
Scalable Rendering ~ectil~eoon PC Clusters

Brian Wylie, Vasily Lewis, David N Shirley*, Constantine Pavlakos 4%(/ pa
Sandia National Laboratories

Albuquerque, NM 87185
~e~~.G

ABSTRACT

This case study presents initial results from research targeted
at the development of cost-effective scalable visualization and
rendering technologies. The implementations of two 3D graphics
libraries based on the popular sort-last and sort-middle parallel
rendering techniques are discussed. An important goal of these
implementations is to provide scalable rendering capability for
extremely large datasets (>> 5 million polygons). Applications
can use these libraries for either run-time visualization. by linking
to an existing parallel simulation. or for traditional post-
processing by linking to an interactive display program. The use
of parallel, hardware-accelerated rendering on commodity
hardware is leveraged to achieve high performance. Current
performance results show that, using our current hardware (a
small 16-node cluster), we can utilize up to 850/. of the aggregate
graphics performance and achieve rendering rates in excess of 20
million polygons/second using OpenGL@ with lighting, Gouraud
shading. and indi\iduallj specified triangles (not [-stripped).

1 INTRODUCTION

The Department of Energy’s Accelerated Strategic
Computing Initiative (ASCI) is producing computations of a scale
and complexi~ that are unprecedented”z. High fidelity
simulations, at high spatial and temporal resolution, are needed to
achieve the necessary confidence in simulation results. The ability
to visualize the enormous datasets produced by such simulations
is beyond the current capabilities of a single-pipe graphics
machine. Parallel techniques must be applied to achieve
interactive rendering of datasets greater than several million
polygons. Highly scalable techniques will be necessary to address
projected rendering performance targets, which are as high as 19
billion polygons per second in 2004J. As part of a broader effort
in ASCI’s Visual Interactive Environment for Weapons
Simulations (VIEWS) program, Sandia National Laboratories
(SNL) is exploring the development of cluster-based rendering
systems to address these extreme datasets. The intent is to
leverage widely available commodity graphics cards and
workstations in lieu of traditional, expensive, specialized graphics
systems.

Figure 1: Polygon rendering pipeline showing the three
sorting based classifications.

Molnar3 first proposed a classification scheme of parallel
rendering algorithms based on the order of transformation,
rasterization and distribution of the polygons. Molt-m’s taxonomy
of rendering algorithms consists of three categories: Sort-firs~
Sort-middle and Sort-last (see Figure 1). Currently our
visualization group at Sandia is working on libraries for both the
Sort-middle and Sort-last categories.

2 RELATED WORK

A substantial amount of work pre-exists in this are~
especially with regard to software implementations on parallel
computers4>5’G’7’*. As with our work, these efforts have been
Itigely motivated by visualization of big data, with an emphasis
on demonstrating scalability across significant numbers of
compute processors. However, these software-based efforts have
yielded relatively modest raw performance results when compared
with hardware rendering rates.

Others have designed highly specialized parallel graphics
hardware, such as the PixelFlow system9, that scales and is
capable of delivering extensive raw performance, but such
systems have not yet proven to be commercially viable. At the
same time. certain architectural features of such systems may be
realizable on clustered-graphics machines, especially as
interconnect performance rises.

The desire to drive large, high-resolution tiled displays has
recently become an additional motivation for building parallel
rendering systems. ASCI partners, including Princeton
University]o and Stanford University 1, as welI as the ASCI labs
themselves’2, are pursuing the implementation of such systems.
Princeton, in particular, has implemented a scalable display
system using a PC-based graphics cluster.

Efforts to harness the aggregate power of such commodity-
based clusters for more general-purpose scalable, high-
performance graphics are now also underway. One such effort
has proposed the use of special compositing hardware to reduce
system latencies and accelerate image throughpu? 3. .

son-matorSon-miil$to $wwaalto sin@
pamtiowa oraid afapiw *$*Y VW@

{Mvage-apace$Orq Composm *ON

-%3----- -%@i!P
Figure 2: Parallel rendering schemes.

* ABBA Technologies



3 PLATFORM AND SOFTVVARE,,, ,$~,*.:,$...-
. ,,.... +?

‘!3.1 GJust@r‘Specifics
.,!. .

Many institutions in the past few years have built a wide
variety of clusters. these clusters are used for treks including
database ‘manipulation. computation and. of course. parallel
rendering Our visualization group is currently \vorking on a
research cluster of 16 SGI 320”s. The message passing
interconnect used for our cluster is a Gigabit Ethernet comprised
of Alteon NIC’S and a Foundry ‘Big Iron’ 8000 switch.

The cluster nodes each have one Intel 450 MHz PI1l
processor with 512 JMB Ram. All of the machines including the

fileserver are running the Windows 2000TV operating system.
Each node has a Gigabit Ethernet interface for message passing
and an integrated Fast Ethernet interface for 1/0. The SGI 320’s

use the CobaltTv graphics chipset and are current]>- configured
with 64MB of the available 512MB of ram. Total cost of our
cluster at time of procurement was approximately $190K.

The 320’s, while commodity oriented, do have some special
hardware. notably the usage of the Unified Memory .Architecture
(UMA). The advantages of using machines with UMA as the
platform for parallel rendering software will be discussed in
section 4,1. Although this hardware is somewhat unique. the
software makes no specific assumptions about the underlying
hardware and will scale equally well on other combinations of
PC/graphics cards.

High fidelity simulations. of course. require high fidelity
displays. Our Sort-middle libra~ will be targeted for large multi-
tile displays. As part of the construction of a 2“d Generation
Visualization Corridor. Sandia National Laboratories \vill build a
4x4 16-tile display expandable up to 48 tiles (12x4). These tiled
displays will use rear projection and be coupled to the next
generation cluster hardware.

3.2 Sort Last Software

The Sort-last approach distributes the 3D model data only
once before any transformations or rendering have occurred. This
distribution does not take into account the viewpoint or object
coordinates. Each rendering node gets Tfl triangles \vhere T is
the total number of triangles and N is the number of rendering
nodes. Each node performs the transformations and rasterization
of their own triangles. The frame buffer and the corresponding z-
buffer data is then read from each node and a pixel-by-pixel z-
buffer comparison is performed in parallel according to the user
specified composition algorithm. The final composite image
data is gathered into a contiguous chunk of memory on single
node. Since the single node now has this image in memory, it is
not tied to displaying the image locally. It can, if desired, instead
send the data to an alternate display

The PGLC (Parallel OpenGL Compositor) Sort-1ast library
originates from the Parallel Mesa Libraryg software, developed
both at the State UniversiV of New York (SUNY) and SNL
PGLC abandons any dependencies on Mesa and will work with
any OpenGL compliant environment. This allows for the
exploitation of OpenGL hardware acceleration where available.
The PGLC library is written in C and uses MPI for interprocess
communication. PGLC runs on both the Unix and Windows
platforms and can be linked to existing parallel applications. The
API is extremely simple as can be seen from the foIlowing
example template usage.

#include .pglc.h>
void main (int argc, char *argv [ ] )
I
(

pglc_Init ();
pglc_Wincreat (width,height,XPOS,yPos,title);

while (1) {
Computation

OpenGL Calls ‘

frame~uffer = pglc_Flush (COMPRESSED_TREE);
1

J

The PGLC library consists of only three API functions. The
first two functions initialize data structures and create a platform
independent window of a specified dimension and position as well
as an OpenGL context which is bound to this window. The last
function ‘pglc_Flush’ performs the parallel composition and
returns a memory pointer to the location of memory that contains
the fully composite image. The image can be then be displayed
in the window specified by ‘pglc=Wincreat’ or sent to alternate
display systems as needed. As the single argument to ‘pglc Flush’
the user can specifi a variety of different composition algo~ithms.
The choice of algorithm will depend on the topology and
performance of the interconnect used on a specific cluster.

One important concept here is that the method of rendering is
Ietl entirely up to the application; this flexibility allows the
application to use hardware specific optimization such as
triangle-strip display lists for SGI IR pipes or compiled vertex
arrays for GeForceT~ c’hrds.

3.3 Sort Middle Software

The Sort-middle cla.witication distributes the 3D model
primitives based on the current viewpoint and object coordinates.
For a new viewpoint each processor transforms its current store of
primitives and distributes those that no longer fall within its
viewing quadrant. When all processors have their current working
set of primitives. that set of polygons is then sent to the graphics
hardware where each polygon is transformed and rasterized to
produce a completed tile of the final image. At this poin~ if the
tiles in your display hardware are directly linked to your working
nodes, you are done. In the case of having N nodes and M display
tiles, the additional task of distributing sub-images, and then
stitching or splitting them, has to be performed.

The Tiled Display Library (TDL) implementation and
exposed API are similar to PGLC. The TDL library is written in C
and uses MP1 for interprocess communication. TDL runs on both
the Unix and Windows platforms and can be linked to existing
parallel applications. An example usage of the API is:

#include ctdl .h>
void main (int argc, char *argv [] )
t
TDL_Init (numXtiles,numYtiles,myX,myY) ;
TDL_SetGeometry (coords,normals,colors,

triangles,numTriangles) ;
while (I) {

TDL_SetViewMatrix(vMatrix) ;
TDL_GetGeometry (&coords,&normals,&ColOrS,

&triangles,&numTriangles);
.

OpenGL Calls”
1

}’
The TDL library consists of 4 API functions. The first

function allows the application to specify the topology of the tiled
display and that particular nodes position within the display.
Typically the parameters to ‘TDL_Init’ reflect the physical layout
of the display, but a logical tiling could also beused. The use of

f,



DISCLAIMER

This repofi was prepared as an account of work sponsored
by an agencyof the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disciosed, or
represents that its use wouid not infringe privateiy owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or impiy its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



As Graph 4 demonstrates, TDL scales fairly \\ell up to about 8
processors, but more than 4 displays caused load-balancing
deiays. Although the pure polygonal performance of TDL is well
below that of PGLC. the resolution of the tiled display is much
greater. In Graph 4 the last data point represents an average
performance of 5.1 million polygons/see at a resolution of
approximately 8 mega pixels.

5 ISSUES

Many challenges still remain with regard to making effective
production resources out of cluster-based graphics s~stems. For
driving tiled displa!s. the strict association ofa dedicated renderer
per tile presents load balancing issues. In the worst case, for
example, the current view might be such that all of the data
project onto a single tile. in which one renderer has to do all of the
work. Clearly. some mechanism is needed for separating the
rendering function from the display. We have sho]vn that cluster-
based systems show a lot of promise for rendering large data but
can they ultimately compete with more specialized. tightly
integrated graphics systems for high frame rate applications. such
as visual simulation? This remains to be seen. and is certainly
closely tied to the performance of interconnect technologies. An
overal I objective. ho!vever. for such systems. is [o somehow
ensure that the system’s parallel resources can be dynamically
allocated according to data size in such a way that applications
experience monotonically increasing (or at least non-decreasing)
performance as more and more resources are applied.

Certain pragmatic challenges also exist. The administration
of cluster-based systems is nontrivial. and mechanisms are needed
for ensuring that such systems appear to be robust enough and
reliable enough to support production work. In this sense.
graphics clusters are no different than other clusters. However.
graphics clusters also place an additional demand upon
accessibility as a dynamically shared resource to support highly
interactive work. presenting some unique challenges for resource
management.

6 FUTURE WORK

We expect to thoroughly explore the use of commodity-
based graphics clusters for high performance graphics. In so
doing, we expect to investigate many, if not all. of the issues
discussed in the previous section. Other work we anticipate
includes:
●

●

●

●

●

7

Continued optimization of our current sotlware.
The consideration of hybrid sorting schemes and, perhaps,
other more novel architectural approaches to rendering.
Scalability assessments on larger graphics clusters (we are
currently in the process of procuring a 64-node cluste~ we
expect to demonstrate rendering on the order of 100 million
polygons per second later this year).
Processing of time-dependent data and addressing issues
related to feeding data to the parallel rendering system.
Integration of graphics clusters into our end-to-end high
performance computing environments.

ACKNOWLEDGEMENTS

Funding was provided by the Accelerated Strategic
Computing Initiative’s Visual Interactive Environment for
Weapons Simulations (ASC~IEWS) program. Thanks to LLNL
for large isosurface data (particularly Randy Frank and Dan
Schikore, now with CEI). Thanks to Pat Crossno for her vast

#

technical iibr~ and extremely helpful suggestions, Dan
Zimmerer for his R&D cluster support, Phil Heermann for his
inspiration and motivation. and especially Lisa Ice for her
excellent work on PMESA. This work is supported b~ the United
States Department of Energy under contract DE-AC04-
94AL85000.

REFERENCES ‘

‘ Heermann, P. Production Visualization for the ASCI
One TeraFLOPS Machine. Proceedings of Visualization
’98, pages 459-462. IEEE, October 1998.

z Smith, P. H. and van Rosendale, J. Data and

Visualization Corridors, Report on the 1998 D VC
Workshop Series. Caltech, 1998.

3 Molnar, S. et al. A Sorting Classification of Parallel
Rendering. IEEE Computer Graphics and Applications,
pages 23-32. July 1994.

~ Whitman, S. A Task Adaptive Parallel Graphics
Renderer. 1993 Parallel Rendering Symposium
Proceedings, pages 27-34. IEEE. October 1993.

5 Croclcett, T. W. and Orloff, T. A MIMD Rendering
Algorithm for Distributed Memory Architectures. 1993

Parallel Rendering Symposium Proceedings, pages 35-42.
IEEE. October 1993.

6 Lee, T. et al. Image Composition Methods for Sort-
Last Polygon Rendering on 2-D Mesh Architectures. 1995
Parallel Rendering Symposium Proceedings, pages 55-62.
IEEE. October 1995.

7 Whitman. S. A Load Balanced SIMD Polygon

Renderer. 1995 Parallel Rendering Symposium
Pro~eedings, pages 63-69. IEEE. October 1995.

Mitra, T. and Chiueh, T. Implementation and
Evaluation of the Parallel Mesa Library. IEEE

International Conference on Parallel and Distributed

Syst;ms (ICPADS). December 1998.
Steven Molnar, John Eyles and John Poulton,

‘‘PixelFlow: High-Speed Rendering Using Image

Composition ‘\Proceedings of SIGGRAPH ’92, Chicago,
Illinois, Ju/y 1992, 231-240.

10 Samanta. R.. et al. Load Balancing for .Multi-

Projector Rendering Systems. SIGGRAPH/Eurographics
Workshop on Graphics Hardware. August, 1999.

‘‘ Humphreys, G. and Hanrahan, P. A Distributed
Graphics System for Large Tiled Displays. IEEE
Visu#ization October 1999.

Schikore, D. et al. High-resolution multi-projector
display walls and applications. Accepted for publication in
Com{uter Graphics and Applications.

Heirich, A. and Moll, L. Scalable Distributed
Visualization Using Off-the-Shelf Components. 1999

IEEE Parallel Visualization and Graphics Symposium
Proceedings, pages 55-59. IEEE. October 1999.



logical tiling (smaller than physical and interlaced) would help
alleviate the load balancing issues inherent to Sort-first and Sort-
middle architectures. Currently we have not investi:a[ed the use
of TDL ~vith logical tiles.

The second function ‘TDL_SetGeometry’ allows the user to
speci~ the initial partitioning of the primitives. An application
may IYant to specifj some optimal initial partitioning to minimize
the communications during the very first distribution phase. but in
practice Ive pay no attention to this and let the libr~- sort it out.
With these initializations out of the way, there are tiro functions
that get repeatedly called. The ‘TDL SetViewMatrix” function
simply takes the current 4x4 view matr~ as its argument. The real
work happens in the ‘TCL_GetGeometry ’ function; this function
partitions the data based on the current viewing transformation
and hands back pointers to the geometry within the tile’s view
frustum. At this point. as with PGLC. the method of rendering is
Iefl up to the application.

4 PERFORMANCE EVALUATION

4.1 System Performance

Our 16-node cluster was primarily designed as a research
vehicle for the exploration of scalable rendering software and

algorithms. The opportuni~ to study the advantages of UMA
based machines lead us to the selection of the SGI 320’s. When
performing the image compositing necessary for Sort-last. the
application must mad the frame buffer. With L\LA based
machines. the frame buffer resides in main memory and thus this
part of the composition phase is greatly accelerated. The graphics
performance of the nodes: using vertex arrays in OpenGL is about
1.75 million triangldsec in our applications.

These machines each contain one 450 MHz Intel processesor
and hare comparable performance to similar models from other
companies. Our netlvork is a Gigabit Ethernet J~ithout Jumbo
packets. Currently. because of various equipment issues. we are
only getting a peak throughput of 270Mbits/sec from node to
node. Our interconnect’s sluggish performance leads to fairly high
overheads during communication and consequently we are
utilizing compression for certain data transfers.

4.2 Sort Last

To evaluate the performance of both the PGLC and TDL
libraries, we ~vrote two parallel applications that link to the
respective libraries. The programs read in fractions of the dataset

from disk and then make function calls as demonstrated in
sections 3.2 and 3.3. During the performance evaluations the
largest available dataset contained 1.3 million triangles. In order
to determine scalability, the dataset vertices were reuiicated. We.
are in the process of obtaining larger isosurface datasets.

024 12 14 16
Numb~r of-f%oce~~ora

o 2.46810121416
Number of Processors

Graph 2: PGLC performance on a 13 milIion triangle dataset.

02468 10 12 14 16
Number of Processors

Graph 3: PGLC performance on a 26 million triangle dataset.

The performance numbers obtained from an application
using the PGLC library are given in the above graphs, Graph 1
shows that with a smaller dataset, the inherent network overhead
associated with the’~ image compositition starts to hinder
performance as the number of processors increases. AS we can see
from Graphs 2&3. as the size of the dataset increases, PGLC
shol~s dramatic performance improvements. In Graph 3 PGLC
reached an average performance of 23.6 million mangles per
second with 16 nodes. Graph 3 also demonstrates that with this
performance we are getting 94% utilization of the aggregate
performance when running on 8 nodes and 84°A utilization when
running on 16 nodes (assuming 1,75 Mtris/sec for each node).

The super linear behavior seen in both Graph 2 and Graph 3
are due to the fact that the larger size datasets ran extremely
poorly or not at all on 1,2, and 4 node configurations.

4.3 Sort Middle

The use of large tiled displays is becoming common. High
fidelity simulations demand visualizations with greater screen
area and increased resolution. The TDL library provides scalable
rendering and large tiled display functionality.

In order to maximize the utilization of the display nodes the
TDL library employs the use of ‘shadow’ nodes. These shadow
nodes are not comected to the displays and serve as the directors
of data traffic. As the display nodes are rendering the current
frame the shadow nodes are computing the data distribution
needed for the upcoming frame. For small configurations (2-
display/2-shade\\ and 4-dkplay/4-shadow) we are measuring
between 70’%.and 85’%.utilization of the aggregate performance of
the graphics hardware.

‘l~i=’
1 l\l 2V2 4VI 8\8

Graph 1: PGLC performance on a 1.3 million triangle dataset. Processors (Display\Shadow)

Graph 4: TDL performance on a 1.1 million triangle dataset.

.-


