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Abstract

 The computational cost of a collision detection 

(CD) algorithm on polygonal surfaces depends highly 

on the complexity of the models. A novel “locally 

refined” approach is introduced in this paper for fast 

CD in haptic rendering applications, e.g. haptic 

surgery and haptic sculpture simulations. Exact 

interference detections are performed on proposed 

locally refined meshes, which are in multi-resolution 

representation. The meshes are generated using mesh 

simplification and space partition. A new BVH 

algorithm called “Active Bounding Tree”, or AB-

Tree, handling collision queries is introduced. At 

runtime the meshes are dynamically refined to higher 

resolution in areas that are most likely to collide with 

other objects. The algorithms are successfully 

demonstrated in an interactive haptic environment. 

Compared to existing CD algorithms on single 

resolution models, noticeable performance 

improvement has been observed in terms of the 

precision of collision queries, frame rate, and memory 

usage.

1. Introduction 

Interactive virtual environment (VE) requires 

natural and real-time interaction between computer 

systems and users. Compared to presentation of visual 

and auditory information, methods for haptic display 

are not as well developed. Haptic rendering as an 

augmentation to visual and auditory displays can 

enrich the perception and understand both of force 

fields and of world models populated in synthetic 

environments. 

Haptics, term which was derived from the Greek 

verb “to touch”, introduce the sense of touch and force 

in human-computer interaction. Haptics enable the 

human operator to manipulate the environment in a 

natural and effective way, enhance the sensation of 

“presence”, and provide information such as stiffness 

and texture of objects, which cannot be described 

completely with visual or audio feedback only. Early 

work was accomplished over three decades ago for 

tele-robotics applications. The potential of the 

technology is significant for interactive virtual reality, 

tele-presence, tele-medicine and tele-manipulation 

applications [1,3,4]. The technology has already been 

explored in contexts as diverse as modeling & 

animation, geophysical analysis, dentistry training, 

virtual museums, assembly planning, mine design, 

surgical simulation, design evaluation, control of 

scientific instruments, and robotic simulation. 

However its true potential in these areas has yet to be 

achieved, and its application to all aspects of 

dexterous training, for example, is almost completely 

untapped. Haptic interaction of virtual environments 

involves augmentation of a client station and may be 

viewed as a simple integration of conventional VEs 

with haptic displays. The application family is 

typically implemented upon non- or soft- real time 

operating systems. By contrast, tele-haptic interaction 

imposes more stringent requirements and, like tele-

robotics, demands hard real time guarantees [1].  

Multiple tasks, such as haptic sensing/actuation, 

visual updates must be accomplished in a 

synchronized manner in haptic applications. It 

becomes commonplace to separate tasks into 

computational threads or processes, to accommodate 

different update rates, distribute computation load, and 

optimize computation. Conventionally, multithreading 

and multiprocessing software architectures are applied 

to develop effective multimodal VEs and the optimal 

usage of the CPU capabilities [6]. However, an 

important but little discussed consequence of the 
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conventional architectures is that it makes the 

operating system an inherent component of the 

applications, with operating system scheduling 

algorithms limiting the application’s quality of 

service. The application may request a theoretical rate 

of force display but it is the scheduler that determines 

the actual rate. This scheduler is itself a complex 

algorithm, particularly when considered in terms of its 

interactions with the other services provided by the 

operating system [5].  

Figure 1. Multi-machine solution for haptic 
applications 

A multi-machine solution for haptic application 

was addressed in [1,2] as shown in Figure 1. The 

multi-machine architecture is comprised of three parts: 

haptic device, Haptic Real Time Controller (HRTC) 

and Virtual Environment (VE) graphics station. 

HRTC communicates with its VE station through a 

local Ethernet connection. HRTC relies on hard real 

time operating systems (eg. QNX Neutrino, VxWorks 

or Windows CE) to guarantee the stability of the 

control loop. 

The separation of functionalities of haptic and 

graphic rendering makes the proposed architecture 

easier to extend to existing applications. Unlike 

conventional multithreading or multiprocessing 

approaches for haptics, this multi-machine model 

solution applies a hard real-time operating system for 

haptic control, while applying a mainstream OS such 

as Win2K or WinXP for the application and graphics. 

It also provides the potential for tele-haptic 

applications to switch between multiple protocols, one 

for large-scale distributed simulations and one adapted 

to collaboration when several users meet and need to 

perform a collaborative task, for example, and requires 

an architecture that supports those different protocols.  

Two major tasks in haptic interaction paradigms 

are collision detection (CD) and collision response.

Collision detection is to detect collisions between the 

end point of a generic probe and the objects in a 

scene, while collision response is to respond to the 

detection of collision in terms of how the forces 

reflected to the user are computed. Studies of human 

tactile perception of contact information have shown 

that a desired force update rate is preferably 1 kHz. 

Although there is a huge volume of literature in the 

area of collision detection, many proposed algorithms 

targeted graphics applications which require a 

relatively low collision query rate (desirably 30Hz). 

Existing collision detection algorithms proposed so far 

only support static level-of-details (LOD) meshes. The 

running time of the algorithms depends on the 

complexity of input models and the output collision 

configuration. Therefore, setting the resolution of the 

meshes for collision detection in building a virtual 

environment becomes an engineering trade off 

between speed and accuracy. In graphic applications, 

rendering complex models with millions of polygons 

at interactive rate can be handled by modern GPU. 

However, an efficient algorithm has not emerged for 

creating an interactive force display on the complex 

models.  

Based on recent research in mesh simplification 

and bounding volume hierarchy (BVH) CD, we 

propose here our locally refined CD approach. It is 

illustrated in this paper that it is possible to increase 

the accuracy of collision detection without sacrificing 

speed, using a space partitioned multi-resolution mesh 

representation and a BVH that we call an Active 

Bounding Tree, or AB-Tree. The space partition 

technique makes it possible to locally refine some 

parts of a mesh that are most likely to collide with 

other models in the near future. Collided parts of a 

mesh can always achieve the finest resolution. The 

other parts remain in coarse resolution. In such a way, 

the input size of the CD is decreased and the hard real-

time performance requirement for haptic interaction is 

achieved. Highly detailed geometric models are 

becoming necessary to fulfill a growing expectation 

for realism in haptic rendering. However, the huge 

data volume exceeds the memory size of current 

haptic rendering hardware. The progressive techniques 

can bridge the gap between hardware capability and 

complexity of the geometric models by selectively 

loading the meshes at runtime from external memory. 

The local memory only keeps currently refined mesh 

data that are necessary for CD plus some pre-fetched 

data that are needed for CD in the future. 

Main contribution: A real-time collision detection 

framework for haptic interaction between multiple 

probes and complex object models is proposed. The 

vsplit(vs,vl,vr vs’,vt’) 

vl vr

vt’

vs’

vs
vl vr

ecol(vs’ ,vt’ ,vs)

Figure 2. Vertex split and edge collapse 
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high update rate of force display and the limited 

memory capacity of haptic rendering hardware are two 

of the most challenging issues we resolved. A new 

“Space Partitioned Multi-resolution (SPM)” mesh 

representation is introduced. The meshes can be 

progressively transmitted on demand and locally 

refined at runtime. A new BVH CD algorithm, AB-

Tree, is introduced which performs output-sensitive 

CD for dynamically refined meshes at a cost similar to 

that of the existing CD algorithms on static LOD 

meshes. The extra cost, mesh refinement, is as low as 

a small constant when the objects do not move swiftly 

very often. The algorithm allows us to bound the input 

size of the problem, thus achieving the desired 

collision query performance for force display. 

Organization: The rest of the paper is organized as 

follows. We start with a brief survey of collision 

detection and view-dependent meshes in section 2. In 

section 3, we introduce the proposed CD framework 

for haptics. The AB-Tree algorithm is described in 

section 4. Section 5 presents the performance of our 

implementation. Summary and discussion are given in 

section 6. 

2. Related work 

2.1. Collision detection 

An accurate and fast collision detection algorithm 

is considered to be one of the major bottlenecks in 

building interactive and realistic haptic environments. 

Many important methods have been developed for 

rigid models. Recent surveys of these methods can be 

found in [7,9]. Algorithms with the current best run 

time for convex polytope collision queries take linear 

time. If the objects are not moving swiftly, the best 

runtime can be roughly constant. The algorithms for 

collision queries between general non-convex 

polygonal models are dominated by the hierarchical 

bounding volume (BVH) strategy. The time cost is 

mainly determined by the complexity of input model, 

the choice of bounding volume (BV), and the contact 

configuration of two models. Sphere-trees [8], 

oriented bounding boxes (OBB) trees [10], axis-

aligned bounding boxes (AABB) trees [11], discrete 

orientation polytopes (k-dops) trees [12], SSV-trees 

[13], and CLOD [14] are examples. BVHs can be 

based on either spatial proximity between features of a 

model, mesh topology, or inter-surface proximity [15]. 

In cluttered environments, OBB trees perform better 

than AABB trees and sphere trees due to the tight 

fitting bounding boxes. Although AABBs cannot fit 

some primitives like long-thin oriented polygons 

tightly, a BVH based on AABBs performs overlap test 

faster compare with OBB trees. Furthermore, AABB 

trees need less memory and are easy to update after 

deformation. In time-critical collision detection, the 

output precision is allowed to be gracefully adapted to 

the computing time available [8,16]. However, spatial 

inaccuracy is inherent due to the lack of exact 

collision queries on primitives. This is especially 

important when contact normal and contact points are 

required to compute a plausible collision response. 

2.2. View-dependent multi-resolution meshes 

Detailed models result in large storage space, 

expensive transmission cost, and slow geometry 

manipulation. To address these issues, several mesh 

simplification techniques have been proposed. 

Previous mesh simplification works fall into two 

categories: multiple static LODs and single LOD with 

multi-resolution. The idea of the multi-resolution 

mesh or continuous LOD [17,18,19,20,21] is to create 

a data structure that can be employed to dynamically 

produce a mesh with any desired resolutions lying 

between the highest and the lowest number of 

polygons from the original mesh. Most works for 

general polygonal models are related to progressive 

meshes. Progressive mesh is proposed in [17] for 

accelerating graphics rendering. A triangle mesh can 

be represented at multiple LODs by performing a 

series of refinement operations. The operations 

include vertex split and edge collapse as shown in 

figure 2. A triangle mesh is encoded as a base mesh 

plus a sequence of n vertex split records, (M0,{vsplit0,

…, vsplitn-1}). Recent works have been focused on 

view-dependent simplification, which take into 

account viewing parameters in mesh simplification to 

speed-up graphics rendering further. In [22] a view-

dependent simplification algorithm for progressive 

meshes in introduced which use screen space 

projection and viewing orientation to guide the 

runtime simplification. Luebke and Erikson [23] 

define a tight octree called vertex tree over the given 

model to generate hierarchical view-dependent 

simplifications. Taubin et al [24] demonstrate a 

surface partition scheme for progressive encoding of 

surface. Schilling and Klein [25] have introduced a 

texture dependent refinement algorithm.  

A few research works have been focused on using 

multi-resolution representations for haptic rendering. 

Pai and Reissel [26] investigate the use of multi-

resolution image curves for 2D haptic interaction. El-

Sana and Varsheny [27] introduced a multi-resolution 

hierarchy. A detailed mesh is used for regions around 

probe pointer and a coarser mesh is used elsewhere. 

Otaduy and Lin [14] developed an algorithm to 
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construct a multi-resolution BVH in convex pieces for 

pair-wise collision queries. This algorithm does not 

provide simplified meshes that consistently 

approximate the perceptually detailed realistic models 

for rendering. The mesh representation does not 

support progressive transmission. Therefore the 

algorithm is not appropriate for haptic running 

environments with limited memory space. 

3. Collision detection framework for 

haptic interaction 

Figure 3. CD framework from the perspective of 
multi-machine model for haptic applications 
In the aforementioned multi-machine haptic model, 

the VE station is free to handle other tasks of the 

application, such as graphics rendering, database 

access, and networking. Another significant benefit is 

memory saving. The host memory can be used as an 

external memory for HRTC to access the object 

models.  The goal of this research is to design a CD 

framework based on such a multi-machine solution. 

The proposed framework is composed of two parts: 

the VE station and the HRTC. The HRTC is 

responsible for mesh refinement, collision prediction, 

and mesh subscription from the VE station, cache 

management, and collision detection, as shown in 

figure 3. The host is responsible for handling the 

subscriptions from the HRTC, loading meshes to host 

memory, and progressive transmission of the data. The 

proposed framework mainly addresses the issues of 

performing real-time collision detection on complex 

models using limited memory space.  

As mentioned in section 1, the runtime 

performance of a CD algorithm is directly affected by 

the complexity of the input models. We developed a 

local refinement algorithm on progressive mesh to 

reduce the combinatorial complexity of the input 

models. The selection of refinement region on the 

mesh is dependent on the local neighborhood of 

potential collision. The CD algorithm has two phases, 

the preprocessing phase and the runtime phase as 

follows.  
Procedure PPreprocessingPhase
1   Subscribe coarsest meshes from the host 
2   Load received mesh models to vertex forest 
hierarchy

3   Build AB-Tree BVHs on vertex forest hierarchies 
 Procedure RRuntimePhase
1 FFOR each frame 
2      Apply refinement prediction to the current meshes 
3      Load mesh data from local cache 
3      Subscribe and receive mesh data from host 
4      Update vertex forest hierarchy and refine the 
meshes
5      AB-Tree refitting 
6      Pair wise interference detection 
7 EENDFOR

In the preprocessing phase, the volume of 

transmitted mesh data is relatively small to that of the 

whole mesh. The structures of AB-Trees are encoded 

in the SPM meshes which saves the time for BVH 

construction. Therefore, the cost of running the first 

phase is neglected. In the runtime phase, the algorithm 

estimates the time it can spend per frame on collision 

detection, which is determined by the application’s 

performance goals and the set of activities it performs 

at each frame. Initially AB-Trees are built on the 

coarsest meshes. Then some mesh primitives are 

locally refined to lower or higher resolution, based on 

the configuration of the objects in space. Then, the 

AB-Tree BVHs of the models are refitted. Finally, 

pair wise collision queries are performed on the 

models. The experimental results introduced in section 

6 demonstrate significant performance improvement 

over existing algorithms for static LOD meshes. 

3.1. Space partitioned multi-resolution (SPM) 

modeling

Figure 4. Space partitioned multi-resolution 
mesh

The proposed SPM modeling method takes 

advantage of the Progressive Mesh (PM) and the 

Quadric Error Metrics [28] which is a method we use 

to efficiently generate simplified versions of 

traditional triangle meshes in arbitrary topology. A 

SPM mesh is generated offline based on the PM 

format, and the vertex split and vertex pair contraction 

operations. The BV of each model is evenly 

partitioned to regular regions. Those regions 

containing mesh primitives are labeled. The format of 

a SPM mesh for streaming is given in figure 4. 

Statistical information of the mesh and the labeled 
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Figure 6. Contact region prediction Left: local 
neighbors of contact region Middle: linear 
extrapolation Right: polynomial extrapolation.

space partition regions are encoded in the header. The 

structure of the AB-Tree BVH built upon the finest 

mesh is encoded in vertex split records.

At runtime, a vertex forest hierarchy is created for 

each loaded mesh model during the preprocessing 

stage. Every node of the hierarchy stores a vertex split 

information. The hierarchical data structure records 

the history of vertex split and edge collapse of a mesh 

at an instant resolution, which enables fast mesh split 

and merge. As shown in figure 5, the vertex forest 

hierarchy maintains two boundaries, refined fronting

and loaded fronting. The refined fronting defines a 

sub vertex forest in which the vertex split operations 

stored in each node are performed. The loaded 

fronting defines another sub vertex forest which 

comprises a set of vertex split nodes that has been 

subscribed and loaded in local cache. In preprocessing 

phase, the two boundaries are overlapped (figure 5a). 

In runtime phase, the two boundaries are kept 

overlapping when cache is not available (figure 5b). 

The space between the two boundaries is increased 

when more cache is available (figure 5c). Ideally, the 

cache space is comparable with host memory. In such 

case, the mesh data are not necessarily subscribed for 

more than once (figure 5d). When the cache is small, 

the pre-fetching of the data from host memory to the 

cache is more frequent which obviously wastes host 

memory and increases waiting time at the HRTC. By 

utilizing temporal and spatial coherence and simple 

motion prediction techniques, the pre-fetching of mesh 

data can be significantly reduced even when the cache 

space is relatively small. 

3.2. Prediction 

Temporal and spatial coherence: Frames in an 

interactive viewing session typically exhibit only 

incremental shifts in contact local neighbor, so the 

number of potential contact regions remains roughly 

small and constant. Linear and quadratic extrapolation 

is considered to be at the heart of the best techniques 

for spatial motion prediction which requires the 

recording of the contact regions in previous frames. A 

simpler solution is to take the local neighbors on 

contact regions in the current frame as the contact 

regions for the next frame (figure 6). The red areas are 

contact region in current frame. The black areas are 

contact regions in previous frames. The grey areas are 

predicted for next frame.

Distance query: Calculating the distance between 

probe points and the labeled regions of mesh models 

can accelerate collision detection.  Mesh data 

contained in the regions which are in a distance 

smaller than a threshold to probe points are pre-

fetched. This prediction can be applied when no 

contact region is detected in the current frame. 

The algorithm for generating the SPM meshes and 

the vertex forest hierarchies built upon the meshes is 

general and applicable to other progressive mesh 

representations. 

3.3. Mesh refinement 

The frame-to-frame local refinement of a SPM 

mesh is illustrated in figure 7. Let A and B be two sets 

of regions. In the regions of A, mesh primitives are

refined to full resolution in frame 1. In the regions of 

B, mesh primitives are refined to full resolution in 

frame 2. A two-phase (mesh split and mesh merge) 

operation is required to refine the mesh according to 

changing contact configuration. In phase one, the edge 

collapse operations clustered in the regions A/B are 

collected from the vertex forest hierarchy. Then 

operations are performed in order on the mesh. In 

phase two, the vertex split operations clustered in the 

region B/A are collected from the hierarchy. Then the 

operations are performed in order on the mesh.  

Figure 7. Two-phase local refinement

(d) Case 3: with large memory 

Refined fronting 
Loaded fronting

(a) Base mesh (b) Case 1: without cache 

Refined fronting 

Loaded fronting 

(c) Case 2: with cache 

Refined fronting 

Loaded fronting 

Refined fronting 
Loaded fronting

Figure 5. Vertex forest hierarchy 
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4. Active bounding trees 

This section introduces the AB-Tree, a new BVH 

algorithm for collision query on dynamically refined 

multi-resolution meshes. Without loss of generality, 

we consider AABB Trees constructed on polygonal 

models and briefly discuss how this could be extended 

to other BVs.  

4.1. AB-Tree construction 

An AABB tree is introduced in [11] to implement a 

BVH. It provides a fast way to perform exact collision 

detection between complex models. In general, it is a 

binary tree structure. AABB-Trees allow the cost of 

refitting an AABB tree in an AABB tree to be 

independent of the number of nodes in the tree.  

An AB-Tree T augments an AABB tree with 

additional information stored in each node and a 

primitive index list as illustrated in Figure 8. Every 

node x in T has three additional fields, a link to an 

element of the index list, index[x]; a link to the parent 

of x, parent[x]; and a status of the node x, status[x]

where
},,{][ deformedinactiveactivexstatus

An element f in the index list has two fields, a link 

to a leaf node in the tree, leaf[f], and a link to a 

primitive in the primitive list of the multi-resolution 

data structure, primitive[f].  Every leaf in the AB-Tree 

is pointed from exactly one element of the index list. 

Since a multi-resolution mesh is refined at runtime, 

its geometry and topology are changed dynamically. A 

mesh primitive may be inserted, removed, or 

deformed. Therefore, in order to perform exact 

collision detection on the mesh, a fast algorithm is 

required to refit the BVH representation of the mesh. 

First, locating a set of leaves and all of their ancestors 

in the BVH needs to be fast, given that the primitives 

bounded by the leaves are known. In an AABB tree, 

this may require searching several paths top-down due 

to the possible overlaps between the BVs of the 

sibling nodes. However, in an AB-tree, the index of a 

primitive can be used as a key to the index list so that 

the leaf which bounds the primitive can be located in a 

constant time cost. The parent field can then be used 

to find all the ancestors of a leaf in a bottom-up 

tracing. Compared with the AABB tree, it is clear that 

the AB-tree has better performance. Second, the active 

primitives of a refined mesh and their BVs need to be 

maintained efficiently such that the complexity of 

collision queries performed on the BVH is 

proportional to the mesh complexity. In other words, 

when the mesh is refined coarser, the collision queries 

run faster. The status field works for the second 

requirement.  

4.2. Fast BVH refitting 

One assumption of the proposed BVH algorithm is 

that a mesh is refined gradually instead of been refined 

in a drastic way. This means only a few primitives of 

the original mesh are affected in each refinement. 

Therefore only a small number of BVs in a BVH need 

to be refitted for collision detection in each frame. To 

quickly locate these BVs, a bottom–up approach can 

be much faster than a top-down approach, given that 

the affected primitives are known from the mesh 

refinement, as discussed in the last section. The index 

list and the parent pointer in the tree are designed for 

this purpose. Once a node is located, the status field is 

used to identify those BVs to be refitted. deformed

means that the BV needs to be refitted; inactive means 

that the BV is temporarily removed; active means that 

there is no change.   Initially all nodes in the tree are 

set to inactive. All those deformed nodes form a small 

subtree. When a top-down traverse is performed on 

the subtree, the refitting is applied to each deformed

BV. Comparing with the AABB tree which requires a 

traverse on the whole tree, our active tree algorithm is 

much faster. An AB-tree maintains a set of 

dynamically changed BVs of a BVH.  

Lemma 1 

For a binary tree Tc which has n leaves and height 

O(logn), marking k randomly chosen leaves and all of 

their ancestors requires marking O(klogn – klogk +2k)

nodes in worst-case. 

Proof: Lemma1 is proved in our previous work [29]. 

Theorem

Let Ta be an AB-tree built upon a SPM mesh P. F

is the index list of Ta. A BVH refitting operation takes 

O(k (log n – log k + 2)) time where n is the number of 

leaves in Ta, k is the number of primitives to be 

deformed in, removed from, or inserted into the mesh 

P at an instant resolution. Furthermore, if k is set to be Figure 8. AB-Tree data structure 

Active node

Inactive node

.  .  . 
Primitive 
Index List

Primitives
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in a range [1,K], where K is a constant and K << n,

then the call takes O(logn) time. 

Proof: The theorem can be easily proved by lemma 1. 

5. Runtime performance

We have successfully applied our approach to 

interference detection on the benchmark models given 

in table 1. Two models are shown in Figure 9. 

Experimental results are given in table 2. The 

demonstrations have been run on dual Pentium4 

2.8GHz processor PCs with 510MB of RAM and 

Windows XP OS to simulate a multi-machine haptic 

environment. The real-time graphic rendering is 

achieved with NVIDIA® GeForceTM FX5200 Graphics 

Cards. Our implementation uses C++ and an OpenGL 

library for physics simulation and graphics rendering. 

In the HRTC, upon receiving mesh refinement 

data, time for collision detection can be expressed as 

LQBR TTTTT

, where TR represents the time for mesh refinement, TB

represents the time for BVH refitting, and TQ

represents the time for collision queries on the BVH. 

TL is the time for mesh loading. Assuming that the 

collision query frame rate is fixed, TL is proportional 

to the number of vertex split records loaded per frame. 

TL increases when the cache space is decreased. Table 

2 reflects the time for TR, TB and TQ. When contact 

location does not change drastically, the time cost for 

mesh refinement is near a small constant. With this 

assumption, TB is observed to increase in the order of 

the logarithm of the size of the full meshes. This 

observation is consistent with the proven theorem 

introduced in section 4. In terms of TQ, we find out 

that the time for collision queries in a low resolution 

mesh is only 0.5% less than the time cost in a locally 

high resolution mesh, whereas, the cost for the finest 

resolution mesh is 3 times more than the cost for 

refined meshes. In terms of memory usage, only the 

refined regional mesh data are kept in cache. Mesh 

reloading takes place once in a few seconds. This 

memory saving strategy makes complex models easy 

to handle in hapic applications. 

6. Summary and Discussion 

In conclusion, the performance of the proposed CD 

algorithm is slightly affected by the swift movement 

of the objects. However, we propose a divide-and-

conquer algorithm to successfully break the constraint 

of large input size of complex models. The algorithm 

partitions large models into separate regions and 

selectively performs collision queries on them. One 

heavy computing task is divided into many subtasks. 

From the end users’ point of view, they can start 

running a haptic application without knowing the 

whole geometric environment. A realistic interactive 

force display is achieved smoothly and instantly. 

We believe that locally refined CD is a fresh 

starting point for future work on multi-machine haptic 

interaction. However, current implementation is 

limited to complex polygonal models without swift 

movement. A possible extension is to apply the 

algorithm to other type of multi-resolution 

representations. Optimizing intelligent motion 

prediction to further reduce the time for transmission 

of data is a promising topic to be further studied. 

Models Sphere Cow Bunny 

# faces in Mn (Original

Mesh) 

4096 5804 37576 

# vertices in Mn(Original

Mesh) 

2050 2904 20000 

# faces in M0 (Base Mesh) 50 704 500 

# vertices in M0 (Base 

Mesh) 

27 355 1406 

# vertex split records 2023 2549 18594 

AB-Tree height 12 12 16 

Time Original mesh 

in static LOD

Base mesh in 

static LOD

SPM with local 

refinement

TQ 5.7ms 2.75ms 2.87ms 

TB n/a n/a 1.8ms 

TR n/a n/a 5.4ms 

Table 1. Parameter settings for models

Figure 9a. Local refine SPM mesh Left: contact 
region prediction; right: interference detection. 

Figure 9b. Frame-to-frame refinement

Table 2. Performance statistics for bunny 
and probe models
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