
Title Electroless metal deposition for IC and TSV applications

Authors Rohan, James F.;Casey, Declan P.;Zygowska, Monika;Moore,
Michael;Shanahan, Brian

Publication date 2014-12

Original Citation Rohan, J. F., Casey, D., Zygowska, M., Moore, M. and Shanahan, B.
(2014) 'Electroless metal deposition for IC and TSV applications',
2014 International 3D Systems Integration Conference
(3DIC), Kinsale, Cork, Ireland 1-3 December, (3 pp). doi:
10.1109/3DIC.2014.7152175

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/document/7152175 -
10.1109/3DIC.2014.7152175

Rights © 2014 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-24 07:04:01

Item downloaded
from

https://hdl.handle.net/10468/7666

https://hdl.handle.net/10468/7666


Electroless metal deposition  

for IC and TSV applications. 

James F. Rohan, Declan Casey, Monika Zygowska, Michael Moore, Brian Shanahan 

Electrochemical Materials & Energy,  

Tyndall National Institute,  

University College Cork, Ireland 

james.rohan@tyndall.ie 

 

 
Abstract—Ultrathin film electroless deposition of Cu and Ni is 

shown for IC and TSV barrier layer / interconnect applications as 

an alternative to vacuum based deposition techniques. Cu films of 

approximately 20 nm were achieved while coherent electroless Ni 

can be deposited to single digit nm levels. The use of self-assembled 

monolayers facilitates electroless deposition in high aspect ratio 

structures. This activation process in combination with ultrathin 

film barrier/seed layer deposition by electroless processing enables 

scaling for both IC and TSV interconnect applications.   
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I. INTRODUCTION 

Electrochemical deposition for on-chip interconnect has over 

the past two decades inspired many aspects of nanoscale 

electrochemical processing. The detailed analysis of the 

electrolytic route has resulted in a continuous scaling that has 

matched the requirements of the International Technology 

Roadmap for Semiconductors (ITRS). Electroless deposition is 

an electrochemical process to deposit thin films on substrates 

with the aid of a chemical reducing agent and without an 

external power supply. It is a potential batch process that unless 

specifically modified produces conformal films. Electroless 

processing has already shown significant potential for IC 

interconnect applications in self-aligned capping layer 

deposition on Cu [1].  

In damascene processing overdeposited Cu is removed by 

chemical mechanical polishing (CMP). The CMP produced top 

Cu surface is the fast Cu diffusion path which needs to be 

tightly capped. A nonconductive barrier layer is generally 

applied as the cap layer (e.g. silicon nitride, silicon carbide, 

nitride silicon carbide, etc.) to cover the top surface of the Cu 

line. However, there are some issues with using dielectric caps 

to passivate Cu. As devices become smaller, the current density 

through the interconnect increases leading to the requirement 

for better electromigration resistance and higher current 

capability. Improved Cu electromigration resistance has been 

reported for thin conductive surface capping layers of self-

aligned electrolessly deposited Co alloys CoWP or CoSnP [2, 

3].  

The active Cu interconnect material can also be deposited using 

electroless deposition and plating bath additives that operate in 

much the same way as those used in electrolytic baths. 

Extension of this processing to the larger dimension TSV is 

possible while also providing potential ITRS roadmap solutions 

for the high aspect ratio barrier, seed layer and active 

interconnect deposition.  

Electroless plating baths are complex solutions typically 

involving multistep oxidation [4, 5] and metal reduction. 

Common to both electrolytic and electroless deposition for 

future Cu based IC or TSV interconnect is the need to utilise 

additives to enhance the deposition characteristics. The 

additives typically employed in damascene plating are based on 

the interaction between PEG type materials and an accelerator. 

Controlled electroless processing for barrier and seed layers 

that are thin and conformal is required. The results presented 

here indicate the limits of electroless processing for ultrathin 

film deposition of coherent films. 
 

II. EXPERIMENTAL 

All chemicals used were purchased from Sigma Aldrich and 

used as received. Deionised water of resistivity 18 M cm was 

used to prepare the solutions. The electroless solutions were 

prepared in glass beakers and the temperature maintained using 

an Ikamag RCT stirring hotplate with an Ikatron ETS-D4 

electronic thermometer and IKA H 60 temperature probe. All 

experiments were performed with magnetic stirring at 100 rpm. 

Electroless bath pH was adjusted using ammonium hydroxide.  

Electrochemical analysis was performed under PC control with 

a CHI 660C potentiostat from CH Instruments. An in-house 

Teflon cell holder with contacts to the Au working electrode 

microdisc array, a Pt counter electrode and a Pt pseudo 

reference on Si was utilised for microelectrode array analysis.  

The deposited material selectivity and morphology was 

analysed using an FEI Quanta FEG 650 field-emission scanning 

electron microscope. Elemental analysis was performed using 

an Oxford Instruments EDX (X-MAX 20 large area Si diffused 

detector) HRTEM imaging was performed on a JEOL 2100 



High Resolution (Scanning) Transmission Electron 

Microscope. A FEI Helios NanoLab 600 Dual Beam FIB with 

in-situ lift-off for cross-sectional TEM sample preparation was 

used. Initial deposit thickness and uniformity was determined 

using a Tencor Alpha-Step 200 surface profilometer and 

correlated with data measurements recorded on the 

HRSEM/TEM.  

III. RESULTS AND DISCUSSION 

One aspect in the optimisation of electroless deposition is an 
assessment of the bath constituents and their role in the 
deposition process. Previous analysis has investigated the 
DMAB oxidation mechanism in strongly alkaline solutions [4, 
5]. Electroless deposition baths typically operate at less alkaline 
pH and this has been analysed using microelectrode arrays 

fabricated on Si. The Au microdisc electrodes of 20 m in 

diameter and 500 m separation gave the following comparison 
for DMAB oxidation in 1 M NaOH and the less alkaline 0.01M 
NaOH in Fig. 1. 

 It can be seen that the oxidation current is decreased which 
translates into a less reactive reducing agent at lower pH values. 
Based on experimental observations the oxidation reaction even 
at the lower pH is sufficient to achieve quite high rates of 

electroless materials deposition (~ 10 m/hr) by comparison 
with alternative deposition techniques such as atomic layer 
deposition (ALD). A less reactive reducing agent for more 
controlled deposition is desirable for nanoscale deposition 
particularly on 3D substrates.     

 

 

Fig. 1. DMAB oxidation at a Au microelectrode array at 100 mV/s. The 

concentration of DMAB in NaOH is shown on the chart. 

A comparison of the morphology of thin film electroless Cu and 
ALD deposited Cu (Fig. 2 and 3) shows that the same issue of 
island-like growth places a limit of approximately 20 nm on the 
thickness of coherent Cu films. 

 

Fig. 2. SEM analyss of thin film electroless Cu showing island-like growth. 

 

Fig. 3. SEM analyss of thin film ALD Cu showing island-like growth. 

Silicon substrates with a 2 nm native oxide coverage were 
treated with 3-Aminopropyl) triethoxysilane (APTES) self-
assembled monolayer to facilitate palladium activation. Cross 
sectional HRTEM analysis of first the Pd activated substrate, 
Fig. 4, shows that at the level required to facilitate Cu deposition 
Pd could not be detected on the substrate. The Cu deposit formed 
on the Pd activated APTES is shown in the HRTEM of Fig. 5. 
This is the minimum thickness achieved for electroless Cu 
deposition on Pd activated substrates and correlates well with 
observations for coherent film ALD Cu deposition. 



 

Fig. 4. HRTEM analyss of native oxide on silicon following activation with 
Pd on APTES self assembled monolayer. Pd is not detected at the interface. 

 

Fig. 5. HRTEM analyss of thin film electroless Cu on native oxide on silicon 
following activation with Pd on APTES self assembled monolayer. 

 

Fig. 6. HRTEM analyss of thin film electroless Ni on patterned Au pads over 

Cr on Si. The electroless Ni layer thickness is on average 2 nm.

Optimisation of electroless Ni plating solutions enabled 

ultrathin film deposition on patterned Au pads on Si. HRTEM 

indicated that films down to 2-3 nm could be achieved with Ni. 

This is appropriate as a barrier layer thickness for IC level Cu 

interconnect. It also indicates that there is significant process 

modification that can be employed to achieve metallisation of 

high aspect ratio TSV structures which are still in the micron 

range. Ultrathin film Ni barriers for subsequent electroless Cu 

TSV fill are therefore viable as an alternative metallisation 

route for future scaling of electronic devices. 

IV. CONCLUSIONS 

Electroless Cu and Ni ultrathin film deposition on planar and 
patterned substrates has been achieved. TEM analysis of blanket 
and selective deposition shows ultrathin films extending down 
to 2 nm. Pd activated self-assembled monolayers have enabled 
direct ultrathin electroless metallization of dielectric materials. 
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