
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez

la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous
n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM 2005)
[Proceedings], 2005

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=0a80b102-8ee5-4f4c-9bf7-828505bb7bfb

https://publications-cnrc.canada.ca/fra/voir/objet/?id=0a80b102-8ee5-4f4c-9bf7-828505bb7bfb

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version.
/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Multi-Resolution Modeling and Locally Refined Collision Detection for

Haptic Interaction
Liu, P.; Georganis, N.; Roth, Gerhard

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Multi-Resolution Modeling and Locally

Refined Collision Detection for Haptic

Interaction*

Liu, P., Georganis, N., and Roth, G.
June 2005

* published at the Fifth International Conference on 3-D Digital Imaging

and Modeling (3DIM 2005). June 13-17, 2005. Ottawa, Ontario,

Canada.NRC 48246.

Copyright 2005 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables

from this report, provided that the source of such material is fully acknowledged.

Multi-resolution Modeling and Locally Refined Collision Detection for Haptic

Interaction

Peiran Liu, Xiaojun Shen, Nicolas Georganas

University of Ottawa

[peiran, shen,

georganas]@discover.uottawa.ca

Gerhard Roth

National Research Council of Canada

Gerhard.Roth@nrc-cnrc.gc.ca

Abstract

 The computational cost of a collision detection

(CD) algorithm on polygonal surfaces depends highly

on the complexity of the models. A novel “locally

refined” approach is introduced in this paper for fast

CD in haptic rendering applications, e.g. haptic

surgery and haptic sculpture simulations. Exact

interference detections are performed on proposed

locally refined meshes, which are in multi-resolution

representation. The meshes are generated using mesh

simplification and space partition. A new BVH

algorithm called “Active Bounding Tree”, or AB-

Tree, handling collision queries is introduced. At

runtime the meshes are dynamically refined to higher

resolution in areas that are most likely to collide with

other objects. The algorithms are successfully

demonstrated in an interactive haptic environment.

Compared to existing CD algorithms on single

resolution models, noticeable performance

improvement has been observed in terms of the

precision of collision queries, frame rate, and memory

usage.

1. Introduction

Interactive virtual environment (VE) requires

natural and real-time interaction between computer

systems and users. Compared to presentation of visual

and auditory information, methods for haptic display

are not as well developed. Haptic rendering as an

augmentation to visual and auditory displays can

enrich the perception and understand both of force

fields and of world models populated in synthetic

environments.

Haptics, term which was derived from the Greek

verb “to touch”, introduce the sense of touch and force

in human-computer interaction. Haptics enable the

human operator to manipulate the environment in a

natural and effective way, enhance the sensation of

“presence”, and provide information such as stiffness

and texture of objects, which cannot be described

completely with visual or audio feedback only. Early

work was accomplished over three decades ago for

tele-robotics applications. The potential of the

technology is significant for interactive virtual reality,

tele-presence, tele-medicine and tele-manipulation

applications [1,3,4]. The technology has already been

explored in contexts as diverse as modeling &

animation, geophysical analysis, dentistry training,

virtual museums, assembly planning, mine design,

surgical simulation, design evaluation, control of

scientific instruments, and robotic simulation.

However its true potential in these areas has yet to be

achieved, and its application to all aspects of

dexterous training, for example, is almost completely

untapped. Haptic interaction of virtual environments

involves augmentation of a client station and may be

viewed as a simple integration of conventional VEs

with haptic displays. The application family is

typically implemented upon non- or soft- real time

operating systems. By contrast, tele-haptic interaction

imposes more stringent requirements and, like tele-

robotics, demands hard real time guarantees [1].

Multiple tasks, such as haptic sensing/actuation,

visual updates must be accomplished in a

synchronized manner in haptic applications. It

becomes commonplace to separate tasks into

computational threads or processes, to accommodate

different update rates, distribute computation load, and

optimize computation. Conventionally, multithreading

and multiprocessing software architectures are applied

to develop effective multimodal VEs and the optimal

usage of the CPU capabilities [6]. However, an

important but little discussed consequence of the

Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05)

1550-6185/05 $20.00 © 2005 IEEE

conventional architectures is that it makes the

operating system an inherent component of the

applications, with operating system scheduling

algorithms limiting the application’s quality of

service. The application may request a theoretical rate

of force display but it is the scheduler that determines

the actual rate. This scheduler is itself a complex

algorithm, particularly when considered in terms of its

interactions with the other services provided by the

operating system [5].

Figure 1. Multi-machine solution for haptic
applications

A multi-machine solution for haptic application

was addressed in [1,2] as shown in Figure 1. The

multi-machine architecture is comprised of three parts:

haptic device, Haptic Real Time Controller (HRTC)

and Virtual Environment (VE) graphics station.

HRTC communicates with its VE station through a

local Ethernet connection. HRTC relies on hard real

time operating systems (eg. QNX Neutrino, VxWorks

or Windows CE) to guarantee the stability of the

control loop.

The separation of functionalities of haptic and

graphic rendering makes the proposed architecture

easier to extend to existing applications. Unlike

conventional multithreading or multiprocessing

approaches for haptics, this multi-machine model

solution applies a hard real-time operating system for

haptic control, while applying a mainstream OS such

as Win2K or WinXP for the application and graphics.

It also provides the potential for tele-haptic

applications to switch between multiple protocols, one

for large-scale distributed simulations and one adapted

to collaboration when several users meet and need to

perform a collaborative task, for example, and requires

an architecture that supports those different protocols.

Two major tasks in haptic interaction paradigms

are collision detection (CD) and collision response.

Collision detection is to detect collisions between the

end point of a generic probe and the objects in a

scene, while collision response is to respond to the

detection of collision in terms of how the forces

reflected to the user are computed. Studies of human

tactile perception of contact information have shown

that a desired force update rate is preferably 1 kHz.

Although there is a huge volume of literature in the

area of collision detection, many proposed algorithms

targeted graphics applications which require a

relatively low collision query rate (desirably 30Hz).

Existing collision detection algorithms proposed so far

only support static level-of-details (LOD) meshes. The

running time of the algorithms depends on the

complexity of input models and the output collision

configuration. Therefore, setting the resolution of the

meshes for collision detection in building a virtual

environment becomes an engineering trade off

between speed and accuracy. In graphic applications,

rendering complex models with millions of polygons

at interactive rate can be handled by modern GPU.

However, an efficient algorithm has not emerged for

creating an interactive force display on the complex

models.

Based on recent research in mesh simplification

and bounding volume hierarchy (BVH) CD, we

propose here our locally refined CD approach. It is

illustrated in this paper that it is possible to increase

the accuracy of collision detection without sacrificing

speed, using a space partitioned multi-resolution mesh

representation and a BVH that we call an Active

Bounding Tree, or AB-Tree. The space partition

technique makes it possible to locally refine some

parts of a mesh that are most likely to collide with

other models in the near future. Collided parts of a

mesh can always achieve the finest resolution. The

other parts remain in coarse resolution. In such a way,

the input size of the CD is decreased and the hard real-

time performance requirement for haptic interaction is

achieved. Highly detailed geometric models are

becoming necessary to fulfill a growing expectation

for realism in haptic rendering. However, the huge

data volume exceeds the memory size of current

haptic rendering hardware. The progressive techniques

can bridge the gap between hardware capability and

complexity of the geometric models by selectively

loading the meshes at runtime from external memory.

The local memory only keeps currently refined mesh

data that are necessary for CD plus some pre-fetched

data that are needed for CD in the future.

Main contribution: A real-time collision detection

framework for haptic interaction between multiple

probes and complex object models is proposed. The

vsplit(vs,vl,vr vs’,vt’)

vl vr

vt’

vs’

vs
vl vr

ecol(vs’ ,vt’ ,vs)

Figure 2. Vertex split and edge collapse

Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05)

1550-6185/05 $20.00 © 2005 IEEE

high update rate of force display and the limited

memory capacity of haptic rendering hardware are two

of the most challenging issues we resolved. A new

“Space Partitioned Multi-resolution (SPM)” mesh

representation is introduced. The meshes can be

progressively transmitted on demand and locally

refined at runtime. A new BVH CD algorithm, AB-

Tree, is introduced which performs output-sensitive

CD for dynamically refined meshes at a cost similar to

that of the existing CD algorithms on static LOD

meshes. The extra cost, mesh refinement, is as low as

a small constant when the objects do not move swiftly

very often. The algorithm allows us to bound the input

size of the problem, thus achieving the desired

collision query performance for force display.

Organization: The rest of the paper is organized as

follows. We start with a brief survey of collision

detection and view-dependent meshes in section 2. In

section 3, we introduce the proposed CD framework

for haptics. The AB-Tree algorithm is described in

section 4. Section 5 presents the performance of our

implementation. Summary and discussion are given in

section 6.

2. Related work

2.1. Collision detection

An accurate and fast collision detection algorithm

is considered to be one of the major bottlenecks in

building interactive and realistic haptic environments.

Many important methods have been developed for

rigid models. Recent surveys of these methods can be

found in [7,9]. Algorithms with the current best run

time for convex polytope collision queries take linear

time. If the objects are not moving swiftly, the best

runtime can be roughly constant. The algorithms for

collision queries between general non-convex

polygonal models are dominated by the hierarchical

bounding volume (BVH) strategy. The time cost is

mainly determined by the complexity of input model,

the choice of bounding volume (BV), and the contact

configuration of two models. Sphere-trees [8],

oriented bounding boxes (OBB) trees [10], axis-

aligned bounding boxes (AABB) trees [11], discrete

orientation polytopes (k-dops) trees [12], SSV-trees

[13], and CLOD [14] are examples. BVHs can be

based on either spatial proximity between features of a

model, mesh topology, or inter-surface proximity [15].

In cluttered environments, OBB trees perform better

than AABB trees and sphere trees due to the tight

fitting bounding boxes. Although AABBs cannot fit

some primitives like long-thin oriented polygons

tightly, a BVH based on AABBs performs overlap test

faster compare with OBB trees. Furthermore, AABB

trees need less memory and are easy to update after

deformation. In time-critical collision detection, the

output precision is allowed to be gracefully adapted to

the computing time available [8,16]. However, spatial

inaccuracy is inherent due to the lack of exact

collision queries on primitives. This is especially

important when contact normal and contact points are

required to compute a plausible collision response.

2.2. View-dependent multi-resolution meshes

Detailed models result in large storage space,

expensive transmission cost, and slow geometry

manipulation. To address these issues, several mesh

simplification techniques have been proposed.

Previous mesh simplification works fall into two

categories: multiple static LODs and single LOD with

multi-resolution. The idea of the multi-resolution

mesh or continuous LOD [17,18,19,20,21] is to create

a data structure that can be employed to dynamically

produce a mesh with any desired resolutions lying

between the highest and the lowest number of

polygons from the original mesh. Most works for

general polygonal models are related to progressive

meshes. Progressive mesh is proposed in [17] for

accelerating graphics rendering. A triangle mesh can

be represented at multiple LODs by performing a

series of refinement operations. The operations

include vertex split and edge collapse as shown in

figure 2. A triangle mesh is encoded as a base mesh

plus a sequence of n vertex split records, (M0,{vsplit0,

…, vsplitn-1}). Recent works have been focused on

view-dependent simplification, which take into

account viewing parameters in mesh simplification to

speed-up graphics rendering further. In [22] a view-

dependent simplification algorithm for progressive

meshes in introduced which use screen space

projection and viewing orientation to guide the

runtime simplification. Luebke and Erikson [23]

define a tight octree called vertex tree over the given

model to generate hierarchical view-dependent

simplifications. Taubin et al [24] demonstrate a

surface partition scheme for progressive encoding of

surface. Schilling and Klein [25] have introduced a

texture dependent refinement algorithm.

A few research works have been focused on using

multi-resolution representations for haptic rendering.

Pai and Reissel [26] investigate the use of multi-

resolution image curves for 2D haptic interaction. El-

Sana and Varsheny [27] introduced a multi-resolution

hierarchy. A detailed mesh is used for regions around

probe pointer and a coarser mesh is used elsewhere.

Otaduy and Lin [14] developed an algorithm to

Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05)

1550-6185/05 $20.00 © 2005 IEEE

construct a multi-resolution BVH in convex pieces for

pair-wise collision queries. This algorithm does not

provide simplified meshes that consistently

approximate the perceptually detailed realistic models

for rendering. The mesh representation does not

support progressive transmission. Therefore the

algorithm is not appropriate for haptic running

environments with limited memory space.

3. Collision detection framework for

haptic interaction

Figure 3. CD framework from the perspective of
multi-machine model for haptic applications
In the aforementioned multi-machine haptic model,

the VE station is free to handle other tasks of the

application, such as graphics rendering, database

access, and networking. Another significant benefit is

memory saving. The host memory can be used as an

external memory for HRTC to access the object

models. The goal of this research is to design a CD

framework based on such a multi-machine solution.

The proposed framework is composed of two parts:

the VE station and the HRTC. The HRTC is

responsible for mesh refinement, collision prediction,

and mesh subscription from the VE station, cache

management, and collision detection, as shown in

figure 3. The host is responsible for handling the

subscriptions from the HRTC, loading meshes to host

memory, and progressive transmission of the data. The

proposed framework mainly addresses the issues of

performing real-time collision detection on complex

models using limited memory space.

As mentioned in section 1, the runtime

performance of a CD algorithm is directly affected by

the complexity of the input models. We developed a

local refinement algorithm on progressive mesh to

reduce the combinatorial complexity of the input

models. The selection of refinement region on the

mesh is dependent on the local neighborhood of

potential collision. The CD algorithm has two phases,

the preprocessing phase and the runtime phase as

follows.
Procedure PPreprocessingPhase
1 Subscribe coarsest meshes from the host
2 Load received mesh models to vertex forest
hierarchy

3 Build AB-Tree BVHs on vertex forest hierarchies
 Procedure RRuntimePhase
1 FFOR each frame
2 Apply refinement prediction to the current meshes
3 Load mesh data from local cache
3 Subscribe and receive mesh data from host
4 Update vertex forest hierarchy and refine the
meshes
5 AB-Tree refitting
6 Pair wise interference detection
7 EENDFOR

In the preprocessing phase, the volume of

transmitted mesh data is relatively small to that of the

whole mesh. The structures of AB-Trees are encoded

in the SPM meshes which saves the time for BVH

construction. Therefore, the cost of running the first

phase is neglected. In the runtime phase, the algorithm

estimates the time it can spend per frame on collision

detection, which is determined by the application’s

performance goals and the set of activities it performs

at each frame. Initially AB-Trees are built on the

coarsest meshes. Then some mesh primitives are

locally refined to lower or higher resolution, based on

the configuration of the objects in space. Then, the

AB-Tree BVHs of the models are refitted. Finally,

pair wise collision queries are performed on the

models. The experimental results introduced in section

6 demonstrate significant performance improvement

over existing algorithms for static LOD meshes.

3.1. Space partitioned multi-resolution (SPM)

modeling

Figure 4. Space partitioned multi-resolution
mesh

The proposed SPM modeling method takes

advantage of the Progressive Mesh (PM) and the

Quadric Error Metrics [28] which is a method we use

to efficiently generate simplified versions of

traditional triangle meshes in arbitrary topology. A

SPM mesh is generated offline based on the PM

format, and the vertex split and vertex pair contraction

operations. The BV of each model is evenly

partitioned to regular regions. Those regions

containing mesh primitives are labeled. The format of

a SPM mesh for streaming is given in figure 4.

Statistical information of the mesh and the labeled

Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05)

1550-6185/05 $20.00 © 2005 IEEE

Figure 6. Contact region prediction Left: local
neighbors of contact region Middle: linear
extrapolation Right: polynomial extrapolation.

space partition regions are encoded in the header. The

structure of the AB-Tree BVH built upon the finest

mesh is encoded in vertex split records.

At runtime, a vertex forest hierarchy is created for

each loaded mesh model during the preprocessing

stage. Every node of the hierarchy stores a vertex split

information. The hierarchical data structure records

the history of vertex split and edge collapse of a mesh

at an instant resolution, which enables fast mesh split

and merge. As shown in figure 5, the vertex forest

hierarchy maintains two boundaries, refined fronting

and loaded fronting. The refined fronting defines a

sub vertex forest in which the vertex split operations

stored in each node are performed. The loaded

fronting defines another sub vertex forest which

comprises a set of vertex split nodes that has been

subscribed and loaded in local cache. In preprocessing

phase, the two boundaries are overlapped (figure 5a).

In runtime phase, the two boundaries are kept

overlapping when cache is not available (figure 5b).

The space between the two boundaries is increased

when more cache is available (figure 5c). Ideally, the

cache space is comparable with host memory. In such

case, the mesh data are not necessarily subscribed for

more than once (figure 5d). When the cache is small,

the pre-fetching of the data from host memory to the

cache is more frequent which obviously wastes host

memory and increases waiting time at the HRTC. By

utilizing temporal and spatial coherence and simple

motion prediction techniques, the pre-fetching of mesh

data can be significantly reduced even when the cache

space is relatively small.

3.2. Prediction

Temporal and spatial coherence: Frames in an

interactive viewing session typically exhibit only

incremental shifts in contact local neighbor, so the

number of potential contact regions remains roughly

small and constant. Linear and quadratic extrapolation

is considered to be at the heart of the best techniques

for spatial motion prediction which requires the

recording of the contact regions in previous frames. A

simpler solution is to take the local neighbors on

contact regions in the current frame as the contact

regions for the next frame (figure 6). The red areas are

contact region in current frame. The black areas are

contact regions in previous frames. The grey areas are

predicted for next frame.

Distance query: Calculating the distance between

probe points and the labeled regions of mesh models

can accelerate collision detection. Mesh data

contained in the regions which are in a distance

smaller than a threshold to probe points are pre-

fetched. This prediction can be applied when no

contact region is detected in the current frame.

The algorithm for generating the SPM meshes and

the vertex forest hierarchies built upon the meshes is

general and applicable to other progressive mesh

representations.

3.3. Mesh refinement

The frame-to-frame local refinement of a SPM

mesh is illustrated in figure 7. Let A and B be two sets

of regions. In the regions of A, mesh primitives are

refined to full resolution in frame 1. In the regions of

B, mesh primitives are refined to full resolution in

frame 2. A two-phase (mesh split and mesh merge)

operation is required to refine the mesh according to

changing contact configuration. In phase one, the edge

collapse operations clustered in the regions A/B are

collected from the vertex forest hierarchy. Then

operations are performed in order on the mesh. In

phase two, the vertex split operations clustered in the

region B/A are collected from the hierarchy. Then the

operations are performed in order on the mesh.

Figure 7. Two-phase local refinement

(d) Case 3: with large memory

Refined fronting
Loaded fronting

(a) Base mesh (b) Case 1: without cache

Refined fronting

Loaded fronting

(c) Case 2: with cache

Refined fronting

Loaded fronting

Refined fronting
Loaded fronting

Figure 5. Vertex forest hierarchy

Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05)

1550-6185/05 $20.00 © 2005 IEEE

4. Active bounding trees

This section introduces the AB-Tree, a new BVH

algorithm for collision query on dynamically refined

multi-resolution meshes. Without loss of generality,

we consider AABB Trees constructed on polygonal

models and briefly discuss how this could be extended

to other BVs.

4.1. AB-Tree construction

An AABB tree is introduced in [11] to implement a

BVH. It provides a fast way to perform exact collision

detection between complex models. In general, it is a

binary tree structure. AABB-Trees allow the cost of

refitting an AABB tree in an AABB tree to be

independent of the number of nodes in the tree.

An AB-Tree T augments an AABB tree with

additional information stored in each node and a

primitive index list as illustrated in Figure 8. Every

node x in T has three additional fields, a link to an

element of the index list, index[x]; a link to the parent

of x, parent[x]; and a status of the node x, status[x]

where
},,{][deformedinactiveactivexstatus

An element f in the index list has two fields, a link

to a leaf node in the tree, leaf[f], and a link to a

primitive in the primitive list of the multi-resolution

data structure, primitive[f]. Every leaf in the AB-Tree

is pointed from exactly one element of the index list.

Since a multi-resolution mesh is refined at runtime,

its geometry and topology are changed dynamically. A

mesh primitive may be inserted, removed, or

deformed. Therefore, in order to perform exact

collision detection on the mesh, a fast algorithm is

required to refit the BVH representation of the mesh.

First, locating a set of leaves and all of their ancestors

in the BVH needs to be fast, given that the primitives

bounded by the leaves are known. In an AABB tree,

this may require searching several paths top-down due

to the possible overlaps between the BVs of the

sibling nodes. However, in an AB-tree, the index of a

primitive can be used as a key to the index list so that

the leaf which bounds the primitive can be located in a

constant time cost. The parent field can then be used

to find all the ancestors of a leaf in a bottom-up

tracing. Compared with the AABB tree, it is clear that

the AB-tree has better performance. Second, the active

primitives of a refined mesh and their BVs need to be

maintained efficiently such that the complexity of

collision queries performed on the BVH is

proportional to the mesh complexity. In other words,

when the mesh is refined coarser, the collision queries

run faster. The status field works for the second

requirement.

4.2. Fast BVH refitting

One assumption of the proposed BVH algorithm is

that a mesh is refined gradually instead of been refined

in a drastic way. This means only a few primitives of

the original mesh are affected in each refinement.

Therefore only a small number of BVs in a BVH need

to be refitted for collision detection in each frame. To

quickly locate these BVs, a bottom–up approach can

be much faster than a top-down approach, given that

the affected primitives are known from the mesh

refinement, as discussed in the last section. The index

list and the parent pointer in the tree are designed for

this purpose. Once a node is located, the status field is

used to identify those BVs to be refitted. deformed

means that the BV needs to be refitted; inactive means

that the BV is temporarily removed; active means that

there is no change. Initially all nodes in the tree are

set to inactive. All those deformed nodes form a small

subtree. When a top-down traverse is performed on

the subtree, the refitting is applied to each deformed

BV. Comparing with the AABB tree which requires a

traverse on the whole tree, our active tree algorithm is

much faster. An AB-tree maintains a set of

dynamically changed BVs of a BVH.

Lemma 1

For a binary tree Tc which has n leaves and height

O(logn), marking k randomly chosen leaves and all of

their ancestors requires marking O(klogn – klogk +2k)

nodes in worst-case.

Proof: Lemma1 is proved in our previous work [29].

Theorem

Let Ta be an AB-tree built upon a SPM mesh P. F

is the index list of Ta. A BVH refitting operation takes

O(k (log n – log k + 2)) time where n is the number of

leaves in Ta, k is the number of primitives to be

deformed in, removed from, or inserted into the mesh

P at an instant resolution. Furthermore, if k is set to be Figure 8. AB-Tree data structure

Active node

Inactive node

. . .
Primitive
Index List

Primitives

Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05)

1550-6185/05 $20.00 © 2005 IEEE

in a range [1,K], where K is a constant and K << n,

then the call takes O(logn) time.

Proof: The theorem can be easily proved by lemma 1.

5. Runtime performance

We have successfully applied our approach to

interference detection on the benchmark models given

in table 1. Two models are shown in Figure 9.

Experimental results are given in table 2. The

demonstrations have been run on dual Pentium4

2.8GHz processor PCs with 510MB of RAM and

Windows XP OS to simulate a multi-machine haptic

environment. The real-time graphic rendering is

achieved with NVIDIA® GeForceTM FX5200 Graphics

Cards. Our implementation uses C++ and an OpenGL

library for physics simulation and graphics rendering.

In the HRTC, upon receiving mesh refinement

data, time for collision detection can be expressed as

LQBR TTTTT

, where TR represents the time for mesh refinement, TB

represents the time for BVH refitting, and TQ

represents the time for collision queries on the BVH.

TL is the time for mesh loading. Assuming that the

collision query frame rate is fixed, TL is proportional

to the number of vertex split records loaded per frame.

TL increases when the cache space is decreased. Table

2 reflects the time for TR, TB and TQ. When contact

location does not change drastically, the time cost for

mesh refinement is near a small constant. With this

assumption, TB is observed to increase in the order of

the logarithm of the size of the full meshes. This

observation is consistent with the proven theorem

introduced in section 4. In terms of TQ, we find out

that the time for collision queries in a low resolution

mesh is only 0.5% less than the time cost in a locally

high resolution mesh, whereas, the cost for the finest

resolution mesh is 3 times more than the cost for

refined meshes. In terms of memory usage, only the

refined regional mesh data are kept in cache. Mesh

reloading takes place once in a few seconds. This

memory saving strategy makes complex models easy

to handle in hapic applications.

6. Summary and Discussion

In conclusion, the performance of the proposed CD

algorithm is slightly affected by the swift movement

of the objects. However, we propose a divide-and-

conquer algorithm to successfully break the constraint

of large input size of complex models. The algorithm

partitions large models into separate regions and

selectively performs collision queries on them. One

heavy computing task is divided into many subtasks.

From the end users’ point of view, they can start

running a haptic application without knowing the

whole geometric environment. A realistic interactive

force display is achieved smoothly and instantly.

We believe that locally refined CD is a fresh

starting point for future work on multi-machine haptic

interaction. However, current implementation is

limited to complex polygonal models without swift

movement. A possible extension is to apply the

algorithm to other type of multi-resolution

representations. Optimizing intelligent motion

prediction to further reduce the time for transmission

of data is a promising topic to be further studied.

Models Sphere Cow Bunny

faces in Mn (Original

Mesh)

4096 5804 37576

vertices in Mn(Original

Mesh)

2050 2904 20000

faces in M0 (Base Mesh) 50 704 500

vertices in M0 (Base

Mesh)

27 355 1406

vertex split records 2023 2549 18594

AB-Tree height 12 12 16

Time Original mesh

in static LOD

Base mesh in

static LOD

SPM with local

refinement

TQ 5.7ms 2.75ms 2.87ms

TB n/a n/a 1.8ms

TR n/a n/a 5.4ms

Table 1. Parameter settings for models

Figure 9a. Local refine SPM mesh Left: contact
region prediction; right: interference detection.

Figure 9b. Frame-to-frame refinement

Table 2. Performance statistics for bunny
and probe models

Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05)

1550-6185/05 $20.00 © 2005 IEEE

7. References

[1] X. Shen, J. Zhou, A. El Saddik, and N. D. Georganas,

“Architecture and Evaluation of Tele-Haptic Environments”,

Proc. 8th IEEE International Symposium on Distributed

Simulation and Real Time Applications (IEEE DS-RT

2004), October 2004, Budapest, Hungary

[2] X. Shen, F. Bogsanyi, L. Ni, and N. D. Georganas, “A

Heterogeneous Scalable Architecture for Collaborative

Haptics Environments," 2nd IEEE Workshop on Haptic,

Audio and Visual Environments and their Applications -

HAVE, September 2003

[3] J. Zhou, X. Shen and N. D. Georganas, “Haptic Tele-

Surgery Simulation”,Proc. IEEE Workshop on Haptic Audio

Visual Environments and their Applications, Ottawa,

Canada, October 2004.

[4] N. R. El-Far, X. Shen, and N.D. Georganas, “Applying

Unison, a Generic Framework for Hapto-Visual Application

Development, to an E-Commerce Application”, Proc. IEEE

Workshop on Haptic Audio Visual Environments and their

Applications, Ottawa, Canada, October 2004.

[5] A. Kirkpatrick and J. Sze, Operating-System Induced

Jitter in Force Display Computations, 12th International

Symposium on Haptic Interfaces for Virtual Environment

and Teleoperator Systems (HAPTICS 2004), 27-28 March

2004, Chicago, IL, USA

[6] Ho, C., Basdogan, C., Srinivasan, M.A., “An Efficient

Haptic Rendering Technique for Displaying 3D Polyhedral

Objects and Their Surface Details in Virtual Environments

(PDF)”, October’99 Vol. 8, No. 5, pp. 477-491, Presence:

Teleoperators and Virtual Environments, MIT Press.

[7] P. Jiménez, F. Thomas, and C. Torras, Collision

Detection: A Survey. Computers and Graphics, Vol. 25, No.

2, 2001, pp.269-285.

[8] P.M. Hubbard, Approximating polyhedra with spheres

for time-critical collision detection. ACM Transactions on

Graphics Vol. 15, Issue 3, 1996, pp.179-210.

[9] M. Lin and S. Gottschalk, Collision Detection between

Geometric Models: A Survey. In Proc. of IMA Conference

on Mathematics of Surfaces, 1998, pp. 37-56.

[10] S. Gottschalk, M. Lin and D. Manocha, OBB-Tree: A

Hierarchical Structure for Rapid Interference Detection. In

Proc. of ACM SIGGRAPH'96, pp. 171-180, 1996.

[11] G. van den Bergen, Efficient Collision Detection of

Complex Deformable Models using AABB Trees. Journal of

Graphics Tools, 2(4), 1997, pp.1-13.

[12] J. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral,

and K. Zikan. Efficient collision detection using bounding

volume hierarchies of k-DOPs. IEEE Trans. Visualization

Comput. Graph., vol. 4, no. 1, pp. 21-37, 1998.

[13] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast

proximity queries with swept sphere volumes. Tech. Rep.

TR99-018, Dept. of Comput. Sci., Univ. North Carolina,

1999.

[14] M. A. Otaduy and M. C. Lin, CLODs: Dual Hierarchies

for Multiresolution Collision Detection. In Proc. of

Eurographics Symposium on Geometry Processing, Aachen,

Germany, 2003, pp. 94-101.

[15] R. Bridson, R.P. Fedkiw, and J. Anderson, Robust

Treatment of Collisions, Contact, and Friction for Cloth

Animation. ACM Transactions on Graphics, Vol. 21. No.3,

pp. 594-603.

[16] G. Bradshaw and C. O’Sullivan, Adaptive Medial-Axis

Approximation for Sphere-Tree Construction. ACM

Transactions on Graphics, Vol 23, No. 1, 2004, pp 1-26.

[17] H. Hoppe, Progressive Meshes. In Proc.of

SIGGRAPH'96, 1996, pp. 99-108.

[18] M. Gross, O. Staadt, and R. Gatti, Efficient Triangular

Surface Approximations using Wavelets and Quadtree

Structures. IEEE Trans. on Visual and Computer Graphics,

2(2), 1996, pp.130-144.

[19] J. Rossignac and P. Borrel, Multi-resolution 3D

Approximation for Rendering Complex Scenes. In

Geometric Modeling in Computer Graphics. Springer

Verlag, 1993, pp.455-465.

[20] P. Lindstrom, D. Koller, W. Ribarsky, L. Hughes, N.

Faust, and G.Turner, Real-time Continuous Level of Detail

Rendering of height fields. In Proc. of ACM

SIGGRAPH’96, Aug. 1996, pp. 109-118.

[21] J. Xia, J.El-Sana, and A. Varshney, Adaptive Real-time

Level-of-Detail Based Rendering for Polygonal Models.

IEEE Transactions on Visualization and Computer Graphics,

Vol.3, No.2, June 1997, pp. 171-183.

[22] H.Hoppe. View-Dependent Refinement of Progressive

Mesh, In Proc. of ACM SIGGRAPH’97, August 1997,

pp.189-198.

[23] D. Luebke and C. Erikson, View-Dependent

Simplification of Arbitrary Polygonal Environments, In

Proc. of SIGGRAPH’ 97, August 1997, pp. 199-208.

[24] G. Taubin, A. Gueziec, W. Horn, and F. Lazarus,

Progressive Forest Split Compression, In Proc. of

SIGGRAPH'98, 1998.

[25] A. Schilling and R. Klein. Texture-dependent

Refinement for Multi-resolution Models. In Computer

Graphics International, June 1998.

[26] D.K. Pai and L.M. Reissel, Haptic Interaction with

Multiresolution Image Curves. Computer and Graphics 21,

1997, pp. 405-411.

[27] J. El-Sana and A. Varshiney, Continuously-adaptive

Haptic Rendering. Virtual Environments 2000, pp. 135-144.

[28] M. Garland and Paul S. Heckbert, Surface

Simplification using Quadric Error Metrics. In Proc. of

SIGGRAPH '97, 1997, pp. 209-216.

[29] P. Liu, N. Georganas, and G. Roth, Handling Rapid

Interference Detection of Progressive Meshes Using Active

Bounding Trees. Journal of Graphics Tools, submitted.

Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05)

1550-6185/05 $20.00 © 2005 IEEE

