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Abstract

In this paper, we propose an efficient approxima-
tion algorithm using multilevel B-splines based on quasi-
interpolants. Multilevel technique uses a coarse to fine hi-
erarchy to generate a sequence of bicubic B-spline func-
tions whose sum approaches the desired interpolation func-
tion. To compute a set of control points, quasi-interpolants
gives a procedure for deriving local spline approximation
methods where a B-spline coefficient only depends on data
points taken from the neighborhood of the support corre-
sponding the B-spline. Experimental results show that the
smooth surface reconstruction with high accuracy can be
obtained from a selected set of scattered or dense irregular
samples.

1 Introduction

Recently, there are many interesting approaches for re-
constructing smooth 3D surface from discrete uniform data
points or scattered data points. The problem of reconstruct-
ing smooth surfaces arises in many fields of science and
engineering, and the data sources include measured values
such as laser range scanning.

The problem of recovering a surface from a set of data
is simple in concept but tricky when we get into the detail.
Since the real world is made up of continuous surfaces, not
discrete points, we want to create a continuous surface from
the unorganized data points. The ultimate goal of this pa-
per is to find a surface reconstruction method as getting a
smooth and high fidelity of 3D surface from a large num-
bers of scattered data points. In particular, the description
should be sufficiently completed to reconstruct the 3D sur-
face within a certain tolerance error, given their relative lo-
cations and expected noise.

There exist many techniques for surface approximation
to improve the approximate continuity and smoothness in
handling a large number of data. Tensor product of B-
splines surfaces is widely used to approximate rather than
to work with other types of approximation because of the
advantages inherent in working with tensor products. Ten-
sor product guarantees internal continuity if the knot vectors
are set properly.

Multilevel idea has been adopted to reduce the approxi-
mation error. Therefore this paper is based on the multilevel
B-splines approximation techniques presented in 1997, the
publication of Lee, Wolberg and Shin[7]. They named the
schemes multilevel B-splines. In the previous work, Forsey
and Bartels[4] developed a surface fitting method which is
adaptive on hierarchical spline functions. However, this
method cannot deal with scattered data. Lee presented a
multilevel B-spline algorithm to fit a uniform bicubic B-
spline surface to scatterd data where multilevel or hierar-
chy is used to reduce the approximation errors. The method
does not guarantee a reasonable global approximation at ini-
tial level even though it has an advantage of local process-
ing.

The splines approximation technique used in this pa-
per is quasi-interpolants, first developed by de Boor and
Fix[2]. The quasi-interpolants operators were later gener-
alized by Lyche and Schumaker[5], and it was their version
that used in the alternative surface approximation technique.
A quasi-interpolants operator approximates a curve by cal-
culating coefficients that are used to weight samplings of
the curve to be approximated. Lyche and Schumaker quasi-
interpolants operator uses coefficients that are inexpensive
to calculate and samplings that are relatively expensive to
calculate. It turns out to produce splines approximation with
the required accuracy. According to the trend in recent algo-
rithms, the hierarchical, multiresolution technique has been
used for scattered data and irregular samples.
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A new algorithm using quasi-interpolants is introduced
to implement the multilevel B-spline approximation and ap-
ply to both scattered data and dense data. The proposed
method is fast for data interpolation and approximation,
maintaining the accuracy. This algorithm achieves a C-
continuous interpolation function from arbitrary scattered
data and can process huge numbers of data with numerically
stable. Quasi-interpolants give a procedure for deriving lo-
cal spline approximation methods where a B-spline coeffi-
cient only depends on data points taken from the neighbor-
hood of the support corresponding B-spline.

In range data analysis, surface reconstruction from large
number of data sets is very challenging, especially if the
data present undesired holes and missing. This is usually
the case when the data come from laser scanner for 3D
acquisitions or if they represent damaged objects to be re-
stored. In this work, a local approach to surface reconstruc-
tion from the range data based on this algorithm is presented
that fills the holes and interpolate missing data points very
smoothly with approximation. The local nature of the algo-
rithm allows for fast computational time of large amounts
of data, since the computation is limited to local region.

More explanation about multilevel B-splines approxima-
tion which can be used to generate an interpolation function
through scattered data points is described in section 2. Sec-
tion 3 gives the explanation on how to reconstruct the quasi-
interpolants. Then, section 4 shows the experimental results
for numerical examples and finally, conclusions are given in
section 5.

2 Multilevel B-spline Approximation

The methods explored in this paper take a set of scattered
data as input and produce tensor product B-spline surfaces
as output. The algorithms run in a multiresolutional setting
over uniform partitions such that the final surface f is com-
posed of a sequence of surfaces at dyadic scales,

f=fo+fi+...+ fx

where f; € S;,i = 0,1,...,k, and Sy, S1,...,5; is a
nested sequence of subspaces of Sk,

SoCSi1C...CS5.

The basic algorithms used for the results presented in
this paper were published in 1997 by Lee, Wolberg and
Shin. They called the schemes Multilevel B-splines. Our
interest is mainly scattered data interpolation and approxi-
mation, which is also the main focus in [7].

Given a set of scattered points P = {F;},, P, =
(zi,Yiy2i) € R®>and let Q@ = {(z,y)|0 < 2 < m,,0 <

y < my} be arectangular domain in the zy-plane such that
(z4,y;) is a point in 2. Let ® be a control lattice overlaid
on a domain 2. The control lattice ® is an uniform tensor
product grids over ).

To approximate scattered data points P, we formulate
initial approximation function f as a uniform bicubic B-
spline function, which is defined by a control lattice ®. Let
the initial number of control points on the lattice as n, =
mga/h, in x-axis, and n, = my/h, in y-axis. The knot
intervals are uniform interval defined as h,, in x-axis and h,,
in y-axis. So, for uniform cubic B-spline case, degree d = 3
and the set of knot vectors are defined as below:

Te = {=dhgy...,0,hey ... nzhyy ..., (Ng + d)hy}
Ty ={—dhy,...,0,hy,....,nyhy, ..., (0, +d)hy}.

Q

(ihy,jhy)

Let ¢;; be the value of the j-th control point on lattice ®,
located at position (¢hg, jhy) of the grid defined by @, for
1=-1,0,1,...,np,+1and j = —-1,0,1,...,ny + 1. The
approximation function f defined in terms of these control
points at position (x,y) € € is given as

ng+1ny+1

fla,y)= > > ¢jBia(x)Bja(y) ey

i=1 j=1

where B; 4 and Bj 4 are uniform cubic B-spline basis func-
tions, d = 3 and knot vector for cubic B-spline basis are
below:

{(Z - 2)hma (Z - 1)hz; ihmv (Z + 1)hza (Z + Q)hz}
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B-spline approximation(BA) algorithm generates a
tradeoff that exists between the shape smoothness and accu-
racy of the approximation function. To overcome this trade-
off, multilevel B-splines approximation(MBA) algorithm is
introduced [7]. The algorithm makes use of a hierarchy of
control lattices to generate a sequence of function f; and
the final approximation function f is defined as the sum of
functions f;,

k
F=>Y_f 2)
=1

To optimize this process, B-spline refinement is used
to reduce the sum of these functions into one equivalent
B-spline function. The MBA algorithm serves result as
smooth initial approximation fy to AP = P defined on
the coarsest control lattice &, = @, by applying the BA al-
gorithm. To continue to the finer levels, below explanation
are quoted from [7]: The first approximation possibly leaves
large discrepancies at the data points in P. In particular, fj
leaves a deviation

Az = 2z — folwi,y;) fori=0,...,n. 3)

The next finer control lattice ®; is then used to ob-
tain function f; that approximates the difference A'P =
{(@i, yi, Alzi)}

Then, the sum of fy + f; yields a smaller deviation (3)
for each (z;,y;) in 2.

A%z =z — folzi,yi) — fi(xi,y:) fori=0,...,n.

In general, for each level & in the hierarchy, the point set
AFP = {(;,y;, A¥2;)} is approximated by a function f},
defined over the control lattices ®, where

k-1
AFz =2 — Zfl(xiayi) =AM — f (i y)
=0

and A%z, = z;. This process starts from the coarsest lattice
®( and continue incrementally to the finest lattice ®; with
the set of knot vectors are defined as below:

h h h h
Tx:{id2_k”0’2_k”2 nz2—k,,(2 ’I’Lm+d)2—k}
h h h h
k % k % k %
Ty :{7d—2;,...,0,—2:,...,2 ny—QZ,...,@ ny+d)—2J}.

The final approximation function f is defined as the sum
of the functions (2). They are many methods for refining
a control lattice into another so that they generate the same
B-spline functions. In this paper, B-spline refinement of an
(ng +3) x (ny,+3) control lattice @y = P is always refined
toa (2"n, + 3) x (2%n, + 3) control lattice ®;, whose the
control point spacing is half.

3 Quasi-interpolants

Many applications of splines make use of some approx-
imation method to produce a spline function from given
discrete data. Popular methods include interpolation and
least squares approximation. However, both of these meth-
ods require solution of a linear system of equations with as
many unknowns as the dimension of the spline space, and
are therefore not suitable for real-time processing of large
streams of data. For this purpose local methods, which de-
termine spline coefficients by using only local information,
are more suitable. To ensure good approximation proper-
ties it is important that the methods reproduce polynomials
and preferably the functions in the given spline space. A
method based on derivative information was constructed in
[2], while a more general class was studied in [5]. In or-
der to reproduce the spline space, the local information of
the methods in [5] was restricted to lie in one knot interval.
In this paper we remove this restriction. We then discuss
some specific approximation methods for quadratic and cu-
bic splines.

We use B-splines as a basis for splines and denote the i*"
B-spline of degree d with knots 7 by B; ¢ = B; q,-, and the
linear space spanned by these B-splines by Sg .

Given a function f, the basic problem of spline approx-
imation is to determine B-spline coefficients (¢;)?; such
that

Pf= zn:ciBi,d
=1

is a reasonable approximation to f. The basic challenge is
therefore to devise a procedure for determining the B-spline
coefficients. We assume that f is defined on an interval
[a, b], and that we have selected a space of splines Sy  de-
fined on [a, b] (i.e., so that 7 = (tj);”ild“ is nondecreasing
with 411 = a and t,41 = b). We fix k and propose the
following procedure for determining cy:

(i) Choose a local interval I = (¢,,t,) with the prop-
erty that [ intersects the (interior of the) support of
Bk’dl

IN(tg,thtdrr) # 0.

Denote the restriction of the space Sg,, to the interval
I by Sd,r,b i.e.,

Sd,T,I = Span{Bu—d,(h RS Bl/—l,d}-

(i1) Choose some local approximation method P; with
the property that

Prg=g, forallge Sy, ;. “4)
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(iii) Let f; denote the restriction of f to the interval I.

Then there exist B-spline coefficients (bi);‘:;}— 4 such

that Py f; = Ef:]lfd biBi.a. Note that  — d < k <
v — 1 since suppBy, 4 intersects 1.

(iv) Set ¢, = by,.

When determining cy, this procedure gives us the free-
dom to restrict our attention to a local subinterval I =
[tu,t.] of our choice. By doing this we may reduce the
complexity of the problem. Secondly, we have the free-
dom to choose the local approximation method P;. Typical
choices will be interpolation, least squares approximation,
or a smoothing spline. As we shall see in Lemma 1, the lo-
cal condition (4) ensures that if f is a spline in Sg -, it will
be reproduced by P f. In certain situations, other conditions
may be more natural, but we will not pursue this any further
here.

We first ascertain that the local reproduction condition
leads to global reproduction of Sg .

LEMMA 1 The spline approximation Pf determined by
steps (i)—(iv) above has the property that Pf = f for all
f in the spline space Sy ;.

To emphasize the dependence on f, the coefficient ¢y, is
often written ¢ = Agf, with \; some linear functional.
The following lemma gives an explicit formula for the co-
efficient Ay, f in the case where it is a combination of given
linear functionals A 1,. .., Ak,v—putd-

LEMMA 2 Suppose that the coefficient ci, of Pf is chosen
as
det(ABu—d, ..., ABr—1,A\f; ABiy1,...

,ABy-1)
Cp =
det(ABy—a, ..., \by—1)

)

where \B; denotes the column vector

ABj = (Me1Bjds - Mew—praBja)"

and A1, ..., Aky—u+d are linear functionals defined on
Sd,r such that the denominator in (5) is nonzero. Then

Pf = fforall finSqr.

A general class of approximation methods are obtained
by letting Pr be given as point functionals of the form

/\k,jf = f(l‘kxd) forj=1,...,my,

where my, = v—p+dand g 1, ..., Tk m, are given points.
With this choice, it is well known (see page 200 of [1]) that
if

Bp,fdflJrj,d((Ek’j) >0 fOI‘j =1,...,mg,

then the denominator in (5) is nonzero and Lemma 2 can be
applied. Expanding the numerator in (5), we obtain ¢y in
the form

= Mf = Zwk,jf(xk,j)v (6)

=1

for some vector wy, = (w,;). Equivalently, we can find wy,
by solving the linear system

dik = A\e(Bia) = Zwk,jBi,d(a?k,j), @)
j=1

fori = pu—d,...,v—1where d;, = 1if¢ = k and
zero otherwise, as usual. In practice one would usually de-
termine ¢ numerically, either from (4), or (5), except in
special cases where the formulas are particularly simple.

Quasi-interpolants of this kind were studied in [5]. How-
ever, there the data points {xy, ; }72 are restricted to all lie
in one subinterval [t;, t; 1] of [tr, tetd+1]-

There are standard ways to obtain error estimates for the
kind of approximation methods developed here. Let us de-
note the total approximation by P f, and suppose we have
found a constant C' (that may depend on the knots, but not
on f) such that

IPfI < ClIfII- ®)

Here || f|| denotes the uniform norm on the interval [a, b],
171l = max |7(2)]
From (8) it follows by a standard argument that
If = Pfl < (1 + C)dist(f, Sa,r),
where dist(f, Sq,-) denotes the quantity

dist(f, Sar) = inf [If =gl

We consider some examples in the case where the knots
and the degree of the spline are given.

EXAMPLE 1 In the cubic spline case (d = 3). To determine
coefficient ci, we choose the interval I = [ty tyy4)] which
means that the local spline space has dimension 7,

Sa,7,1 = span{By_3.4, Bx—2.d; - - -, Bry3,a}-

Here, the data points { Py ; 1", Pri = (Tki,yki) € R
are restricted to lie in the interval I = [ty t14]
Coefficient matrix :

Bi_33(xk1) Br—33(Tk2)
By_23(xk1) Br—23(Tkz2)

Bi_3.3(xk,m,)
Bi_2.3(xk,m,)

Biyza(tr,1) Briss(zr2) Biot3,3(Tk,my )
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P P Piom,
} } t - t t }

59] T
t k-1 t k t k+1 t k+2 t k+3 t k+4 t k+5

I= [tuatl/] = [tkatk+4]

To compute the coefficient of the control points cg, the
Moore-Penrose inverse for minimum norm least-squares so-
lution, is used. After the computation of least-squares so-
lution, we get a set of wy ;. We have to choose the middle
one from the set of ¢ for the control point value.

If the data is uniform, we don’t need to compute the
weight for each ¢y, resulting in fast calculation time. This
is the examples of weighted wy, ; : For my = 5,

[156 _ 166 2520 166 156 ]
14597 14597 14597 1459’ 1459’

and formy = 9,

134 1072

2 15997 2884 2884
3299 3299

197947 9897 9897’

15997 1072 134

The tensor product of the two spline spaces is defined to
be a family of all functions of the form

ng Ny

ZZCU i.d(2)Bj.a(y)

i=1 j=1

(Pf)(z,y)

ng+d+1

where B; 4 and B; g are the B-splines on 7, = (¢; )J ]

1 .
and 7y = (sj)?if(“_ respectively.
EXAMPLE 2 In the tensor product cubic spline case (d =
3). To determine coefficient c;;, we choose the interval I =
[ty o] X [Sps Su] = [tis tiga] X [Sj, Sj+4] which means that
the local spline space has dimension 49,
Sa,r,1 = span{B;_3.4Bj_3.d, ..., Bit+3,4Bjt+3,4}

Here, the data points {Pj; k}k 1 Pijk =
(@ij ke, Yij ks Zij k) € R® are restricted to lie in the
interval I = [ti,ti+4] X [Sj,5j+4]

Coefficient matrix :

B;_3,3(z;ij1)B;j—33(wij 1)

Bi—3,3(@ij,m,; )3373,3(1/i]',m,1j )
Bi—3,3(zi51)B;-23Wij 1)

Bi—3,3(®ij,m;;)Bj—2,3Wij,m;;)

Bit+3,3(%i5,1)Bj+3,3Wij1) Bi+3,3(@ij,m;; )B]+3,3(yij,7rtij)

Let n be the number of data points in P and let (n, +
3) x (ny + 3) be the size of the initial control lattice ®.
The number of control points in lattice @, is (25n, + 3) x
(2¥n, + 3). Hence, the time complexity of the MBA algo-
rithm is O(ngny) + O(4ngny) + ... + 028 ngn,) =

7197947 3299 3299]'

Spes 77 : : : [
: : : ‘o
1 o ' ' l
L ARt R ' ' e
H H H P
© 3 i o \ ° Hhmij
Sjegmmmmmmmoqm s romsee- ARy (bl REREEhht bbbty
R ===
: ' T
° ' ' '
T CRRRR b boomeos AT SRR Rt RERR
: o :
: Bz e
°p . H H
L TER b bt kb b 1 Tl
:
Sjq T
i t it G tis ting s
I= [tlmtl/] X [S/MSV] = [tiati+4] X [Sja3j+4]

O((2**2 — 1)n,n, ). To demonstrate the time efficiency of
the proposed method, we calculate time as the sample points
increase from 100 to 1000 by 100 steps where the number
of control points at initial level is 7 x 7 and four levels are
performed. Fig. 4 plots the relative time value to 100 sam-
ple points according to the sample size. From this result,
we can see it linearly increases with sample size. The space
complexity is O(n + (2¥72 — 1)n,n, ) because we have to
store all the control lattices in the hierarchy. But if an adap-
tive control lattice hierarchy is used, a control lattice can be
reduced by a simple set of necessary control points.

total time to the 4th level

N W A OO N 0 © O
L L L L L L L L 1

-
L

200 400 600 800 1000

o
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4 Experimental Results

To demonstrate the accuracy of reconstruction by the
proposed algorithm, we performed experiments with the
various functions, images and real range data sets. First,
our proposed quasi-interpolants is compared with the global
method for one dimensional functions. Given a test func-
tion g (), we first sampled data points from it and applied
to the algorithm to obtain an approximation function f. The
difference between g and f is then measured by comput-
ing the normalized RMS(root mean square) error which is
divided the RMS error by the difference of maximum and
minimum values of g, between the function values on a
dense grid. That is,

N N ))2
(N+1)
where z; = i/N, and N = 50.
The test functions are

g1(z) = |z|sin(z)
ga(x) = z?sin(7x?)
g3(z) = |[sin(z)]

) - [0 iw<0s,
94 = 11 ifz>05.

v/ 93 : Y

For each test function as shown in Fig. 5, we used 100
data randomly sampled. According to Table 1, the quasi-
interpolants generates a reasonable approximation as good
as global approximation for smooth functional curve re-
gardless of type of the test functions where 5, 9 and 17 are
the number of the control points. We note that the shape
of the quasi-interpolants looks better than one of the global
approximation for the step function, while the RMS error

Table 1. Normalized RMS errors.

global g1 g2 g3 94
5 7442964 | .9196416 | .0496652 | .1640436
9 7445050 | .8493500 | .0302326 | .1251580
17 7445548 | .7991659 | .0257063 | .0880861
quasi g1 g2 g3 94
5 7442964 | .9196416 | .0496652 | .1640436
9 7446013 | .8462046 | .0335381 | .1388721
17 7445674 | .7988042 | .0261447 | .1079658

A

3 u\jﬂs

A) Global approximation B) Quasi-interpolants

of the quasi-interpolants is greater than that of the global
approximation as shown in Fig. 6.

To demonstrate the performance of multilevel B-spline
approximation using quasi-interpolants, the following test
function is used as shown in Fig 7.

g(z,y) = sin(z) + sin(y).

We used three data sets of M100, M500 and R500, where
M100 and M500 are small and large data sets, which consist
of 100 and 500 points, respectively. We uniformly sampled
7 x 7 and 15 x 15 data points, respectively, while the oth-
ers was randomly sampled. And R500 points were totally
randomly sampled.

Fig. 8 and 9 shows approximation surface and error sur-
face of ¢ at initial level, respectively, where the circles rep-
resent the sampled data. The second level approximation
result is obtained from sum of Fig. 8 and 9 as shown in
Fig. 10. Table 2 represents that the proposed method recon-
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Table 2. Normalized RMS errors between test functions
and their approximations.

level M100 M500 R500
1 .0049298 | .0040621 | .0041634
2 .0020481 | .0001827 | .0004930
3 .0017656 | .0001323 | .0004057

tio at the level 5 in Fig. 11.

structs test functions very accurately within a few level. We
started from the number of control points of 7x7 at initial
level to three levels.

A) Original Image B) Level=1

Alz = Ri = fo(ﬂ«“i,yi)
C) Level=3 D) Level=5

A real range data acquired from 3D scanner is used to
prove the efficiency of the proposed algorithm. Fig. 12
shows a head data with many holes in hair region due to
low reflection of laser where the size of data is 320 x 320
and the pixel intensities depict depth values. The undesired
hole or missing points are usually case when the data come
from laser scanner 3D acquisitions or if they represent dam-
aged objects to be restored. An attractive field of research
focuses on situations in which these holes are too geometri-
cally and topologically complex to fill and entirely scattered

fo+ 11 data set exist. As shown in Fig. 13, the method gener-

ates good approximation and smooth surface, filling miss-

The experiment is also performed for large number of ing data points by interpolation property where the algo-

uniform data such as flower image with size of 512 by rithm generated five level with initial 8 x 8 control points.

512. PSNR(201log(255/RM S))is used as a error metric Therefore it can be applied to many applications such as

for image compression. High quality reconstructed image range data analysis by generating a smooth surface with fast
of 31.933dB is obtained with 18.24 : 1 of compression ra- convergence speed and linear calculation time.
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5 Conclusion

This paper focuses on multilevel B-spline approximation
based on quasi-interpolants for scattered data approxima-
tion and interpolation. The algorithm is fast and generates
a C%-continuous surface through a set of unevenly spaced
points. Experimental results reveal that smooth 3D object
reconstruction is possible from scattered data and irregu-
lar samples. Multilevel B-spline approximation was pre-
sented to circumvent the tradeoff which exists between the
shape smoothness and approximation accuracy of the func-
tion, depending on the control lattice density. Then, quasi-
interpolants was introduced to reduce the time complexity
and memory usage in the system development especially
when we deal with large number of range data. It is effec-
tively gains in large performance. The quasi-interpolants is
a special case of more general constructions and performs
better approximation to reduces error results.

This work was supported by grant No.R01-2004-000-
10851-0, R-05-2004-000-10968-0 from Ministry of Science
& Technology.
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