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Abstract

This document is the extended version of the work published in [11]. Laser-based range
sensors are commonly used on-board autonomous mobile robots for obstacle detection
and scene understanding. A popular methodology for analyzing point cloud data from
these sensors is to train Bayesian classifiers using locallycomputed features on labeled
data and use them to compute class posteriors on-line at testing time. However, data
from range sensors present a unique challenge for feature computation in the form of
significant variation in spatial density of points, both across the field-of-view as well as
within structures of interest. In particular, this poses the problem of choosing a scale for
analysis and a support-region size for computing meaningful features reliably. While
scale theory has been rigorously developed for 2-D images, no equivalent exists for
unorganized 3-D point data. Choosing a satisfactory fixed scale over the entire dataset
makes feature extraction sensitive to the presence of different manifolds in the data and
varying data density. We adopt an approach inspired by recent developments in com-
putational geometry [17] and investigate the problem of automatic data-driven scale
selection to improve point cloud classification. The approach is validated with results
using real data from different sensors in various environments (indoor, urban outdoor
and natural outdoor) classified into different terrain types (vegetation, solid surface and
linear structure).
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sponsored by the U.S Army Research Laboratory under the Collaborative Technology
Alliance Program, Cooperative Agreement DAAD19-01-209912 and in part by the Na-
tional Science Foundation under the grant IIS-0102272.
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1 Introduction

Autonomous navigation in vegetated terrain remains a challenging problem in robotics
due to the difficulties in modeling the high variability of outdoor environments. In
this effort, laser range-finders have proven to be invaluable due to their high speed
and direct sensing of depth information in the form of unorganized 3-D point clouds
from objects in the scene. Depth cues allow more natural modeling of smooth, porous
and linear surfaces as 3-D textures. Labeled data can then beused to compute 3-D
features and train classifiers for distinguishing load-bearing surfaces, vegetation and
linear structures respectively.

However the perspective sensing geometry of laser-range finders introduces sig-
nificant variation in spatial density of observed points, both over the field-of-view as
well as within the objects of interest. This poses the question of how to select the
size of the support region, orscaleof observation, for computing 3-D features that
are representative of the local geometry. Scale theory has arich literature for 2-D and
3-D images but no equivalent exists for unorganized point-sampled data. One method
to circumvent this problem is to use a fixed scale that is satisfactory over the entire
dataset. This however compromises feature computation both in regions where data
is sparse as well as near the spatial boundaries between neighboring data belonging to
two different classes. Another approach is to consider multiple scales at the same time.
This approach clearly introduces a computational burden asit increases the dimension
of the data. Sensor noise also confounds the feature computation process as a larger
support region size may be needed to compensate for noise.

In Figure 1 we illustrates two problems associated with scale selection: the pres-
ence of multiple manifolds in the support region and the variable density of the data.
In Figure 1-(a) we can see that the tree trunk separates into two large branches. The
junction area is classified as surfaces as the support regionencompass the tree truck
and both branches. Similarly in Figure 1-(b) we can see that the ground data become
sparse as the distance to the sensor increase. In that case a fixed scale classification
scheme will misclassify semantically those far away pointsas linear even though the
point inside the area of interest define a line.

(a) (b)

Figure 1: Issues associated with scale selection. (a) Junctions. (b) Density.

This paper presents a technique for determining the scale ofobservation of point-
sampled data by computing the optimal size of the support region for computing surface
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normals. Spatial features are then computed at this supportsize and used in a Bayes
classifier for 3-D data segmentation. The method implicitlyassumes that the scale that
is representative of local geometry at a point is also the onethat best discriminates its
true class in feature space. We validate this assumption through extensive experiments
and detail our approach and its limitations in the sections that follow.

Section 2 presents the related work on scale selection in 3-D. Section 3 details the
estimation of the support size and our proposed algorithm. In Section 4 we present
classification results on real outdoor data, and then summarize the contributions in
Section 5.

2 Related work

It is widely accepted that real world objects appear as meaningful entities at different
scales of observation. This has driven the need for rigorous, data-driven formalisms to
identify representative scales in data, both for data representation as well as identifica-
tion.

In [7] the authors emphasize the difference between change in an image (distance
scaling) and change in the human perception of that image (information scaling), as the
distance to the visual pattern varies.

Pioneering work by Lindeberg [14] equated analysis of continuous signals at suc-
cessive scales to the suppression of local extrema, and showed that successive smooth-
ing of the signal by gaussian convolution satisfied this property. By this principle,
the scale at which the signal response to a normalized differential operator achieves
local extrema is a characteristic length of the structure inthe signal. This methodol-
ogy has been extended to discrete signals in 1-D, 2-D and N-D lattices [13, 12]. The
scale-invariance property has since been exploited extensively in computer vision as a
technique to extract regions with sizes that accommodate scaling of the image and from
which invariant features can be computed [4]. In [10] Karid is looking at the relation-
ship between scale, saliency and scene description in 2D images for correspondance
and matching problems. Saud [22] used shape token (scale, location and orientation)
to describe objects.

However this body of work has focused solely on functions defined on a regular
lattice and its applicability to unorganized point samplesis unclear.

Some problems are scale or resolution dependent but the bestscale/resolution can-
not be determined explicitely. The use of multiple scales/resolutions simultaneously
is then the best option. The resolution can be considered simultaneously but indepen-
dently such as in [8] with histograms or the statistical relationship between signature
at different scale learned like in [2].

In [19] the authors determines the relationship , at multiple scale, between intensity
images of natural images and their corresponding depth images. The goal is to be able
to performed scene inference on partial range images. Similarly in [26] the author look
at such relationships but to analyze the human perception system. Such research was
initiated by Mumford and co-authors by looking at range image statistics [9].

In the domain of point sampled data, efforts have been made toaddress the problem
of scale for surface reconstruction and feature extraction. The tensor voting framework
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in [23] equated scale to the region of influence of each tensor, and used it for fine-to-
coarse analysis for surface reconstruction. However, no direct relation could be drawn
between a choice of region size for tensor voting and that forcomputing a represen-
tative feature for classification. Work in [6] usesk-neighborhoods to compensate for
differences in sampling rate before computing eigenvalue-based features for detecting
surfaces, creases and borders. There was no guarantee presented that a certain fixed
choice ofk would be representative of the underlying surface at all points.

Tang et al. [24] use a Kalman filter-based discontinuity preserving line-smoother to
detect junctions in 2-D scans. Successive iterations of thesmoothing algorithm defined
increasing scales of data. However, the method was focused to data modeled as piece-
wise lines and not applicable to classification. Work in [18]classifies points based
on eigen-values of the local covariance matrix in itsn-neighborhood. They define a
measure of deviation from planarity at a point that is a function of the eigen-values.
It is observed that the value of the scale (n) that maximizes the measure for 1D sinu-
soidal signals is related to the wavelength of the signal. The scale corresponding to
the maximum value is then chosen for computing the feature. However no theoretical
guarantees are made regarding suitability of the proposed measure for 3D surfaces or
its optimality for classification.

Sara, in [21], used a bottom-up approach to recover the scenegeometry from 3-D
data generated from a multi-head stereo camera system. Local oriented primitive are
extracted at different scale, support region size, then connected.

Finally we would like to mention the work on analysis of galaxy distribution from
[20, 3]. The authors are interested in comparing cosmological model with observations
by the mean of statistical analysis of the shape distribution and the morphology of the
two data sets. The technique, very time consuming and not applicable in our context,
rely on using 3-D wavelet transform.

In contrast, this paper proposes to use a neighborhood size consistent with the es-
timate of local geometry at a point. We make use of recent workin computational
geometry [17, 16] and compute a neighborhood size that minimizes an upper bound
on expected angular error between the normal estimated at a point through Principal
Component Analysis (PCA) and the true normal. The quality ofthis estimate is im-
proved with knowledge of sensor geometry and error characteristics. A by-product of
this process is an estimate of the local covariance matrix that is most consistent with
the surface geometry. The eigen-values of this covariance matrix are used in a Bayes
classifier to perform point-wise classification of the scene.

3 Approach

The core of this section is based on the work of Mitra et al presented in [17, 16], but
we depart from those papers in several original ways: 1) we propose an approach to the
estimation of the two critical parametersd1 andd2 (Section 3.1.4), 2) we introduce a
modification of algorithm to estimate the optimal support region size that is robust to
the presence of multiple manifolds (Section 3.1.5), 3) we evaluate the complexity of
the approach with in mind implementation on-board a mobile robot (Section 3.1.6), and
finally 4) we put the problem in the context of classification (Section 3.2). The reader
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will realize that we detail fully the equations and keep the key parameters (density,
curvature) visible to be able to intuit theirs relative influence.

3.1 Normal Estimation in 3-D

This section details the analysis of normal estimation on surfaces in 3-D point cloud
data (PCD) as summarized in [17, 16]. We start with a set ofNp points, pi =
[

xi yi zi

]T
, drawn at random from a surface inR3. The goal is to compute the

normal at each point of a point cloud with greatest accuracy.This is done by choos-
ing a spatial neighborhood sizer that minimizes theexpectedangular deviation of the
computed normal at a point from its true normal. In contrast to the analysis in [17], we
express the unknown parametersexplicitly in terms of data dependent quantities and
record their dependence on the data distribution and sensormodel.

The total least-squares (TLS) estimate of the normal to a setof k pointspi is given
by the eigen-vector corresponding to the smallest eigen-value of the covariance matrix

M =
1

k

k
∑

i=1

(pi − p̄)(pi − p̄)T =





m11 m12 m13

m12 m22 m23

m13 m23 m33



 (1)

wherep̄ = 1
k

∑k
i=1 pi. Note thatM is always symmetric positive semi-definite

(M � 0) and thus has non-negative eigenvalues.
We now review the assumptions made by Mitra et al in [17, 16] and discuss their

validity in the context of our framework:

(A1) Centered data: Without loss of generality, the datasetis centered about the origin
O which is the point of interest. The z-axis is the normal to thesurface atO and
the points of the PCD in the sphere of radiusr aroundO are i.i.d samples of a
topological diskR on the underlying surface. We may then model the surface as
a functionz = g(x, y) that isC

2 continuous over ther-disk.

(A2) Spatial density: There exists anr0 < γ such that a sphere of radiusr0 anywhere
in R contains at leastk0 > 0 points. This implies that data has no holes and
has spatial densityρ > ρ0 > 0 everywhere. This assumption holds for full
3-D models. However, it will break when scanning large scalenatural scenes,
because there will be holes caused by range shadows, and discontinuities at the
boundaries of the scans. Moreover, as it is shown in Section 4.3.1, the point
density decreases as distance from point to sensor increases.

(A3) Term zi is observed with i.i.d. noiseni ∼ N that is identically distributed
over the intervalR with zero mean, varianceσ2

n and lies in the range[−n, n].
The datasets used in Section 4 satisfy this assumption. The novelty here is that
the noise varianceσ2

n depends on the distance of the point to the sensor. It is
determined by sensor calibration results (c.f. Section 4.2.2).

(A4) Bounded curvature in some neighborhood around the interest point: There exists
a positive constantκ such that the HessianH of g satisfies‖H‖2 ≤ κ in the
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r-neighborhood. In Section 3.1.5, we show a case where this assumption is
violated and we propose a modification to account for it.

(A5) Noiseσn and curvatureκ are small: This in turn implies thatm11 andm22 are
the two dominant entries inM .

We proceed by computing bounds on the values inM and then use them to compute
a bound on the angular error in the estimated normal atO.

3.1.1 Bounding entries ofM

m11 andm22 By definitionm11 = 1
k

∑k
i=1(xi − x̄)2. The assumption of the points

being evenly distributed in thexy-plane boundsm11 in the following interval:

θ1r
2 ≤ m11 ≤ r2 (2)

whereθ1 ∈ [0, 1]. Symmetrically, the same applies form22.

m12 By definition,

|m12| =

∣

∣

∣

∣

∣

1

k

k
∑

i=1

(xi − x̄)(yi − ȳ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

k

k
∑

i=1

xiyi −
1

k2

k
∑

i=1

xi

k
∑

i=1

yi

∣

∣

∣

∣

∣

Let’s first rewrite some elements of basic probabilities. Suppose we have a random
variableX s.t. its instances arex1, x2, ..., xn. Then, an estimator for the mean is

x̂ =
1

n

n
∑

i=1

xi

Thebiasof the estimator is simply its expectation:

E[x̂] =
1

n

n
∑

i=1

E[xi] = E[X]

Similarly, its variance is

V[x̂] =
1

n2

n
∑

i=1

V[xi] =
1

n
V[X] (3)

Now, let’s compute the expectation ofm12:

E[m12] = E[
1

k

k
∑

i=1

xiyi] − E[
1

k2

k
∑

i=1

xi

k
∑

i=1

yi]

= E[XY ] − E[X]E[Y ]
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We assumeX andY to be independent. Therefore,E[XY ] = E[X]E[Y ] and
E[m12] = 0. Now, using the assumption thatV(xiyi) = θ2r

4 and using equation (3),
the variance ofm12 is expressed as:

V[m12] =
1

k2

k
∑

i=1

V[xiyi] +
1

k4

k
∑

i=1

V[xi]

k
∑

i=1

V[yi]

Because this second term can be made arbitrarily large, we derive the following
upper bound on the variance ofm12:

V[m12] ≤
1

k
θ2r

4

Chebyshev’s Inequality. Letµ = E(X) andσ2 = V(X). Then

P

(

|X − µ| ≤ σ√
ε

)

= 1 − ε (4)

It follows from Chebyshev’s Inequality that with probability 1 − ε:

|m12| ≤
√
θ2r4√
εk

=

√
θ2r4

√

ερr2
=
√

θ2
r√
ερ

≤
√

θ2
r√
ερ

m13 andm23 We know from the Taylor expansion ofg(x, y) that:

g(xi, yi) = g(0, 0) + xigx(xi, yi) + yigy(xi, yi)+

1

2

{

x2
i gxx(xi, yi) + 2xiyigxy(xi, yi) + y2

i gyy(xi, yi)
}

+ ...

= g(0, 0) + xigx(xi, yi) + yigy(xi, yi)+

1

2

{

x2
i gxx(ψi, ϕi) + 2xiyigxy(ψi, ϕi) + y2

i gyy(ψi, ϕi)
}

=
1

2

{

x2
i gxx(ψi, ϕi) + 2xiyigxy(ψi, ϕi) + y2

i gyy(ψi, ϕi)
}

for someψi ∈ [0, xi] andϕi ∈ [0, yi].
If we assume that the surface is rotationally invariant, then gxy(ψi, ϕi) = 0 and the

expression forg(xi, yi) simplifies to:

g(xi, yi) =
x2

i

2
gxx(ψi, ϕi) +

y2
i

2
gyy(ψi, ϕi)
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Furthermore, from assumption (A4),|gxx(x, y)| < κ, |gyy(x, y)| < κ ∀x, y ∈ R,
we have:

|zi| = |g(xi, yi)|

≤ κ

(

x2
i

2
+
y2

i

2

)

+ ni ∀xi, yi ∈ R
(5)

From the definition ofm13:

|m13| =

∣

∣

∣

∣

∣

1

k

k
∑

i=1

xizi −
1

k2

k
∑

i=1

xi

k
∑

i=1

zi

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

k

k
∑

i=1

xizi

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

k2

k
∑

i=1

xi

k
∑

i=1

zi

∣

∣

∣

∣

∣

Substituting Eqn.5, and since|xi| ≤ r and|yi| ≤ r:

|m13| ≤
∣

∣

∣

∣

∣

1

k

k
∑

i=1

(

xiκ

(

x2
i

2
+
y2

i

2

)

+ ni

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

k2

k
∑

i=1

xi

k
∑

i=1

(

κ

(

x2
i

2
+
y2

i

2

)

+ ni

)

∣

∣

∣

∣

∣

≤ 2κr3 +

∣

∣

∣

∣

∣

1

k

k
∑

i=1

xini

∣

∣

∣

∣

∣

+ r

∣

∣

∣

∣

∣

1

k

k
∑

i=1

ni

∣

∣

∣

∣

∣

Under the assumption thatX and N are independent, we note thatE[xini] =
E[xi]E[ni] = 0 sinceE[ni] = 0 and V(xini) = Cr2σ2

n. Using Chebyshev’s in-
equality, we have that with probability1 − ε:

|m13| ≤ 2κr3 + C

√

r2σ2
n

εk
+ r

√

σ2
n

εk

≤ 2κr3 + θ3
σn√
ερ

(6)

whereθ3 = C+1. Symmetrically, the same procedure applies tom23, by replacing
xi by yi.
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m33 Finally form33,

m33 =
1

k

k
∑

i=1

z2
i − 1

k2

(

k
∑

i=1

zi

)2

≤ 1

k

k
∑

i=1

z2
i

≤ 1

k

k
∑

i=1

(κ2r4 + 2κnir
2 + n2

i )

≤ 1

k

k
∑

i=1

2(κ2r4 + n2
i )

≤ 2κ2r4 + θ4σ
2
n

(7)

To summarize, we have defined the following bounds for each entry of M:

θ1r
2 ≤ m11 ≤ r2 |m12|

√
θ2

r√
ερ |m13| ≤ 2κr3 + θ3

σn√
ερ

- θ1r
2 ≤ m22 ≤ r2 |m23| ≤ 2κr3 + θ3

σn√
ερ

- - m33 ≤ 2κ2r4 + θ4σ
2
n

3.1.2 Eigen analysis

We may write the covariance matrixM as

M =





m11 m12 m13

m12 m22 m23

m13 m23 m33





∆
=

[

M11 M13

MT
13 m33

]

(8)

Gershgorin Circle Theorem. For ann× n matrix, define

Ri =
n
∑

j
i6=j

|Mij |

Then each eigen-value ofM is in at least one of the discs

{z : |z −Mii| ≤ Ri}
Let λ1 ≤ λ2 be the eigen-values ofM11. Using the Gershgorin Circle Theorem

(GCT), we have thatm11 − |m12| ≤ λ1 ≤ λ2 ≤ m22 − |m12|
Let us define a new dimensionless quantityα as:

α
∆
=

|m13| + |m23| +m33

m11 − |m12|
(9)

Let λ be the smallest eigen-value ofM . Using GCT again givesλ ≤ |m13| +
|m23| +m33 = α(m11 − |m12|) ≤ αλ1. If we take the eigen-vector corresponding to
the minimum eigen-value ofM as[~vT, 1]T, then

[

M11 M13

MT
13 m33

] [

~v
1

]

= λ

[

~v
1

]
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Expanding to solve the individual equations gives

~v = − (M11 − λI)−2
[

I + (M11 − λI)−2M13M
T
13

]−1

× [(M11 − λI)M13 +M13(m33 − λ)]
(10)

‖~v‖2 ≤
(

‖(M11 − λI)−2‖2

‖(I + (M11 − λI)−2M13M
T
13)

−1‖2

)

×
(

‖(M11 − λI)‖2 ‖M13‖2

+ ‖M13‖2 |(m33 − λ)|
)

(11)

It can be shown that

‖(M11 − λI)−2M13M
T
13‖2 ≤ (1 − α)−2α2 (12)

and hence

‖(I + (M11 − λI)−2M13M
T
13)

−1‖2 ≤ (1 − α)2

1 − 2α
(13)

It then follows that:

‖~v‖2 ≤ 1

(1 − α)2λ2
1

(1 − α)2

1 − 2α
(λ2αλ1 + (αλ1)

2

≤ α(1 + α)

1 − 2α

λ2

λ1
≈
(

λ2

λ1

)

α

(14)

for smallα.
Hence the angle between the computed normal and the true normal is bounded from

above by

tan−1 ‖~v‖2 ≤ λ2

λ1
α ≤ (m22 + |m12|)

(m11 − |m12|)
α (15)

3.1.3 Error bound for the estimated normals

From Eqns. (2),(3.1.1),(6) and (7), we can replace eachmij term in Eqn (9) by its
appropriate bound value to give:

α ≤ 2κ2r4

θ1r2
+
θ4σ

2
n

θ1r2
+

2
∣

∣

∣
2κr3 + θ3σn√

ερ

∣

∣

∣

θ1r2

Since the valuesκ, r, σn andρ are always positive, by simplifying and re-arranging,
we get:

α ≤ 2

θ1
κ2r2 +

θ4
θ1

σ2
n

r2
+

4

θ1
κr +

2θ3
θ1

σn

r2
√
ερ

Let us defineβ
∆
= m12/m11 and consider cases whereβ < 1/2. Since we have

λ1

λ2
α ≤ m22

m11

(1 + β)

(1 − β)
α ≤ Kα (16)
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we have from the previous lower bound

λ1

λ2
α ≤ K

(

2

θ1
κ2r2 +

θ4
θ1

σ2
n

r2
+

4

θ1
κr +

2θ3
θ1

σn

r2
√
ερ

)

≤ K

(

θ4
θ1

σ2
n

r2
+

4

θ1
κr +

2θ3
θ1

σn

r2
√
ερ

) (17)

Differentiating Eqn.(17) w.r.tr gives the required result:

r =

(

1

κ

(

θ3
σn√
ερ

+
θ4
2
σ2

n

))
1
3

(18)

where the constantsd1 = θ3 andd2 = θ4/2, as given in [17, 16] are to be deter-
mined experimentally. Note thatd1 andd2 depend only on the distribution of the PCD,
since, as shown in Eqns (6) and (7),θ3 is related toV(xini) while θ4 is related toσn.

3.1.4 d1 and d2 estimation

The constants ofd1 andd2 of Equation 18 needs to be estimated from the dataset. In
[16], they mention that those constants were chosen by trialand error, and that they
picked the one resulting in visually good results. In this section, we explore different
ways of estimating those constants.

By simply re-arranging Equation 18, we see that it is now linear ind1 andd2:

r3 =
1

κ

(

d1
σn√
ερ

+ d2σ
2
n

)

We want to minimize the following equation:

min

n
∑

i=0

∥

∥

∥

∥

1

κi

(

d1
σn√
ερi

+ d2σ
2
n

)

− r3i

∥

∥

∥

∥

2

This is done the following way.

1. Fix ε, k0 and computeσn (either from sensor or from synthetic data).

2. For every pointxi:

(a) Findri that minimizes angular separation between computed and true nor-
mals at that point

(b) compute the local densityρi = k0

πs2 wheres is the distance from thek0th
nearest-neighbor to the pointxi.

(c) compute the local maximum curvatureκi = 2d
µ , whered is the distance

from thexi to the TLS plane fitted on the neighborhood defined byri, and
µ is the average distance from the pointxi to all its neighbors.
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(d) build the linear system









σn

κ0
√

ερ0

σ2
n

κ0

...
...

σn

κn
√

ερn

σ2
n

κn









[

d1

d2

]

=







r30
...
r3n






(19)

3. Solve the system in Eq. 19 by linear minimization using SVDor pseudo-inverse.

However, this method doesn’t yield satisfying results because outliers are numer-
ous, and least-squares method are typically sensible to them. A way to improve this
is by using RANSAC. The linear system in Eq. 19 is first built the exact same way as
before. Then, the firstm rows in the matrices are chosen, andd1 andd2 are estimated
using linear least-square applied on the resulting matrices. The score of the result is
then estimated by counting the number of inliers, i.e. points for which the computed
constants yield a good approximation of the desired radius.This process is repeated
several times, and the constants that have the best score arekept.

The main drawback of trying to estimated1 andd2 is that it requires knowledge of
ground truth normals to estimate the best support region forevery point. In real world
scenes (Section 4.4), we have no such information and we can only evaluate results
visually. Therefore, a calibration scene with known normals at each point would be
necessary to perform such estimation. For example, the dataset in Section 4.3.2 might
be appropriate since all points lie on surfaces of known relative orientation.

3.1.5 Estimating the optimal support region size

The optimalr is estimated using an iterative procedure based on the suggestions in
[17]. An initial value ofk = k(i) is used to compute a starting value of curvatureκ(i)

andr(i) is taken as the distance to thek-th nearest neighbor. An estimate of density
ρ(i) is also obtained fromk = k(i). The value ofσ2 is taken from the sensor model as
a fixed function of the distance of the point from the laser. The value ofr(i+1) for the
(i + 1)-th iteration is then computed using Eqn.(18).k(i+1) is then computed as the
number of points in a neighborhood sizedr(i+1) and the process is continued.

We observed that the iterative procedure suggested in [17, 16] had poor conver-
gence properties when assumption (A4) is broken. As shown inSection 4.3.2, this
can happen when two manifolds are located in the region of interest. Figure 2(a)-(c)
shows the computed values ofr(i) oscillating for points selected near regions of higher
curvature, as in the case of intersecting walls in Figure 7. We modify the algorithm
to perform damped updates tok using an infinite impulse-response (IIR) filter of the
form:

k(i+1) = γk
(i+1)
computed+ (1 − γ)k(i) (20)

The parameterγ defines how much importance is given tok(i+1) versusk(i). Fig-
ure 2(b)-(d) shows that the values orr after convergence do not depend on the initial
k(0). It also illustrates that the IIR filter ensures controlled updates in each iteration
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Figure 2: Plot of estimated support region size (r) at each iteration showing improve-
ment with damped updates using (a)-(b) an initial value ofk(0) = 50, and (c)-(d)
k(0) = 200. The support region sizes converge to the same value, independently of
k(0).

and assures sensible values ofr near intersections of manifolds. This is reflected in the
smaller support-region size near the intersections of the two walls in Figure 7 and in
the region where the tree trunks meet the ground in Figure 8.

Figure 3 illustrates the progression of the damped and undamped algorithm with
different values ofk(0) for a typical point in the scene of Figure 7. In this example,
the damped algorithm converges to a scale at which the normalestimation error is
very low. Without dampening however, convergence is never reached and a high error
is maintained. The final scale determined by the algorithm does not depend on the
initial k(0) for 70% of points with the dampening, as opposed to only 28% without it.
Therefore, the IIR filter reduces error in normal estimation, and makes the process less
dependent on the initialk(0).

3.1.6 Complexity analysis

The most costly operation of the algorithm is the nearest-neighbor search. It is needed
to compute the TLS plane and approximate the local curvatureand density at each
point. [1] has shown that an approximate nearest-neighbor search can be done in two
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Figure 3: Comparison between evolution of normal estimation error for the undamped
and damped versions of the algorithm, with (a)k(0) = 50 and (b)k(0) = 200. In the
two cases, the damped algorithm converges to the same low error value in less than 20
iterations.

steps. First, it requires a data preprocessing stage that can be done inO(dn log n) time.
In our case,d = 3, so preprocessing is of complexityO(n log n). Then, finding the
k-nearest neighbors requiresO(kd log n), which simplifies toO(k log n) in our case.

Since thek-nearest neighbor search is done for then points and the number of
iterations needed to reach convergence is bounded by a constantmaxCount, the total
complexity of the algorithm is thenO(n log n) + O(nk log n). Sincek is bounded
by the constantkthreshold, by choosingkthreshold � n and sincekthreshold doesn’t
depend onn, we can approximate the complexity byO(n log n).

3.2 Terrain Classification

We focus on segmentation of ladar data into 3 classes –clutter to represent vegetation,
linear structuresto represent thin objects like wires and tree branches, andsurface
to capture ground, rock and tree-trunk surfaces. Our approach for classification is
based on computing saliency features [25] that capture the local geometry at a point in
terms of spatial distribution of points in its neighborhood. The distribution of saliency
features is learned using a Gaussian mixture Model (GMM) automatically using the
Expectation-Maximization (EM) algorithm. Given the distribution learned off-line, we
can classify new data online using a Bayes classifier.

3.2.1 Saliency features

Our choice of features is inspired by the tensor voting framework in [23]. However,
instead of looking at the distribution of surface normals ina neighborhood, we directly
inspect the local distribution of 3-D points. This is done bycomputing the covariance
matrixM ( Eqn. (1) ) corresponding to the scatter of the points in a local neighborhood,
the support region.

The size of the support region defines thescaleof the feature and is chosen to be the
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radiusr computed in Section 3.1.5. Note thatM is computed in the intermediate steps
while estimatingr, and is representative of the local geometry of the neighborhood. Let
λ1 ≤ λ2 ≤ λ3 be the eigen-values ofM corresponding to eigen-vectorsm1,m2,m3

respectively. In case of clutter,λ1 ≈ λ2 ≈ λ3 and there is no dominant direction. For
points on surfaces,λ3, λ2 � λ1 ande3, e2 span the local plane of observations. For
linear structuresλ3 � λ2, λ1 ande3 is the dominant direction locally. Our saliency
feature is defined as a linear combination of eigen-values inthe 3-vector:





point-ness
surface-ness
curve-ness





∆
=





λ1

λ2 − λ1

λ3 − λ2



 (21)

3.2.2 Bayesian classification

Using the features of Eqn. (21) and a dataset labeled into the3 classes, we train
a GMM using the EM algorithm. Let theni components of the Gaussian mixture
in the i-th class be specified by the set of weights, means and covariances asCi =
{(w(i,j), µ(i,j),Σ(i,j))j=1...ni

} for i = 1, 2, 3. The likelihood of a new pointx with
featuref(x) ∈ R

3 computed with Eqn.(21) belonging to classCi is given by:

P(f(x)|Ci) =

ni
∑

j=1

( w(i,j)

(2π)3/2|Σ(i,j)|1/2

× e
− 1

2 (f(x)−µ(i,j))
TΣ−1

(i,j)
(f(x)−µ(i,j))

)

(22)

The estimated class is the maximizer of the class posterior:

Cest = arg max
i

(P(Ci|f(x)))

= arg max
i

(P(f(x)|Ci)P(Ci))
(23)

whereP(Ci) represents the corresponding class prior.

4 Experiments

4.1 Sensors and terrains

To validate the approach presented we used data collected with a Minolta scanner,
an actuated SICK laser, a Zoller-Fröhlich high resolution scanner [5] and the CMU
autonomous helicopter [15]. The Minolta Vivid 700 is a laserline striper that produces
a 200× 200-pixel range image with 8 bits resolution. A SICK LMS-291is attached to
a custom made scanning mount. The laser collects 60,000 points per scan. The angular
separation between laser beams is1

4 degree over 100 degrees field of view. The angular
separation between laser sweeps is2

3 of a degree over 115 degrees. The Zoller-Fröhlich
(Z+F) LARA 21400 has a360o ×±35o FOV, producing8000× 1400 pixels range and
reflectance images of the environment up to 21.4 m. The CMU autonomous helicopter
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Figure 4: Normal estimation error for the bunny model and normals at selected points.

is equipped with a modified Riegl laser range finder that is capable of collecting 3D
color data, with 10 cm accuracy.

We used these sensors to collect data from outdoor environments in urban settings,
in natural open space and in a forest.

4.2 Validation of computed normals

In this section, we validate our implementation of the algorithm proposed by [17] by
testing it on simple models for which the ground truth normals are known at each point.
We first try on full 3-D models that satisfy the assumptions made in Section 3.1, then
move on to data collected from the sensors previously described.

4.2.1 3-D models

We tested using the bunny model with the same parameters as in[17]. More specifi-
cally, we usedd1 = 1, d2 = 4, k0 = 15, ε = 0.1, kthreshold = 300 andmaxCount = 10.
Ground truth normals are computed from the mesh. Figure 4 shows that the normal es-
timation error is generally very low, except on regions of high curvature. The error is
illustrated by a color code, shown on the right of the figure. Points with highest er-
ror are colored in red, whereas light blue indicates low error. The error is the angular
difference between the true and estimated normals and is expressed in degrees. The
support regions are also shown for various points, along with the normals computed
from those regions. The similarity of our results compared to those obtained in [17]
confirm the expected behavior of the algorithm on full 3-D models.
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4.2.2 Aerial ladar scan

A major difference between real datasets and full 3-D models, such as the bunny, is
the distance of the scene to the sensor during the scanning process. With small objects,
the sensor is close to the object, therefore acquisition noise is small. However, outdoor
natural scenes have dimensions that make scanning at close range impossible, thus
increasing noise.

We tested this approach using data from an open space naturalenvironment contain-
ing a 1.5 m high pile of gravel surrounded by short cut and uncut grass. We collected
high resolution, high density data with the Z+F laser. We also collected low-resolution
aerial data for the same scene with the CMU autonomous helicopter. The two data
sets are co-registered. We triangulate the Z+F data to produce the ground truth used
to estimate the normal reconstruction error in the aerial data. The parameters used are
the same as before, except that we increasedmaxCount to 20 to allow more time for
convergence.

Figure 5 shows the results obtained. Figure 5-(a) shows the computed normals and
the support regions for selected points in the aerial data. Figure 5-(b) shows the nor-
mal and support regions for the same points but overlaid on top of the high-resolution
ground data. Points in Figure 5-(a) are color-coded by the difference between the error
in estimated normals and the lowest possible error obtainable for any choice of sup-
port region in the aerial data. This lower bound on the error is computed by fitting a
least-square plane on thek-nearest neighbors, withk ranging fromk0 to kthreshold,
and retaining the smallest angular difference between the normal to the plane and the
ground truth normal. In that example, the lower bound on the error averaged over all
points is 5.1 degrees, while the method gives an average error of 9.9 degrees. Even
with considerable noise, the algorithm behaves well by giving results close to the low-
est possible error.

4.3 Validation of support regions

In this section we analyze the influence of diverse factors onthe choice of support
region size.

4.3.1 Outdoor ground scan

Another important difference between datasets used in [17]and our experiments lies
in the greater size of real scenes. The former allows very high and constant density
throughout the model, whereas in our case, the density varies with the distance to the
sensor and may become very low. The effect of this important difference is illustrated
in figure 6, which shows a scan of the ground taken by the SICK laser. The ground
truth is defined as normals pointing along the positivez-axis.

Moreover, because the distance from scene points to the sensor may vary consid-
erably over the dataset, the noise on each data point vary accordingly. To account for
this effect, the noise standard deviationσn is computed using calibration data. Its value
ranges fromσmin = 0.0037 at 1 meter, andσmax = 0.0125 at 60 meters. As expected,
the support region size grows as points are further away fromthe sensor. Moreover, the
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(a)

(b)

Figure 5: Normal estimation for the aerial data. Normal estimation and corresponding
support region for selected points overlaid on top of the aerial data (a) (see text for
explanation of the color coding) and ground data (b) with theelevation color coded.

discontinuities located at the boundaries of the laser FOV represent another important
difference and break the assumption (A2) stated in Section 3.1. In this case, it doesn’t
affect the performance of the algorithm because all the points lie in the same plane.
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Figure 6: Plot of ground points with estimated support region size (r). Note the sig-
nificant decrease in spatial density and corresponding increase inr with distance from
the laser position (origin)

4.3.2 Scan of wall corner

This dataset is a scan of walls made using the SICK laser, and the sensor was placed
at a distance of approximately 30 meters from the scene. Again,σn is computed using
calibration data, and the same parameters are used in the algorithm. The scene presents
a sharp change in curvature at the junction of both walls. This implies the presence
of two different manifolds in the neighborhood of points located in the vicinity of
that region. We note that the assumption (A5) in Section 3.1 is broken. Intuitively, we
would expect that the support region should be relatively small near the junction, as not
to include points lying on a different manifold. However, Figure 7 shows that it is not
the case with the original algorithm. Undamped iterations cause the algorithm to stop
at arbitrary values after a fixed number of iterations, with no guarantee of convergence.
This results in badly estimated normals, especially aroundthe discontinuity region.
The results obtained with the IIR filter withγ = 0.5 (Figure 7) introduced in Section
3.1.5 corresponds to what we expected. The normal estimation is much better for the
points lying near the corner, and is still as good for the other points. We obtain an
average improvement of10o in normal estimation using the dampening.

4.3.3 Outdoor natural terrain

This dataset was obtained using the SICK scanner and by looking at outdoor natural
terrain, comprised of ground, trees and vegetation. Again,we would expect the support
region to be small near sharp angles in the geometry of the scene, and larger if the scene
is flat, or if the density is small. For this dataset, no groundtruth is available, so the
results are evaluated visually.

Figure 8 shows the support region determined by our algorithm for different points
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(a)

(b)

Figure 7: Estimate of support region size for wall corner (a)without and (b) with IIR
filter to k in each iterations.

chosen at interesting locations in the scene. For example, the support regions of points
located near the boundary of tree trunks and ground are much smaller than those in the
center of the ground. This corresponds to the expected behavior.
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Figure 8: Support region sizes for selected points in outdoor vegetated terrain. Points
are color-coded by height.

4.4 Ground-based ladar classification of natural terrain

In this section, we apply the algorithm to the classifier previously described in Section
3.2.2. The dataset is divided into cubic voxels with 10 cm edges. The classifier is then
trained at scales ranging from 0.1 cm to 2 m using manually labeled data. The best scale
is chosen by applying the method and rounding the given support region to the nearest
subdivision. Figure 9-(a) shows the classification resultsusing fixed support region
size (radius of 40 cm). Obvious misclassification errors aremade near the junction of
the leftmost tree and the ground, and on the ground at a distance. Figure 9-(b) shows
the improvement over the old strategy.

We manually labeled the data to produce ground truth classification. Over the
whole dataset, 9575 points are labeled as surfaces. Using the old strategy, 1918 points
are mis-labeled and identified either as clutter or linear structures. The new strategy is
able to reduce this number to 1343 mis-classified points, an improvement of approxi-
mately 30 percent. On the other hand, of the9575 − 1918 = 7657 correctly classified
points, only 172, or 2.25 percent are corrupted by the new method.

4.5 Comparison with multi-scale approach

A näıve alternative to the proposed algorithm is to train a different classifier for each
scale in the set of considered scales, evaluate a test point on all the classifiers, and
simply assign it the label returned with most confidence (highest posterior probabil-
ity). However, when applying this strategy (with scales ranging from 0.1 m to 2 m)
to outdoor natural terrain such as the one shown in Figure 9, we obtain a mere45%
of correctly classified points, as opposed to84% with the method presented in this pa-
per. As expected, the naı̈ve strategy incorrectly favors very large support regionsthat
include a large number of out-of-class points to give the commonly incorrect label of
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(a) (b)

(c) (d)

Figure 9: Outdoor terrain classification: (a-b) from the data set using in Figure 8 and
(c-d) from data collected with the Riegl laser scanner. Points are colored green (vegeta-
tion), red (surface) or blue (linear structure). Darker shades indicate higher confidence
in the estimated label. (a/c) Former strategy. (b/d) New strategy.

“vegetation” with high confidence.

5 Conclusions and Discussion

This paper presented a geometry-driven approach for choosing the scale of observation
for classifying point-sampled surfaces in outdoor range data. Extensive experiments
with outdoor and synthetic datasets confirm our hypothesis that feature computation
at scales that are optimal in terms of inferred local geometry improve the quality of
classification.

One implicit hypothesis of the proposed approach is that there exists at least one
scale at which the data is classified correctly. Closer analysis of points misclassified
in Figure 9-(b) in the boundary regions of the dataset show that this hypothesis is vi-
olated. We attribute this to (1) the introduction of edge-effects in the chosen features
(Eqn. 21) causing them to be undescriptive of the local geometry, and (2) the possibly
poor discriminative ability of the classifier. The assumption of an underlying surface
of bounded curvature at each point is also violated for scattered point clouds. In some
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regions this results in a reduction of confidence for the vegetation class. The design
of more representative shape features as well as eigen-analysis for curved and porous
geometry is the subject of our current research.
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