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Abstract

This document is the extended version of the work publish¢tll]. Laser-based range
sensors are commonly used on-board autonomous mobilesravatbstacle detection
and scene understanding. A popular methodology for amadyzoint cloud data from
these sensors is to train Bayesian classifiers using locathputed features on labeled
data and use them to compute class posteriors on-line atgeshe. However, data
from range sensors present a unique challenge for featanpwtation in the form of
significant variation in spatial density of points, bothass the field-of-view as well as
within structures of interest. In particular, this posesphoblem of choosing a scale for
analysis and a support-region size for computing meanirig&iures reliably. While
scale theory has been rigorously developed for 2-D imagegqguivalent exists for
unorganized 3-D point data. Choosing a satisfactory fixatesaver the entire dataset
makes feature extraction sensitive to the presence oféiffenanifolds in the data and
varying data density. We adopt an approach inspired by tetamelopments in com-
putational geometry [17] and investigate the problem obmatic data-driven scale
selection to improve point cloud classification. The applhoia validated with results
using real data from different sensors in various enviramsiéndoor, urban outdoor
and natural outdoor) classified into different terrain typeegetation, solid surface and
linear structure).
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1 Introduction

Autonomous havigation in vegetated terrain remains aehgihg problem in robotics
due to the difficulties in modeling the high variability of tdoor environments. In
this effort, laser range-finders have proven to be invakialhie to their high speed
and direct sensing of depth information in the form of unaiged 3-D point clouds
from objects in the scene. Depth cues allow more natural fimzdef smooth, porous
and linear surfaces as 3-D textures. Labeled data can thesdibto compute 3-D
features and train classifiers for distinguishing loadrngpsurfaces, vegetation and
linear structures respectively.

However the perspective sensing geometry of laser-randernintroduces sig-
nificant variation in spatial density of observed pointsthbover the field-of-view as
well as within the objects of interest. This poses the qoastif how to select the
size of the support region, acaleof observation, for computing 3-D features that
are representative of the local geometry. Scale theory hiab ¢iterature for 2-D and
3-D images but no equivalent exists for unorganized pantysled data. One method
to circumvent this problem is to use a fixed scale that is featisry over the entire
dataset. This however compromises feature computatidm ibategions where data
is sparse as well as near the spatial boundaries betwednboeilgg data belonging to
two different classes. Another approach is to consideripialscales at the same time.
This approach clearly introduces a computational burdeniasreases the dimension
of the data. Sensor noise also confounds the feature cotiggufaocess as a larger
support region size may be needed to compensate for noise.

In Figure 1 we illustrates two problems associated withessalection: the pres-
ence of multiple manifolds in the support region and theal#g density of the data.
In Figure 1-(a) we can see that the tree trunk separatesvitdarge branches. The
junction area is classified as surfaces as the support regioompass the tree truck
and both branches. Similarly in Figure 1-(b) we can see tlmgtound data become
sparse as the distance to the sensor increase. In that casel adale classification
scheme will misclassify semantically those far away poasdinear even though the
point inside the area of interest define a line.

Figure 1: Issues associated with scale selection. (a)idmsct(b) Density.

This paper presents a technique for determining the scalbsdrvation of point-
sampled data by computing the optimal size of the suppoidmégr computing surface
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normals. Spatial features are then computed at this supjz@rtand used in a Bayes
classifier for 3-D data segmentation. The method implic@i8gumes that the scale that
is representative of local geometry at a point is also thetbatebest discriminates its
true class in feature space. We validate this assumptiongfrextensive experiments
and detail our approach and its limitations in the sectibas fiollow.

Section 2 presents the related work on scale selection inSebtion 3 details the
estimation of the support size and our proposed algorithmSdction 4 we present
classification results on real outdoor data, and then suimendine contributions in
Section 5.

2 Related work

It is widely accepted that real world objects appear as nmgguni entities at different
scales of observation. This has driven the need for rigomats-driven formalisms to
identify representative scales in data, both for data sspr@tion as well as identifica-
tion.

In [7] the authors emphasize the difference between changa image (distance
scaling) and change in the human perception of that imaf@rfmation scaling), as the
distance to the visual pattern varies.

Pioneering work by Lindeberg [14] equated analysis of cardus signals at suc-
cessive scales to the suppression of local extrema, andeshitvat successive smooth-
ing of the signal by gaussian convolution satisfied this priyp By this principle,
the scale at which the signal response to a normalized eliffid operator achieves
local extrema is a characteristic length of the structurthésignal. This methodol-
ogy has been extended to discrete signals in 1-D, 2-D and &ttleds [13, 12]. The
scale-invariance property has since been exploited axtdnsn computer vision as a
technique to extract regions with sizes that accommodatagmof the image and from
which invariant features can be computed [4]. In [10] Kadddoking at the relation-
ship between scale, saliency and scene description in 2Desfor correspondance
and matching problems. Saud [22] used shape token (scalgido and orientation)
to describe objects.

However this body of work has focused solely on functionsraefion a regular
lattice and its applicability to unorganized point samp¢esgnclear.

Some problems are scale or resolution dependent but thedsdstresolution can-
not be determined explicitely. The use of multiple scatesitutions simultaneously
is then the best option. The resolution can be consideredlsineously but indepen-
dently such as in [8] with histograms or the statistical tieteship between signature
at different scale learned like in [2].

In [19] the authors determines the relationship , at mudtiulale, between intensity
images of natural images and their corresponding depthémathe goal is to be able
to performed scene inference on partial range images. &imih [26] the author look
at such relationships but to analyze the human perceptistersy Such research was
initiated by Mumford and co-authors by looking at range imatatistics [9].

In the domain of point sampled data, efforts have been maaédress the problem
of scale for surface reconstruction and feature extracfiie tensor voting framework



in [23] equated scale to the region of influence of each temsat used it for fine-to-
coarse analysis for surface reconstruction. However, reztlielation could be drawn
between a choice of region size for tensor voting and thatdonputing a represen-
tative feature for classification. Work in [6] uséseighborhoods to compensate for
differences in sampling rate before computing eigenvalased features for detecting
surfaces, creases and borders. There was no guarantertpdedet a certain fixed
choice ofk would be representative of the underlying surface at attgoi

Tang et al. [24] use a Kalman filter-based discontinuity @réisg line-smoother to
detect junctions in 2-D scans. Successive iterations agit@othing algorithm defined
increasing scales of data. However, the method was focosgata modeled as piece-
wise lines and not applicable to classification. Work in [t8]ssifies points based
on eigen-values of the local covariance matrix inriteeighborhood. They define a
measure of deviation from planarity at a point that is a fiomcof the eigen-values.
It is observed that the value of the scalg that maximizes the measure for 1D sinu-
soidal signals is related to the wavelength of the signale 3¢ele corresponding to
the maximum value is then chosen for computing the featumeveder no theoretical
guarantees are made regarding suitability of the proposssune for 3D surfaces or
its optimality for classification.

Sara, in [21], used a bottom-up approach to recover the sgesom@etry from 3-D
data generated from a multi-head stereo camera system! dwdeated primitive are
extracted at different scale, support region size, themected.

Finally we would like to mention the work on analysis of gatadistribution from
[20, 3]. The authors are interested in comparing cosmaddgiodel with observations
by the mean of statistical analysis of the shape distribwiod the morphology of the
two data sets. The technigue, very time consuming and ndicapfe in our context,
rely on using 3-D wavelet transform.

In contrast, this paper proposes to use a neighborhood aimgstent with the es-
timate of local geometry at a point. We make use of recent vimgomputational
geometry [17, 16] and compute a neighborhood size that niesran upper bound
on expected angular error between the normal estimated @inatprough Principal
Component Analysis (PCA) and the true normal. The qualitthaf estimate is im-
proved with knowledge of sensor geometry and error chatiatitss. A by-product of
this process is an estimate of the local covariance matakithmost consistent with
the surface geometry. The eigen-values of this covariaratexrare used in a Bayes
classifier to perform point-wise classification of the scene

3 Approach

The core of this section is based on the work of Mitra et al gmésd in [17, 16], but
we depart from those papers in several original ways: 1) wpgse an approach to the
estimation of the two critical parametafs andds (Section 3.1.4), 2) we introduce a
modification of algorithm to estimate the optimal suppodioa size that is robust to
the presence of multiple manifolds (Section 3.1.5), 3) walate the complexity of
the approach with in mind implementation on-board a moloitet (Section 3.1.6), and
finally 4) we put the problem in the context of classificati@e€tion 3.2). The reader
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will realize that we detail fully the equations and keep tley barameters (density,
curvature) visible to be able to intuit theirs relative irfhce.

3.1 Normal Estimation in 3-D

This section details the analysis of normal estimation afasas in 3-D point cloud
data (PCD) as summarized in [17, 16]. We start with a sefVpfpoints, p; =
[xi Yi zi]T, drawn at random from a surface R®. The goal is to compute the
normal at each point of a point cloud with greatest accurdgys is done by choos-
ing a spatial neighborhood sizehat minimizes thexpectedcingular deviation of the
computed normal at a point from its true normal. In contraghe analysis in [17], we
express the unknown parametesglicitly in terms of data dependent quantities and
record their dependence on the data distribution and semsoel.

The total least-squares (TLS) estimate of the normal to afgepointsp, is given
by the eigen-vector corresponding to the smallest eigéuevat the covariance matrix

mi1 M2 MMasg

k
Z(Pi —P)(Pi —P) = |m12 M2z ma3 (1)
i=1 miz M2z M33

M =

x| =

wherep = % Zle p;- Note thatM is always symmetric positive semi-definite
(M > 0) and thus has non-negative eigenvalues.

We now review the assumptions made by Mitra et al in [17, 16] discuss their
validity in the context of our framework:

(A1) Centered data: Without loss of generality, the datesetntered about the origin
O which is the point of interest. The z-axis is the normal toghgace a and
the points of the PCD in the sphere of radiuaroundO are i.i.d samples of a
topological diskR on the underlying surface. We may then model the surface as
a functionz = g(z, y) that isC? continuous over the-disk.

(A2) Spatial density: There exists an < -~ such that a sphere of radiug anywhere
in R contains at leasty > 0 points. This implies that data has no holes and
has spatial density > py > 0 everywhere. This assumption holds for full
3-D models. However, it will break when scanning large sceltural scenes,
because there will be holes caused by range shadows, amhiiligcties at the
boundaries of the scans. Moreover, as it is shown in Secti8i dthe point
density decreases as distance from point to sensor insrease

(A3) Term z; is observed with i.i.d. noise; ~ N that is identically distributed
over the intervalR with zero mean, variance? and lies in the rangé-n, n].
The datasets used in Section 4 satisfy this assumption. dvedty here is that
the noise variance? depends on the distance of the point to the sensor. It is
determined by sensor calibration results (c.f. Sectior4.2

(A4) Bounded curvature in some neighborhood around thedstg@oint: There exists
a positive constant such that the HessiaH of g satisfies|H||s < « in the
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r-neighborhood. In Section 3.1.5, we show a case where tlisngstion is
violated and we propose a modification to account for it.

(A5) Noiseo,, and curvature: are small: This in turn implies that,; andmss are
the two dominant entries if/.

We proceed by computing bounds on the value®/iand then use them to compute
a bound on the angular error in the estimated norméal.at
3.1.1 Bounding entries ofM
my1 andmgy By definitionmy, = ¢ Ele(a:i — )2, The assumption of the points
being evenly distributed in they-plane boundsn; in the following interval:
017% < mqy <71? (2

wheref; € [0, 1]. Symmetrically, the same applies for,.

mys By definition,

k
1 _ _
| = E;xi—z)(m—y)
k k k
1 1
= % 2 LilYi — ﬁ;%;yv

Let’s first rewrite some elements of basic probabilitiespf®se we have a random
variableX s.t. its instances ate,, z, ..., ,,. Then, an estimator for the mean is

= — xX;
n
=1

Thebiasof the estimator is simply its expectation:
N

Ef#] = ~ > Elx.] = E[X]
i=1

Similarly, its variance is
R 1
V[E] = — > Vizi] = ~V[X] 3)

=1

Now, let's compute the expectation of;5:
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We assumeX andY to be independent. ThereforB[XY] = E[X]E[Y] and
E[m12] = 0. Now, using the assumption thl{z;y;) = 6.7* and using equation (3),
the variance ofni, is expressed as:

1 k 1 k k
Vimal = 15 D Vel + 13 > Vieil 3 Vivi

i=1

Because this second term can be made arbitrarily large, weedée following
upper bound on the variance f;5:

1
V[mlg] S %627"4
Chebyshev’s Inequality. Let, = E(X) ando? = V(X). Then

P(|Xﬂ|§\/g>_1€ (4)

It follows from Chebyshev's Inequality that with probabjlil — e:

s < Vbort Vot P
T WVek \epr? VEp

< /O

NG

mq3 and moz  We know from the Taylor expansion ¢fz, y) that:

9(@i, yi) = 9(0,0) + 239 (i, i) + Yigy (@i, yi)+
% {27 9o (@i, Yi) + 203Yi Gy (T3, Yi) + Y Gyy (@i, yi) | + ...
=9(0,0) + 2igz (i, yi) + vigy(zi, yi)+

% {27 9ae Vi, 03) + 283YiGay (i, 03) + Y Gyy (Vir i) }

1
= — {22922 (i, 01) + 223YiGay (Vis 01) + Y7 Gyy (Vi 0:) }

)

for somey; € [0, z;] andyp; € [0, y;].
If we assume that the surface is rotationally invariantthg, (¢;, ¢;) = 0 and the

expression fog(z;, y;) simplifies to:

3 Y7
9(xi,y:) = 79m(¢i,%) + 79yy(¢¢7%)
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Furthermore, from assumption (AdY..(z,y)| < &, |gyy(z,y)| < & Vz,y € R,
we have:

|Zi| = \9(331‘7yi)|

5
<I<C< yl)+nl in,inR ()

2 2

From the definition ofns:

Under the assumption tha¢ and N are independent, we note th&fz;n;] =
E[z;]E[n;] = 0 sinceE[n;] = 0 andV(z;n;) = Cr?c2. Using Chebyshev’s in-
equality, we have that with probability— e:

2,2 2
Imaz| < 2613 + C4/ T n + 7/ In
ek ek (6)

< 261 + Hga—n

Jp

wheref; = C'+1. Symmetrically, the same procedure appliesitg, by replacing
x; by y;.
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mss FlnaIIy for mss,

i 1 (&
m33:EZZi2_ﬁ (Z%)

k

1
< 2wt 2 ) ™
k
< — A Z K2t —|—n
< 2r%rY 4 0402
To summarize, we have defined the following bounds for eatty ef M:
91’/‘2 <mi < 7‘2 |m13\ < QHTS + 030—2’)
- 0172 < magg <12 | [maz| < 2613 + 93\‘;—:_13
- - mss < 2H2T4 + 040’721
3.1.2 Eigen analysis
We may write the covariance matrid as
mi1 MMi2 | M3
A | M M
M= | mia maa | me3 | = [MlTl 13} (8)
13 ™33
mi3  Mm23 ‘ m33

Gershgorin Circle Theorem. For ann x n matrix, define

n
R; = Z | M;;]

J
7]
Then each eigen-value 61 is in at least one of the discs

Let \; < X, be the eigen-values dff;;. Using the Gershgorin Circle Theorem
(GCT), we have thainu — |m12| <A < Ay < mago — ‘mlg‘
Let us define a new dimensionless quantitgs:
A |mas| + |mas| + mas3

o= 9)

mi1 — |m12|

Let A be the smallest eigen-value 8f. Using GCT again gives < |mjs| +
|mas| + mss = a(mi1 — |mia|) < al;. If we take the eigen-vector corresponding to
the minimum eigen-value o¥/ as[v", 1]7, then

M11 M13 U -\ v
MES mss 1 - 1
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Expanding to solve the individual equations gives

N _ _ —1
U=— (M — AI) 72 [+ (M1 — AI) "2 M3 M)

(10)
X [(Mll — )\]I)Mlg —+ Mlg(mgg — )\)]
7l < (M1 = AD 22
I+ (M = AD)~2Mis M) 7 2)
(11)
x (I(M1y = ADl> |15l
+ Ml [(maz — V) )
It can be shown that
H(Mll — )\]I)_QMlgME))HQ S (1 — Oz)_QCYQ (12)
and hence
-2 T\—1 (1-a)’
|(T+ (M1 — ML) ™" MysMyz) " ]2 < 1 20 (13)
It then follows that:
. 1 (1 - a)? 9
[v]l2 < (A2aA1 + (@A)
1—a)?x2 1-2
( Oé) A1 @ (14)

<0¢(1—|—o¢)£% A2 N
- 1-2«a Al )\1

for smalla.
Hence the angle between the computed normal and the truehisrbounded from

above by

Az (maa +|muz)) o

tan™! |7y <
9]l < (o — al)

a<

(15)

3.1.3 Error bound for the estimated normals

From Egns. (2),(3.1.1),(6) and (7), we can replace eaghterm in Eqn (9) by its
appropriate bound value to give:
26%2r% G402 2 ‘2HT3 + %
— Oir2 0172 0172

Since the values, r, o,, andp are always positive, by simplifying and re-arranging,
we get:

(0%

a<2m272+9402+4nr+203 On
- 01 01 T2 01 01 7’2\/@
Let us defing3 = m12/m11 and consider cases whee< 1/2. Since we have

A mz (14 0)
)\204 = may (1 —f)

a< Ka (16)
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we have from the previous lower bound

A 2 55 Oi02 4 205 oy,
Ta< K= _2n —kr -2
)\2a_ (91HT +91 T2+91H7+ 01 7“2\/5
17)
<K 0_4ﬁ + iFLT + % In
- 01 r 01 01 7“2\/@
Differentiating Eqn.(17) w.r.t gives the required result:
1 On 04 2 5
=(=(0—2 += 1
(L7 5) @

where the constants = 63 andd, = 6,/2, as given in [17, 16] are to be deter-
mined experimentally. Note thdt{ andd, depend only on the distribution of the PCD,
since, as shown in Eqns (6) and (#),is related toV(z;n,) while 8, is related tar,,.

3.1.4 d; and dy estimation

The constants of; andd, of Equation 18 needs to be estimated from the dataset. In
[16], they mention that those constants were chosen byandlerror, and that they
picked the one resulting in visually good results. In thistiem, we explore different
ways of estimating those constants.

By simply re-arranging Equation 18, we see that it is nowdiria d; andds:

1 o
3 n 2
=—1|d +d
" /1( Y Jep 20”)

We want to minimize the following equation:

n
. 1 On 9 3
min E — | di—= + dao ) —r:

pardl |0 < Vepi " ¢

2

This is done the following way.

1. Fixe, kg and computer,, (either from sensor or from synthetic data).
2. For every point:;:

(a) Findr; that minimizes angular separation between computed aedbts
mals at that point

(b) compute the local densify, = % wheres is the distance from thiyth
nearest-neighbor to the poinj.

(c) compute the local maximum curvatutg = ?u—d, whered is the distance
from thez; to the TLS plane fitted on the neighborhood defined-fynd
u is the average distance from the pointo all its neighbors.
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(d) build the linear system

On In 3

K0o+/€PO Ko d To
. . 1 .
: : = : 19
.2 |: d2 :| .3 ( )
Tn In Tn
Rn+/€Pn Rn

3. Solve the system in Eqg. 19 by linear minimization using S)[Pseudo-inverse.

However, this method doesn't yield satisfying results liseaoutliers are numer-
ous, and least-squares method are typically sensible to.tlAeway to improve this
is by using RANSAC. The linear system in Eq. 19 is first built #t/xact same way as
before. Then, the firshrows in the matrices are chosen, ahjdandd, are estimated
using linear least-square applied on the resulting matridéde score of the result is
then estimated by counting the number of inliers, i.e. ofat which the computed
constants yield a good approximation of the desired radiimss process is repeated
several times, and the constants that have the best scdtere

The main drawback of trying to estimafe andd is that it requires knowledge of
ground truth normals to estimate the best support regioavfery point. In real world
scenes (Section 4.4), we have no such information and we migrevaluate results
visually. Therefore, a calibration scene with known nosral each point would be
necessary to perform such estimation. For example, theetataSection 4.3.2 might
be appropriate since all points lie on surfaces of knowrtivearientation.

3.1.5 Estimating the optimal support region size

The optimalr is estimated using an iterative procedure based on the stgge in
[17]. An initial value ofk = k(! is used to compute a starting value of curvatufe
andr( is taken as the distance to theth nearest neighbor. An estimate of density
p® is also obtained fromt = k(9. The value o2 is taken from the sensor model as
a fixed function of the distance of the point from the lasere Value ofr(“+1) for the

(i + 1)-th iteration is then computed using Eqn.(18f:*Y is then computed as the
number of points in a neighborhood siz€ét!) and the process is continued.

We observed that the iterative procedure suggested in @]7hdd poor conver-
gence properties when assumption (A4) is broken. As showBeition 4.3.2, this
can happen when two manifolds are located in the region efést. Figure 2(a)-(c)
shows the computed values:of) oscillating for points selected near regions of higher
curvature, as in the case of intersecting walls in Figure & riédify the algorithm
to perform damped updates tousing an infinite impulse-response (IIR) filter of the
form:

K = b et (1= 2K (20)

The parametey defines how much importance is givenité*?) versusk(?). Fig-
ure 2(b)-(d) shows that the valuessoafter convergence do not depend on the initial
k. 1t also illustrates that the IIR filter ensures controllgutiates in each iteration
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Undamped iterations for finding best support size, k=50 Damped iterations for finding best support size, K9=50
25 25
—point 1 —point 1
—point 2 —point 2
20t —point 3 20 ——point 3]
P —point 4 P ——point 4
g i g :
8151 215
=1 =1
s s
=} =]
© 101 © 10
£ £
@ @
w w
5r 5
~
0’ 0
0 5 10 15 20 0 5 10 15 20
Iteration number Iteration number
(@) (b)
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Figure 2: Plot of estimated support region sizpdt each iteration showing improve-
ment with damped updates using (a)-(b) an initial valug@&f = 50, and (c)-(d)
k(©) = 200. The support region sizes converge to the same value, indepdy of
E©),

and assures sensible values ofear intersections of manifolds. This is reflected in the
smaller support-region size near the intersections ofwlewalls in Figure 7 and in
the region where the tree trunks meet the ground in Figure 8.

Figure 3 illustrates the progression of the damped and upddralgorithm with
different values of:(?) for a typical point in the scene of Figure 7. In this example,
the damped algorithm converges to a scale at which the nagstahation error is
very low. Without dampening however, convergence is neached and a high error
is maintained. The final scale determined by the algorithmsduwot depend on the
initial £(©) for 70% of points with the dampening, as opposed to only 28%owit it.
Therefore, the IR filter reduces error in normal estimatamd makes the process less
dependent on the initia(®).

3.1.6 Complexity analysis

The most costly operation of the algorithm is the neareighiir search. It is needed
to compute the TLS plane and approximate the local curvantedensity at each
point. [1] has shown that an approximate nearest-neighdemch can be done in two
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Evolution of normal estimation error, with K9=50 Evolution of normal estimation error, with K9=200
: 90
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Figure 3: Comparison between evolution of normal estinmegiwor for the undamped
and damped versions of the algorithm, with k&) = 50 and (b)k(®) = 200. In the
two cases, the damped algorithm converges to the same lowwaite in less than 20
iterations.

steps. First, it requires a data preprocessing stage thétecdone irO(dn log n) time.
In our cased = 3, so preprocessing is of complexi®¥(n logn). Then, finding the
k-nearest neighbors requir€gkd log n), which simplifies toO(k log n) in our case.
Since thek-nearest neighbor search is done for th@oints and the number of

iterations needed to reach convergence is bounded by aacbmaix Count , the total
complexity of the algorithm is the®(nlogn) + O(nklogn). Sincek is bounded
by the constank;;,,cshota, BY ChOOSINGk hresnoia K M and SINCEkpreshoia dOBSN'
depend om, we can approximate the complexity Byn logn).

3.2 Terrain Classification

We focus on segmentation of ladar data into 3 classastterto represent vegetation,
linear structuresto represent thin objects like wires and tree branches,sanikce
to capture ground, rock and tree-trunk surfaces. Our apprdar classification is
based on computing saliency features [25] that captureotted eometry at a point in
terms of spatial distribution of points in its neighborhodthe distribution of saliency
features is learned using a Gaussian mixture Model (GMMjraatically using the
Expectation-Maximization (EM) algorithm. Given the dibtrtion learned off-line, we
can classify new data online using a Bayes classifier.

3.2.1 Saliency features

Our choice of features is inspired by the tensor voting fraor& in [23]. However,
instead of looking at the distribution of surface normala imeighborhood, we directly
inspect the local distribution of 3-D points. This is donedmynputing the covariance
matrix M ( Eqn. (1) ) corresponding to the scatter of the points in allneighborhood,
the support region.

The size of the support region defines fiealeof the feature and is chosen to be the
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radiusr computed in Section 3.1.5. Note thiat is computed in the intermediate steps
while estimating-, and is representative of the local geometry of the neidimmat. Let

A1 < A2 < A3 be the eigen-values dff corresponding to eigen-vectons, , ms, ms
respectively. In case of cluttek; ~ Ay ~ A3 and there is no dominant direction. For
points on surfaces\s, A2 > A; andes, e5 span the local plane of observations. For
linear structures\s > Ay, A\; andes is the dominant direction locally. Our saliency
feature is defined as a linear combination of eigen-valuéisarB-vector:

point-ness A A1
surface-ness = | Ay — g (21)
curve-ness A3 — Ao

3.2.2 Bayesian classification

Using the features of Eqn. (21) and a dataset labeled int@ tbiasses, we train
a GMM using the EM algorithm. Let the; components of the Gaussian mixture
in the i-th class be specified by the set of weights, means and cagasaas’; =
{(wei gy, G5y Beinj))j=1..m; t TOri = 1,2,3. The likelihood of a new point with
featuref(x) € R® computed with Eqn.(21) belonging to claSsis given by:

g

w i,
P10 = 3 (Grmp

j=1 (22)
o ef%(f(m%mi,j)fz@}j)(f(ocwu,j)))
The estimated class is the maximizer of the class posterior:
Cest = argmax(P(C5 f(x)))
' (23)

whereP(C;) represents the corresponding class prior.

4 Experiments

4.1 Sensors and terrains

To validate the approach presented we used data collectbdawiinolta scanner,
an actuated SICK laser, a Zollerdhlich high resolution scanner [5] and the CMU
autonomous helicopter [15]. The Minolta Vivid 700 is a lakkee striper that produces

a 200x 200-pixel range image with 8 bits resolution. A SICK LMS-29Ahttached to

a custom made scanning mount. The laser collects 60,006&spm@nscan. The angular
separation between laser beam§ tegree over 100 degrees field of view. The angular
separation between laser sweep§ of a degree over 115 degrees. The ZollebtHich
(Z+F) LARA 21400 has &60° x +35° FOV, producing3000 x 1400 pixels range and
reflectance images of the environment up to 21.4 m. The CMohaumous helicopter
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Figure 4: Normal estimation error for the bunny model andmads at selected points.

is equipped with a modified Riegl laser range finder that isablpof collecting 3D
color data, with 10 cm accuracy.

We used these sensors to collect data from outdoor envinatsnreurban settings,
in natural open space and in a forest.

4.2 Validation of computed normals

In this section, we validate our implementation of the aitipon proposed by [17] by
testing it on simple models for which the ground truth nosrak known at each point.
We first try on full 3-D models that satisfy the assumptionslenan Section 3.1, then
move on to data collected from the sensors previously dustri

4.2.1 3-D models

We tested using the bunny model with the same parameters[ag]inMore specifi-
cally, weusedl; = 1,ds = 4,kg = 15, = 0.1, ktpresnora = 300 andmax Count =10.
Ground truth normals are computed from the mesh. Figure wsttmat the normal es-
timation error is generally very low, except on regions afthcurvature. The error is
illustrated by a color code, shown on the right of the figureinB with highest er-
ror are colored in red, whereas light blue indicates lowrerfte error is the angular
difference between the true and estimated normals and ressgd in degrees. The
support regions are also shown for various points, along thi¢€ normals computed
from those regions. The similarity of our results compar@thbse obtained in [17]
confirm the expected behavior of the algorithm on full 3-D relsd
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4.2.2 Aerial ladar scan

A major difference between real datasets and full 3-D mqodwlsh as the bunny, is
the distance of the scene to the sensor during the scanronggs. With small objects,
the sensor is close to the object, therefore acquisitiosenigsismall. However, outdoor
natural scenes have dimensions that make scanning at elnge impossible, thus
increasing noise.

We tested this approach using data from an open space natuia@nment contain-
ing a 1.5 m high pile of gravel surrounded by short cut and tigcass. We collected
high resolution, high density data with the Z+F laser. We alsllected low-resolution
aerial data for the same scene with the CMU autonomous Iptéico The two data
sets are co-registered. We triangulate the Z+F data to peothe ground truth used
to estimate the normal reconstruction error in the aeritd.dBhe parameters used are
the same as before, except that we increasedCount to 20 to allow more time for
convergence.

Figure 5 shows the results obtained. Figure 5-(a) showsdimpuated normals and
the support regions for selected points in the aerial daiguré 5-(b) shows the nor-
mal and support regions for the same points but overlaid potdhe high-resolution
ground data. Points in Figure 5-(a) are color-coded by tfierdnce between the error
in estimated normals and the lowest possible error obtéérfab any choice of sup-
port region in the aerial data. This lower bound on the esaramputed by fitting a
least-square plane on tlkenearest neighbors, with ranging fromkg to k¢preshord,
and retaining the smallest angular difference between ¢thmal to the plane and the
ground truth normal. In that example, the lower bound on thereveraged over all
points is 5.1 degrees, while the method gives an average @&&9 degrees. Even
with considerable noise, the algorithm behaves well byngjyiesults close to the low-
est possible error.

4.3 Validation of support regions

In this section we analyze the influence of diverse factorshenchoice of support
region size.

4.3.1 Outdoor ground scan

Another important difference between datasets used indh@d]our experiments lies
in the greater size of real scenes. The former allows verl hitd constant density
throughout the model, whereas in our case, the densitysvaiith the distance to the
sensor and may become very low. The effect of this importdfardnce is illustrated

in figure 6, which shows a scan of the ground taken by the SIGKrlaThe ground

truth is defined as normals pointing along the posithaxis.

Moreover, because the distance from scene points to therseray vary consid-
erably over the dataset, the noise on each data point vaoydingly. To account for
this effect, the noise standard deviatignis computed using calibration data. Its value
ranges fronv,,,;, = 0.0037 at 1 meter, and,,,,,, = 0.0125 at 60 meters. As expected,
the support region size grows as points are further away fhensensor. Moreover, the
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Estimated normals and error from ground truth 0

(b)

Figure 5: Normal estimation for the aerial data. Normalrmeation and corresponding
support region for selected points overlaid on top of theahelata (a) (see text for
explanation of the color coding) and ground data (b) withele¥ation color coded.

discontinuities located at the boundaries of the laser Fé¥asent another important
difference and break the assumption (A2) stated in SectibnIf this case, it doesn’t
affect the performance of the algorithm because all thetpdimin the same plane.
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Estimated normals and support regions

Figure 6: Plot of ground points with estimated support regize ¢). Note the sig-
nificant decrease in spatial density and corresponding&ser in- with distance from
the laser position (origin)

4.3.2 Scan of wall corner

This dataset is a scan of walls made using the SICK laser,lendansor was placed
at a distance of approximately 30 meters from the scene.nAggiis computed using
calibration data, and the same parameters are used in thritlahg. The scene presents
a sharp change in curvature at the junction of both walls.s Thplies the presence
of two different manifolds in the neighborhood of points dted in the vicinity of
that region. We note that the assumption (A5) in Section8braken. Intuitively, we
would expect that the support region should be relativelglbnear the junction, as not
to include points lying on a different manifold. Howevergiie 7 shows that it is not
the case with the original algorithm. Undamped iteraticssse the algorithm to stop
at arbitrary values after a fixed number of iterations, wittgnarantee of convergence.
This results in badly estimated normals, especially ardimeddiscontinuity region.
The results obtained with the IIR filter with = 0.5 (Figure 7) introduced in Section
3.1.5 corresponds to what we expected. The normal estimegtimuch better for the
points lying near the corner, and is still as good for the off@nts. We obtain an
average improvement df)° in normal estimation using the dampening.

4.3.3 Outdoor natural terrain

This dataset was obtained using the SICK scanner and byrgaki outdoor natural
terrain, comprised of ground, trees and vegetation. Ageényould expect the support
region to be small near sharp angles in the geometry of theesaed larger if the scene
is flat, or if the density is small. For this dataset, no grotnuth is available, so the
results are evaluated visually.

Figure 8 shows the support region determined by our algarftr different points



4.3 \Validation of support regions 19

Z (m)

# (m)

¥ (m)
K (m)

(b)

Figure 7: Estimate of support region size for wall cornern@hout and (b) with IIR

filter to £ in each iterations.

chosen at interesting locations in the scene. For exani@esupport regions of points
located near the boundary of tree trunks and ground are nmales than those in the
center of the ground. This corresponds to the expected lhav
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Figure 8: Support region sizes for selected points in outdegetated terrain. Points
are color-coded by height.

4.4 Ground-based ladar classification of natural terrain

In this section, we apply the algorithm to the classifier jesly described in Section
3.2.2. The dataset is divided into cubic voxels with 10 cmesdd@ he classifier is then
trained at scales ranging from 0.1 cm to 2 m using manuallsitabdata. The best scale
is chosen by applying the method and rounding the given stpggion to the nearest
subdivision. Figure 9-(a) shows the classification resudisig fixed support region
size (radius of 40 cm). Obvious misclassification errorsnaagle near the junction of
the leftmost tree and the ground, and on the ground at a distdfigure 9-(b) shows
the improvement over the old strategy.

We manually labeled the data to produce ground truth claasifn. Over the
whole dataset, 9575 points are labeled as surfaces. Usngdtstrategy, 1918 points
are mis-labeled and identified either as clutter or lineaucstires. The new strategy is
able to reduce this number to 1343 mis-classified pointsmgmavement of approxi-
mately 30 percent. On the other hand, of #&5 — 1918 = 7657 correctly classified
points, only 172, or 2.25 percent are corrupted by the nevihotket

4.5 Comparison with multi-scale approach

A naive alternative to the proposed algorithm is to train a déffe classifier for each
scale in the set of considered scales, evaluate a test poiall the classifiers, and
simply assign it the label returned with most confidenceh(egy posterior probabil-
ity). However, when applying this strategy (with scalesgiag from 0.1 m to 2 m)
to outdoor natural terrain such as the one shown in Figuree9ohtain a merd5%

of correctly classified points, as opposed#d: with the method presented in this pa-
per. As expected, the hee strategy incorrectly favors very large support regithra
include a large number of out-of-class points to give the momly incorrect label of
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Figure 9: Outdoor terrain classification: (a-b) from theadst using in Figure 8 and
(c-d) from data collected with the Riegl laser scanner. 8are colored green (vegeta-
tion), red (surface) or blue (linear structure). Darkerdgsindicate higher confidence
in the estimated label. (a/c) Former strategy. (b/d) Neatstyy.

“vegetation” with high confidence.

5 Conclusions and Discussion

This paper presented a geometry-driven approach for angtise scale of observation
for classifying point-sampled surfaces in outdoor rang&@.d&xtensive experiments
with outdoor and synthetic datasets confirm our hypothésis feature computation
at scales that are optimal in terms of inferred local geoynietiprove the quality of
classification.

One implicit hypothesis of the proposed approach is thaktkesists at least one
scale at which the data is classified correctly. Closer aimlyf points misclassified
in Figure 9-(b) in the boundary regions of the dataset shawtthis hypothesis is vi-
olated. We attribute this to (1) the introduction of edgfees in the chosen features
(Egn. 21) causing them to be undescriptive of the local gégmend (2) the possibly
poor discriminative ability of the classifier. The assuraptdf an underlying surface
of bounded curvature at each point is also violated for spadt point clouds. In some
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regions this results in a reduction of confidence for the tagm class. The design
of more representative shape features as well as eigeps@ir curved and porous
geometry is the subject of our current research.
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