For the cluster detec-
tion in the projected space we employ a variant of the
DenCluealgorithm.™ Figure 7 shows the structure of the
icons, and Figure 8 shows examples of visualizations
resulting from a 1D and a 2D projection.

The iconic representation of the density function’s
maxima serves for identifying the interesting projec-
tions and for finding good separators. Figure 9 shows
anexample with a larger number of 2D projections. The
interesting projections have at least two well-separated
maxima (dark, sharp icons).

Color- and curve-density visualizations of
projections

The abstract iconic visualizations of the projection
help in finding interesting projections among a large
number of projections. For further exploration such as
testing whether the projections allow useful separators,



we can use color-density and curve-density plots. Fig-
ure 10 shows 1D examples. The darkness of the color
increases with higher point density. The examples cor-
respond to the example of the abstract 1D iconic visu-
alization method (Figure 8a). We used color-density
plots in the form of an arc to prevent confusion among
different plots in cases of overview displays.

In addition to the 1D plots, we also support 2D color-
density plots. The basic idea is to code the point densi-
ty of the projection by color. Figure 11 shows an example
of a 2D color-density plot, which corresponds to the
abstract iconic representation in Figure 8b. The user can
also use color-density plots to specify complex hyper-
polygonal separators intuitively (see the section “Visu-
al finding of separators™).

Methodology for preselecting interesting
projections

Since the number of potentially interesting projections
isvery large (infinite for arbitrary multidimensional pro-
jections), we must have some procedure for preselect-
ing projections. The HD-Eye system uses an interactive
optimization procedure, which starts by proposing some
projections to the user. The initial set of projections con-
sists of all axes parallel projections, some diagonal pro-
jections, and some random combinations of previous
projections. From this set, the user can select the inter-
esting projections. In case the presented projectionsdon’t
suffice, the user can generate other combinations from
the selected ones using crossover and mutation opera-
tors applied to the projection matrices. During a transi-
tion from an iteration to the next, the algorithm
preservesthe selected projection and generates new ones
by applying the crossover and mutation opertators tothe
selected projections. The procedure acts as a sort of
genetic algorithm where the user’s selections define the
fitness function. The iteration for good projections stops
when the user finds satisfying projections or realizes that
the data set can't be partitioned further.

Visual finding of separators

When users find a good projection that separates data
points into clusters, they can use the visualization to
directly specify one or multiple separators. Due to
unknown characteristics of the clusters, finding separa-
tors can't be done effectively in an automatic way. In the
HD-Eye system, users visually specify the separators with
interactive tools. A separator can be defined by simple
geometric objects such as split lines or closed split poly-
gons in the projected space. The borders of the split
objects are best placed in regions of relatively low point
density. Using the upper bound property (Lemma5), the
point density in a projection represents an approxima-
tion of the point density in the data space. For finding sep-
arators in 1D projections, we use the color and curve
density plots introduced previously with a high granu-
larity (that is, with a large number of grid cells). Users
place split lines for the separators directly in the visual-
izations using the mouse. In the 2D case, the split poly-
gons can be drawn directly into the 2D color density plots.
Figure 12 shows examples of separator linesin 1D color-
and curve-density plots and a 2D color-density plot.
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10 Examples of
the 1D density
plots: (a) color
and (b) cur ve.

11 Example of
the 2D color
density plots.

12 Examples of
separators:

(a) 1D color
density plot,

(b) 1D cur ve
density plot,
and (c) 2D color
density plot.
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Experiments

Here we present the results of applying the HD-Eye
system to real high-dimensional data from molecular
biology. The experiments demonstrate the effectiveness
of our visual techniques.

The data used for the experiment comes from acom-
plex simulation of a very small but flexible peptide.®
The data generated by the simulation describe the con-
formation of the peptide asa 19-dimensional point. The
simulation covers a period of 50 nanoseconds with two
snapshots taken every picosecond, resulting in about
100,000 data points. (The simulation took several weeks
of CPU time.) The simulation’s purpose was to deter-
mine the molecule’s behavior in the conformation space.
The large amount of high-dimensional data makes it dif-
ficult to find, for example, the molecule’s preferred con-
formations. This proves important for applications in
the pharmaceutical industry, since small, flexible pep-
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tides form the basis for many medications. The flexibil-
ity of the peptides, however, results in peptides with
many intermediate, unstable conformations. The pre-
ferred conformations correspond to large clusters and
intermediate conformations show up as noise.

At first, we used 1D projectionsto the coordinate axes
of the data. The icon-based overview plot (Figure 13a)
shows that only the dimensions 0, 1, 2, 4,5, 12, 15, 16,
17, and 18 separate clusters effectively. The color-density
plots (Figure 13b) allow users to specify the separators.

In the second step, we used 2D projections. The icon-
based overview plot (Figure 14) shows many 2D projec-
tions with well-separated clusters. The 2D density plots
(Figure 15) offer good possibilities for polygonal separa-
tors. The plots also allow deeper insight into the correla-
tions between the dimensions.

Conclusions

In this article we propose a new approach to visual
clustering in high-dimensional data sets. Implemented in
the HD-Eye system, our approach combines the strengths
of an advanced automatic clustering algorithmwith new
visualization techniques that effectively support the clus-
tering process by representing the important informa-
tion visually. The visualization techniques use a
combination of pixel-oriented density plots and iconic
representations of the data and allow users to directly
specify cluster separators in the visualizations. Experi-
mental evaluation shows that the combination of auto-
matic and visual techniques significantly improves the
effectiveness of the data mining process and provides a
better understanding of the results.

We believe our new approach of combining the
strengths of automatic and visual methods will notice-
ably affect ways of clustering high-dimensional data in
the future. Our plans for future work include fine-tuning
our method for specific applications and extending it to
include other visual representations. u
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