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Abstract

Generating free-viewpoint video in outdoor sports environ-
ments is currently an unsolved problem due to difficulties
in obtaining accurate background segmentation and cam-
era calibration. This paper introduces a technique for the
reconstruction of a scene in the presence of these errors.
We tackle the issues of reconstruction completeness, and
accuracy of surface shape and appearance. We introduce
the concept of the conservative visual hull as a technique
to improve reconstruction completeness. We then present
a view-dependent surface optimisation technique using de-
formable models to improve surface shape and appearance.
We contribute a novel dual-mode snake algorithm that is
robust to noise and demonstrates reduced dependence on
parameterisation by separating the search of the solution
space from the data fitting. We conclude by presenting re-
sults of this technique along with a quantitative evaluation
against other reconstruction techniques using a leave-one-
out data set.

1. Introduction

When traditional fixed-viewpoint video of an event is
rendered, the only viewpoint available for playback is that
of the camera that recorded the event. Free-viewpoint video
(FVV) attempts to break this restriction by allowing the
specification of the viewpoint at the point of rendering
rather than the point of recording. This ability is of interest
to television companies producing sports coverage as it al-
lows them to generate virtual replays of key events showing
them from angles that give greater insight in to the match.
This paper addresses some of the issues encountered while
attempting to apply FVV techniques in this way to video
recorded at outdoor sporting events, specifically the prob-
lems of generating output of a sufficiently high quality for
use in a broadcast.

Most current FVV techniques are designed around the
multi-camera studio environment with controlled lighting
and well-calibrated static cameras. These techniques do not

Figure 1. Left: detail from a free-viewpoint video
generated from the leave-one-out data set, Right:
ground truth image from the unused camera

perform at an acceptable quality in the context of outdoor
sports coverage with unconstrained illumination and poor
calibration[10]. As a result there is a requirement for novel
reconstruction techniques that can produce output of an ac-
ceptable quality in these environments.

One major issue that must be overcome is the lack of ac-
curate camera calibration. Due to environmental constraints
(moving cameras, lack of access to the pitch etc.), cameras
may not be calibrated by traditional methods. As such the
only viable techniques for calibration are techniques that
extract calibration data from natural features in the scene
such as those developed by Thomas et al.[18]. These tech-
niques can result in calibration error of the order of 2 pixels,
rather than the sub pixel accuracy commonly achieved in the
studio environment. The presence of this calibration error
means that a global reconstruction which satisfies all input
cameras does not necessarily exist.

A second important factor is the complexity and low res-
olution of the objects in the scene. This, combined with the
unconstrained lighting and natural backgrounds, makes im-
age segmentation a difficult process and introduces a large
amount of additional error into the system. This problem
is exacerbated by the requirement in free-viewpoint video
for all techniques, such as segmentation, to be automatic,
as manual initialisation across multiple cameras for each



frame of a segment of video is unfeasible.
In this paper we propose that techniques that combine

shape-from-silhouette with refinement using snakes are par-
ticularly suitable for this type of reconstruction. We propose
a novel technique that uses a deformable model to combine
multi-view segmentation with shape and stereo optimisa-
tion across the 3D reconstruction of a scene. Our technique
uses only video from a set of standard calibrated cameras,
can handle multiple self-occluding objects and is error tol-
erant with regards to initial scene segmentation and poor
camera calibration. The novel elements of the technique
are the formulation of the silhouette term, which avoids the
need for an initial high quality image segmentation, and the
two-phase use of the deformable model which reduces the
dependence on parameterisation.

In Section 2 we provide relevant background to this pa-
per and in Section 3 present a description of our technique
using a dual-mode deformable model. Some results of re-
constructions using this technique (including a quantitative
comparison with other techniques) are presented in Section
4 and discussed in Section 5. Section 6 provides some con-
clusions and ongoing work.

2. Background

2.1. Free-viewpoint video and sports

Free-viewpoint video is the technique of combining mul-
tiple video sources to generate a novel video from a virtual
viewpoint. Techniques have so far focused on the studio
environment, beginning with the Virtualized Reality sys-
tem developed by Kanade et al.[8] which used 51 cam-
eras distributed over a 5m dome. Since then techniques
including shape-from-silhouette [1] and shape from photo-
consistency [19] have been used to generate 3d scene recon-
structions from reduced numbers of cameras.

The problem of generating free-viewpoint video in ex-
ternal environments, such as football stadia, have received
much less attention than the study of reconstruction in stu-
dio environments. Kanade et al. have developed the eye-
vision system that was demonstrated at the Superbowl[4].
Koyama et al. have produced a real-time system using
billboards[11] and Inamoto et al. have demonstrated a sys-
tem using image morphing [7]. However these systems are
limited either in the quality or the freedom of the virtual
viewpoint, and some also require specialist equipment.

2.2. Reconstruction techniques

Most current work on free-viewpoint video for sports
uses variations on the billboarding technique [5]. In bill-
boarding a single polygon is placed co-incident with the ob-
ject that it represents. This polygon is then rotated around
an axis or point (typically the Y axis) so that it retains its

original position, but is constantly facing the virtual cam-
era. An image of the original object is then applied to the
polygon as a texture map. This technique can often give
good results with very little overhead, however the lack of
correct shape with which to allign the images from multiple
cameras quickly becomes apparent once the virtual camera
moves any great distance from the original camera location,
as can been seen in Figure 6. Techniques such as image
morphing [2] have been proposed to improve the quality of
view interpolation, but the problem of view extrapolation
has not been solved for this representation.

2.3. Deformable models

Snakes were introduced by Kass et al.[9] as an algorithm
for extracting a contour from an image. They have two
key properties: 1) a physical simulation combines an inter-
nal regularisation force with an external data force to fit a
smooth contour to the data, 2) the shape of the snake deter-
mines the region of the image that influences the snake. An
iterative approach then allows the image to update the shape
of the snake and then uses the shape of that snake to deter-
mine the region of the image that is examined. In 3D, snakes
can be implemented with an implicit geometric representa-
tion such as level sets[14], or with an explicit geometric
representation such as elastic deformable models[17]. De-
formable models are particularly attractive when the surface
to be reconstructed is small compared to the reconstruction
volume and a high resolution result is desired, as the com-
putation cost is proportional only to the number of surface
elements, whereas in level sets it is proportional to the num-
ber of volume elements. Another discriminant between the
two types of technique is that level sets can change their
topology whereas deformable models cannot.

Snakes using deformable models are an attempt to use
physical modelling to combine multiple data cues in a
smooth way. The deformable model is initialised with a
shape known to be close to the final solution. This surface is
then modeled as an elastic object acted on by many springs,
fields or other physical constraints. The simulation of the
object’s elasticity provides the internal regularisation force
and the physical constraints are used to generate the exter-
nal forces. A physical simulation is then used to determine
the movement of the model and, at some termination point,
the final shape of the model is recorded. Deformable mod-
els have recently been used as a successful framework for
combining stereo and silhouette constraints in order to re-
fine 3D geometry [6, 15] and these techniques are amongst
the highest quality techniques currently in use[13].



Figure 2. Reconstruction of an object (solid ellipse) using shape-from-silhouette techniques: a) with no cali-
bration error, b) with calibration error and c) conservative shape-from-silhouette with calibration error

3. Methodology

3.1. Overview

In this work we improve the quality of reconstruction by:
1) improving the completeness of the reconstruction, and 2)
improving the accuracy of the shape and appearance of the
final reconstructed surface. We address the issue of com-
pleteness with a modified shape-from-silhouette technique,
and improve the shape and appearance with a dual-mode
snake to optimise the final reconstruction.

As was previously mentioned, the presence of errors in
calibration and matting mean that there is no globally opti-
mal solution to the reconstruction of the scene. However, by
optimising solely for one view we can guarantee that there
exists a solution that is correct for that view. In this way we
can improve the accuracy of shape and appearance without
sacrificing completeness. By optimising for multiple shapes
from the same global initialisation we can generate a set of
view-dependent meshes with constant topology, which aids
blending between them for intermediate views.

Our technique uses a deformable model that allows the
integration of various cues to reconstruct the surface shape
in one consistent framework. Level sets were not used due
to their computational complexity and our requirement for
consistent topology between the per-view reconstructions.

Snakes suffer from two problems. Firstly there is the
question of locality - how far from the snake’s current po-
sition do you look for data to drive the snake? Too small
a band, and the model will be too constrained by the ini-
tialisation, possibly unable to consider a deformation large
enough to bring the surface into agreement with the data, or
trapped in a local minima that happens to be closer to the
initialisation than the true surface is. Too large a band, and
the contextual information from the initialisation is lost and
the model may evolve to undesirable solutions.

Secondly there is the question of parameterisation - how
do you balance data forces against regularisation and how
do you balance various data forces against each other? Al-
though both data and regularisation costs are united in the
deformable model framework, there is no pre-defined rela-
tionship between these costs. Therefore solving for the data

forces or the internal forces in isolation is a simple math-
ematical exercise, combining these terms requires arbitrary
scaling parameters to be applied.

These two problems are of particular relevance in our ap-
plication. As the initialisation error is of similar scale to the
features in our data, a band large enough to take a poorly
initialised surface from its initial position to the correct po-
sition is also large enough to take a well-initialised surface
and move it to an undesirable position. The scaling of costs
is even more problematic. Due to noise in the image and the
variable lighting conditions, a set of values which balance
to find the correct surface in one section of the image will
not balance in another section, meaning it is not possible to
use one set of parameters for the entire image.

To avoid these problems our approach is to give each
set of forces equal space within the framework, but not to
balance them directly against each other. To this end we
have developed our dual-mode deformable model. This al-
gorithm uses the same deformable model in each of two
modes, differing only in the parameterisation of the model.
The first mode is a ”search” mode which addresses the issue
of banding by performing a search through configuration
space, seeking out a consistent set of data points for the re-
construction. We do not have to worry about fitting to weak
data points or over-smoothing as we are simply searching
for data in this mode. The second mode is a ”fitting” mode
where the deformable model is used a more conventional
manner albeit with a much weaker regularisation force as
we have already discarded the major outliers in the data.

3.2. Initialisation

The visual hull of an object, determined by shape-from-
silhouette, is often used as the initialisation for deformable
model techniques[6, 15]. As shown in figure 2b), errors
in calibration will yield a result from shape-from-silhouette
techniques that is truncated (shown in light grey), especially
if the objects being reconstructed are small compared to the
scene size - this can also be seen in the truncation of the
player’s legs in the shape-from-silhouette results shown in
Figure 5. Figure 2c) shows how a conservative shape-from-
silhouette technique, where we simply expand the silhou-



ettes by n pixels, will yield a more complete shape. We
refer to the shape generated by this technique as the Conser-
vative Visual Hull (CVH - shown in light grey). The benefit
of using a CVH in this way is that it provides a more com-
plete reconstruction. The disadvantage of a CVH is that it
is only weakly related to the true surface: if a large enough
value of n is used the CVH will contain the true surface, but
no other guarantees are given.

As a technique for accurate surface reconstruction, cal-
culation of the CVH is not suitable, but properly configured
it provides sufficient guarantees of completeness to be used
to initialise a refinement technique. Due to the weaker con-
straints for agreement between the original input images,
the conservative shape-from silhouette technique is more
susceptible to phantom volumes and to errors from pixel
noise in the silhouettes. However with some simple do-
main knowledge (no surfaces exist below pitch level, no
very small objects etc.) clean-up is a trivial task.

3.3. Search

3.4. Deformable model

Taking a ”key” view with index γ, the deformable model
is optimised to reduce the energy for that view Eγ over the
surface S of the model. S is represented by a simple triangle
mesh composed of vertices v and edges e.

Eγ is composed of a data driven energy term Dγ and an
internal elastic energy term I . These are combined using a
weighting term β such that:

Eγ(S) = (1− β)Dγ(S) + βI(S). (1)

I(S) is the elastic energy of the mesh:

I(S) =
∑
e∈S

(Le)2k (2)

where Le is the length of edge e and k is a stiffness constant.
Dγ(S) is a term expressing the data fitness of the sur-

face. It is expressed as a per-vertex energy in terms of a
vertex v’s most desireable local position v′:

Dγ(S) =
∑
v∈S

‖ v − v′ ‖2 (3)

v′ is calculated by maximising a per vertex data score.
This score is a silhouette fitness score for edge generating
vertices, and a stereo score for other vertices. First we de-
termine if a vertex is an edge generator when viewed from a
camera with index σ by calculating the value µσ(v) which
is a measure of how perpendicular the unit vertex normal n
is to a unit vector along the camera viewing direction aσ:

µσ(v) = (1− |n.aσ|)2 (4)

If we then consider a set of cameras Ω which contains
σ, we can classify each vertex as being in κσ , the group of
edge generators for the view σ:

v ∈ κσ if σ = arg max
x∈Ω

µx(v) and µσ(v) ≥ λ (5)

By taking Ω = {γ − 1, γ, γ + 1} we only consider edge
generators from a set of cameras near to the key view. λ
controls the thickness of the strip of edge generators that is
considered, and a value of λ = 0.8 was used. v′ can now be
given as the location which maximises the data fitness term
ε which is expressed in terms of a silhouette fitness score G
and a stereo score C:

v′ = v + δn (6)

ε(v′) =
{

G(v′) v ∈ κσ

C(v′) v 6∈ κσ
σ ∈ Ω (7)

δ = arg maxδ ε(v + δn), r ≥ δ ≥ −r (8)

δ is determined by sampling along n within some range
r to maximise ε(v′). v′ is therefore the projection of the
strongest local data cue on to the line v + δn. If no local
data cue exists δ = 0 and v = v′.

G is a term representing the silhouette matching score for
the projection of v′ into image σ and C is a term represent-
ing the stereo matching score for regions around the projec-
tion of v′ in to the most appropriate cameras in Ω. Similar
terms are used in other deformable model based work such
as that by Hernandez et al.[6]. However, although we can
use a standard stereo cross-correlation for C, we do not have
accurate silhouettes to use for the formulation of G.

This problem is addressed by formulating the silhouette
energy in terms of image gradients. It can be noted that
silhouette shape can be determined from just the gradient
of a matte (∇α) as the silhouette boundary occurs where
∇α is maximised. This allows us to formulate the silhou-
ette energy in terms of the image gradient (∇I) using the
following approximation[16]:

I = αF + (1− α)B (9)
∇I = (F − B)∇α + α∇F + (1− α)∇B (10)

∇α ∝ 1
F − B

∇I,∇F ≈ C1,∇B ≈ C2 (11)

Equation 9 is the classical matting equation in terms of
an image I, its foreground F and background B and Equa-
tion 10 is its first derivative. Equation 11 then states that
where the foreground and background are smooth the rate
of change of alpha is proportional to the image gradient.
As high ∇α occurs at silhouette boundaries it can be seen
that in regions where ∇F and ∇B are constant, silhouette
boundaries coincide with regions of high ∇I and hence sil-
houette shape can be determined without explicitly calcu-
lating α.



Figure 3. Left: Original image, Centre: Standard deformable model, Right: dual mode deformable model

Both G and C are thresholded to avoid noise. Due to the
nature of the snake algorithm used, these thresholds are not
particularly sensitive and can be set by inspection from the
average edge intensity and standard deviation in the source
images.

An optimisation over the mesh to minimise Eγ(S) is per-
formed using conjugate gradient descent. The step length in
conjugate gradient descent is defined by performing a line
search using the back-tracking algorithm.

We initially use the deformable model to act as a banded
search through the solution space. Due to the conservative
nature of the initialisation, the desired solution is taken to
lie within or near to the initialisation surface. The surface
is therefore allowed to collapse under the internal elastic
energy of the mesh. As it collapses it searches for regions
that agree with the input data.

As initialisation is poor, a value for β is chosen (typi-
cally 0.1) so that regularisation effects dominate during this
phase. This allows the model to evolve in a smooth fash-
ion, collapsing from its initial state to a smaller shape. As
Dγ(S) is not zero (even though it is small) the strongest
data terms affect this evolution so that the collapsed mesh
represents the strongest features of the object. If the mesh
was simply treated as a normal snake with strong regular-
isation this would pull the surface away from the relevant
image regions as shown in Figure 3. In order to avoid this
we do not re-evaluate v′ on every iteration.

If v′ was never re-evaluated the model would fix onto any
edges that happened to fall near the initialisation, and this is
equally undesirable. Hence a technique of selective updates
is used to determine when to update v′ for a given vertex. If
Na

v is the a-neighbourhood of v then the local support L(v)
is measured as:

L(v) =
|Ka

v |
|Na

v |
(12)

where Ka
v is the the subset of Na

v only containing those ver-
tices with a valid current data cue. For these experiments
a = 3 was used. If Lv ≥ some threshold then v′ is not

updated, but if not then a new value of v′ is calculated. If
the vertex has not moved far from its previous position then
recalculation will yield the same value of v′. If however v
is pulled away from its previous position then the previous
value of v′ will fall out of the considered range and a new
value will be calculated.

In this way the local support of the data fitness of the
model is used to determine the update. If a section of the
model is driven by some data cues but cannot be integrated
continuously with the rest of the model then the model will
update itself to discard the anomalous data cues and to seek
new cues that are more consistent with the rest of the model.
This does not compromise the model’s ability to jump gaps
in the data, as it is only where the regularisation is attempt-
ing to move vertices far from their previous positions that
cues are discarded - if the cues form a smooth whole, then
the model will not discard them. Thus only data cues that
are inconsistent with a smooth shape incorporating the ma-
jority of data cues are discarded. The process is terminated
once variation between iterations falls below a certain level.

3.5. Fitting

Having selected the most appropriate values of v′ to use
for the model we now allow the data term to dominate by
relaxing the regularisation (β = 0.01). The deformable
model is re-initialised with the original vertex positions, but
maintains the values of v′ discovered through the first phase.
Returning the vertices to their original positions allows the
model to better fit to detail that may have been passed over
during the search phase.

Another known problem of snake-like techniques is that
they will not move into concavities that are larger than the
search band. In order to determine the correct final shape
an “exploratory” or “ballooning” force must be used. Our
exploratory force operates on those vertices that are part of
κΩ but for which Gσ(v′) is less than the specified thresh-
old. This force is modelled by simply moving the relevant
vertices inwards along the normal direction. This allows the



Table 1. Analysis of foreground reconstruction on
a variety of techniques. BB = billboards, SFS =
Shape-from-silhouette, SFS w BM = Shape-from-
silhouette with Bayesian mattes, CSFS = con-
servative shape-from-silhouette and DMS = dual
mode snakes (our technique). Scores are shape,
completeness, appearance and combined appear-
ance with completeness

Tech. Shape Compl. Appear. Comb.
BB 0.71 0.86 0.78 0.67
SFS 0.77 0.83 0.94 0.78

SFS w BM 0.75 0.80 0.94 0.75
CSFS 0.27 0.98 0.84 0.82
DMS 0.56 0.95 0.91 0.85

deformable model a chance to find edges further inside the
shape if they exist, but allows the deformable model’s inter-
nal energy to pull the vertices back out to the surface if no
such edge exists.

4. Results

The deformable model technique was applied to a data
set featuring video from 6 cameras arranged around one
quarter of a football pitch. Camera calibration was obtained
using natural image features[18] and an initial segmentation
of the images was performed using a chroma-based tech-
nique. Both calibration and initial segmentation were fully
automatic and representative of the kind of input data ex-
pected in a real world scenario and contained significant
errors. Footage from a seventh camera was used as the
ground truth against which comparisons were made. Fig-
ure 4 shows the relationship between the two nearest cam-
eras and the virtual viewpoint, showing the wide baseline
(approaching 45 degrees) used in this reconstruction.

The technique was compared against a number of al-
ternative techniques: billboards[7], standard shape-from-
silhouette[12], shape-from-silhouette using refined mattes,
and the conservative shape-from-silhouette technique de-
scribed earlier in this paper. The refined mattes used in the
third technique were generated by applying a dilation oper-
ation to the original segmentation to generate a tri-map, and
then using Bayesian matting techniques[16] to refine the
matting. It should be noted that the ground truth segmen-
tation used in this comaprison was generated by hand, and
due to the nature of the video used (compression artefacts,
YUV encoding effects) this produced imperfect results. In
addition the camera calibration for the ground truth is it-
self inaccurate as it was obtained via the same calibration

techniques used for the other cameras, hence an amount of
reprojection error has been accounted for in the comparison.

View-dependent texturing was introduced by Debevec et
al. [3] and refers to the technique of choosing between mul-
tiple texture maps to apply to a surface based on the ori-
entation of the virtual camera relative to the surfaces of the
mesh. All of the mesh-based techniques used were rendered
using view-dependent texturing. The two closest textures
are chosen and blended together based on the angular dis-
tance between the viewing rays of the virtual camera and
those of the original cameras that generated the images be-
ing used as texture maps.

Images from a set of frames from the input sequence
were rendered and Table 1 shows the results of comparison
against the ground truth images. This was carried out using
an implementation of the technique described by Kilner et
al.[10] which provides a framework for measuring the shape
(pixels correctly classified as foreground) and appearance
(foreground pixels with correct values) for the reconstruc-
tion of foreground elements in a scene, as well as techniques
for accounting for re-projection error in the ground truth.
For this comparison we used an estimated reprojection er-
ror of 1 pixel. We introduce an additional “completeness”
measure to this analysis:

c(p) = max(f(p)f(p′), (1− f(p′))) (13)

C(I) =

n∑
i=1

c(pi)

n∑
i=1

max(f(pi), f(p′i))
(14)

where p is a pixel in image I , p′ is the corresponding pixel
in ground truth image I ′ and f(p) = 1 if p is a foreground
pixel, f(p) = 0 if p is a background pixel. The com-
pleteness score is similar to the shape score except that no
penalty occurs if a pixel appears in the synthetic image but
not in the ground truth. Thus only missing pixels are pe-
nalised. This score is introduced as we are primarily inter-
ested in the reconstruction of players, hence they are all that
is included in the ground truth. We do not want to penalise
the reconstruction of pitch markers and static items such as
goal posts, as these static background elements could be re-
moved automatically.

Figure 5 shows the results of the various reconstruction
techniques including detail of the reconstruction of an indi-
vidual player.

5. Discussion

It is clear from the results that the segmentation and cal-
ibration errors are great enough to render simple shape-
from-silhouette techniques un-usable. Even with the im-
proved mattes provided using the Bayesian refinement, the
reconstruction is still poor. This shows that it is not just poor



Figure 4. Left and right: Original images used in reconstruction, Centre: reconstructed view

Figure 5. Reconstructions of the view from a camera between cameras 3 and 4, Top: crop from full render, Bot-
tom: detail. Left to right: ground truth, billboards, shape-from-silhouette, conservative shape-from-silhouette,
dual-mode snakes.

segmentation that causes the truncated reconstructions, but
that errors in camera calibration are dominating the result.

The results from the conservative shape-from-silhouette
technique show poor correspondence between view depen-
dent textures. The difference in volume between the stan-
dard visual hull (which can be considered the intersection
of the reconstruction for each individual view) and the con-
servative visual hull (which can be considered the union of
the reconstructions for each individual view) shows that the
ambiguity in the system due to calibration errors is large.

The results therefore show that restriction to a smaller
set of inputs reduces ambiguity in the reconstruction from
camera calibration error. The deformable model technique
provides a solution that is optimal for a certain range of vir-
tual viewing positions.

The use of the CVH for initialisation gives the tech-
nique much greater completeness than the normal shape-
from-silhouette-based techniques. The initialisation from
the CVH also means that information from all input cam-
eras is still incorporated in the final shape.

Finally it can be seen that the dual-mode snakes tech-
nique improves the appearance of the reconstruction com-
pared to directly rendering the CVH. The original shape-
from-silhouette reconstruction also has good appearance
scores, but as only the core of each player is rendered this
can partly be accounted for by the fact that the areas most
prone to incorrect appearance (the player boundaries) are
not rendered at all and hence not considered for comparison

- the high completness score for our technique demonstrates
that the improvement in appearance is genuine.

Despite the dual mode approach, the final shape is still
strongly affected by the initialisation. The model can cope
well with inaccurate placement of a roughly correct shape,
but is unable to recover from gross errors in initialisation
which are consistent with the source data (such as the inclu-
sion of pitch lines in the initial mattes - as shown in Figure
5), however these problems can be easily avoided through
applying domain specific cleanup to either the input or the
processed data.

Concavities remain a problem for this technique as can
be seen in Figure 5. This is because the low resolution of the
images and the presence of shadows and image bleeding can
provide a strong edge across the concavity that prevents the
surface from evolving in to the concavity. Improvement of
the initialisation to ensure that some remnant of the concav-
ity is present in the initial surface would give better results.

6. Conclusions and further work

We have demonstrated a technique that combines si-
multaneous multi-view shape extraction with stereo refine-
ment to generate a view-dependent optimisation of an initial
scene reconstruction. The dual-mode snake technique pre-
sented in this paper shows clear improvements in the com-
pleteness of the reconstruction compared to standard shape-
from-silhouette techniques, and improves both the shape



Figure 6. Extreme view extrapolation giving view
from pitch level inside playing area. Left:
Dual mode deformable model, Right: billboards.
Player-player occlusions in the original images
lead to a double image of player 15 with the bill-
boarding technique

and the appearance of the reconstruction compared to the
conservative shape-from-silhouette technique.

The technique is still susceptible to poor initial segmen-
tation and to clutter in particularly noisy parts of the image
(such as viewing the goalkeeper through the goal net) which
can lead to poor reconstruction even when clear views of the
objects exist from other directions. Further work is required
to improve the performance of the technique in these situa-
tions.

For the results presented in this paper only a single view-
optimised reconstruction was used, further work will inves-
tigate techniques for blending multiple optimised surfaces
together to improve the quality of synthesis of intermediate
views.

The data used for this work was a set of Standard Defi-
nition (SD) images. As High Definition (HD) technology is
becoming prevalent in the broadcast industry, future work
will concentrate on the use of HD images.
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