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Abstract

When an observer moves in a 3D static scene, the result-
ing motion field depends on the depth of the visible objects
and on the observer’s instantaneous translation and rota-
tion. It is well-known that the vector difference – or mo-
tion parallax – between nearby image motion field vectors
points toward the direction of heading and so computing
this vector difference can help in estimating the heading di-
rection. For 3D cluttered scenes that contain many objects
at many different depths, it can be difficult to compute lo-
cal image motion vectors because these scenes have many
depth discontinuities which corrupt local motion estimates
and thus it is unclear how to estimate local motion paral-
lax. Recently a frequency domain method was proposed to
address this problem which uses the space-time power spec-
trum of a sequence of images. The method requires a large
number of frames, however, and assumes the observer’s mo-
tion is constant within these frames. Here we present a
frequency-based method which uses two frames only and
hence does not suffer from the limitations of the previously
proposed method. We demonstrate the effectiveness of the
new method using both synthetic and natural images.

1 Introduction

3D cluttered scenes such as foliage (see Fig. 1) are chal-
lenging for classical motion estimation methods, which as-
sume that the velocity field is locally smooth [11, 16, 3].
Although many motion estimation methods have been pro-
posed that address non-smooth situations containing depth
discontinuities and multiple depth layers, [19, 18, 22, 23,
5, 26, 4, 1], it is unclear whether these methods can handle
3D cluttered scenes since such scenes contain a very large
number of discontinuities and a very large number of depth
layers.

Figure 1. Example of a cluttered scene com-
posed of plants.

This paper is motivated by the specific problem of how
a moving observer can estimate its own motion through
scene. The constraints on this “heading” estimation prob-
lem are well-known. In any local region of the image, ob-
jects that lie at different depths move at different image
speeds, and the difference of two neigbhoring motion vec-
tors (called “motion parallax”) points toward or away from
the instantaneous direction of heading. Motion parallax is
thus useful for informing the observer of its instantaneous
heading direction [15].

Mann and Langer [17] argued that in a 3D cluttered
scene, pointwise motion field estimates are difficult to ob-
tain since so many depth discontinuities and layers are
present. Instead of estimating local parallax direction from
(unreliable) pointwise motion estimates, they introduced a



method that was based on local space-time Fourier trans-
forms of the image sequence, where the transforms are com-
puted over image regions much larger than those used in
pointwise motion estimation. Their method avoids the dif-
ficulties of estimating pointwise motions and was shown to
produce very good estimates of parallax direction and head-
ing.

There are several limitations with Mann and Langer’s
method, however. First, it requires a long and dense se-
quence of image frames (� � ��). This introduces tem-
poral delays in the computation which may be undesirable
in a robotic vision setting. Second, it requires that the cam-
era motion parameters (3D translation and rotation) are near
constant over the sequence, which is not guarenteed in prac-
tice for long image sequences. For example, if a camera is
translating along a linear trajectory and panning at the same
time, then the direction of heading within the image varies
continuously, which violates their model. Such a camera
motion is quite common in natural vision systems e.g. dur-
ing tracking.

In this paper, we address these limitations by presenting
a frequency based method that requires only two frames.
Unlike the prevous method which used the power spectrum
only, our method uses both the power spectrum and phase
spectrum.

An overview of the paper is as follows. In Sec. 2 we
briefly review the model of local motion parallax on which
the method is based. We then describe previous frequency
based methods for analysing motion, first for estimating
point-wise motion vectors, second for estimating the di-
rection of motion parallax. The novel contributions begin
in Sec. 3 where we derive a frequency domain model of
how the Fourier transform of an image region changes from
frame-to-frame in the presence of motion parallax. We use
this model to derive a method for estimating direction of
motion parallax without pointwise motion estimates. Ex-
periments and results are presented in Sec. 4.

2 Background

��� ������ �	
	��	�

When an observer moves in a 3D static scene, a motion
field is produced which is the 2D projection of the 3D ve-
locities of visible surfaces (relative to camera coordinates)
onto the imaging surface. The motion field vector magni-
tudes depend inversely on the depth at the corresponding
image point. The standard equation for how the motion field
depends on the camera translation and rotation in 3D, on the
image position, and on the depth of the visible scene depths
was first derived by Longuet-Higgins and Prazdney [15] and
can be found in standard computer vision textbooks [24].

It can be shown that, in a local image region, the vectors
���� ��� in a motion field typically fall on a line called the
motion parallax line [17],

���� ��� � ��� � � ��� �� � � ��� (1)

where ���� ��� and ���� ��� are constant orthogonal 2D
vectors that depend on the image region and on the ob-
server’s instantaneous 3D translation and rotation [17]. In
particular, the ���� ��� vector is called the motion parallax
direction. It depends only on the observer’s 3D transla-
tion component, namely it defines a unique line that passes
through the center of the region and is the direction of head-
ing. The scalar � depends on position ��� �� in the region
and on the depth of the surface that is visible at ��� ��. The
size of the image region over which this model holds de-
pends on the observer’s 3D motion. Fig. 2 illustrates the
model of Eq. 1. See Appendix of [17] for more details.

Figure 2. The set of velocities (dashed)
spanned by Eq. 1.

If one could estimate the pointwise image velocities in a
region, then one could use Eq. 1 to estimate the direction
of motion parallax [20]. For example, let �� and �� be
the velocities at two points in a region. Taking the vector
difference and rearranging, we get

���� ��� �
�� � ��

�� � ��
(2)

and so ���� ��� is parallel to the vector difference.
We next briefly review a few classical methods for es-

timating pointwise image velocities. Since this paper con-
centrates on frequency based methods, we skew our review
towards these methods.

��� ������ 
��� �����	����

One early example of frequency-based pointwise mo-
tion estimation method is the biologically inspired model



of Heeger [10]. This model uses a set of space-time Gabor
filters and carries out a mean squared error fit on the outputs
of these filters. Fleet and Jepson and others also used Gabor
filters, but considered both the power and phase of the fil-
ter responses [21, 9, 8, 7]. Using power and phase together
improves the performance significantly over a power-only
method. Indeed, performance using Fleet and Jepson’s
method was often better [3] than classical methods such as
Lucas-Kanade [16] and Horn and Schunk [11].

Frequency-based methods are typically based on the mo-
tion plane property [25] which states that an image translat-
ing with uniform image velocity ���� ��� pixels per frame
produces a plane of energy in the 3D spatio-temporal fre-
quency domain:

���� � ���� � �� � � (3)

where ��� �� are the spatial frequency variables and �� is
temporal frequency. The intuition behind this motion plane
equation is that when an image translates with this veloc-
ity, each spatial frequency component of an image translates
with this velocity as well and this yields a linear relationship
between the temporal frequency �� at a point ��� ��, and the
spatial frequencies. Heeger’s method for estimating motion
essentially finds the plane that best fits the power spectrum
of the filtered image sequence.

Heeger’s method relies on an image sequence with many
frames so that there is sufficent resolution of temporal fre-
quency. For a frequency based method to use only two
frames, phase information must be used [21, 9, 8, 7]. Phase-
based methods are based on the Fourier shift theorem,
namely shifting an image ������� produces a change in
phase �	���� ��� that is proportional to the spatial fre-
quency and spatial shift [13],

�	���� ��� �
�


�
���� ��� � �������

where � is the width of the image region over which the
Fourier transform is computed. The phase-based methods
cited above use Gabor-filtered images, such that the ���� ���
could be considered as roughly constant, namely the center
frequency of the Gabor. This allows for the estimation of
������� from the change in phase �	. (Only the compo-
nent of ������� that is parallel to the center frequency of
the Gabor can be estimated using this equation. This is the
“normal velocity.” A typical example is stereo vision where
the filter is oriented vertically so that �� � � and one seeks
to estimate the horizontal motion or disparity ��.)

Fleet and Jepson [7] showed that, although the phase-
based estimates are not reliable everywhere, unreliable esti-
mates could be identified and rejected. For example, when
the power of Gabor filter response is very small, the phase
change from frame to frame is very sensitive to noise and

the estimate can be rejected. (A similar rejection of unreli-
able estimates can be carried out with other motion estima-
tion methods, e.g. Lucas-Kanade rejects motion estimates
when the contrast is too low or when the local image gradi-
ents are domainated by a single direction only [16, 3].)

The key limitation in the above methods for estimating
local image motion is that they assume the velocity field
is locally constant. While many other methods have been
developed that allow the velocity field to be more general
e.g. affine or two layered motions, these methods typically
do not attempt to deal with much more extreme situation of
very cluttered 3D scenes (see Fig. 1), in which there are a
very large number of depth discontinuities and layers. Thus
it is unclear how well such methods can estimate pointwise
velocities in 3D cluttered scenes, and whether the velocities
that one computes are sufficiently reliable to estimate local
motion parallax (recall Eq. 2). This observation motivated
Mann and Langer to develop an alternative frequency-based
method for estimating local motion parallax direction which
does not require local velocity estimates. We next briefly
describe this method.

��� ����
 �����
�� ������ ��
 �����	��
��� ���	� �	
	��	� ��
������

Motion parallax occurs when multiple velocities are
present and these lie along a motion parallax line (recall
Eq. 1). In the frequency domain, multiple velocities trans-
lates into multiple motion planes, namely substituting Eq.
(1) into Eq. (3) yields a family of planes [14],

��� � � ����� � ��� � � �� ��� � �� � � �

These planes intersect at a common line that passes through

the origin and is in direction ����� ���
�
��
� � ��

� � in the

3D frequency domain. The ���� ��� component of this line
is ����� ��� which is perpendicular to the direction of mo-
tion parallax ���� ���. Hence, estimating the direction of
this line amounts to estimating the direction of motion par-
allax.

Mann and Langer introduced a two stage frequency-
based method for finding this bowtie axis for a local image
region containing a range of depths [17]. The first stage
uses a standard motion compensation method to remove the
estimated mean velocity in the region [16]. Since all the
velocities in the region lie on the motion parallax line, the
mean velocity lies along the motion parallax line as well.
Hence, the motion plane corresponding to this mean veloc-
ity also contains the motion parallax line and thus, motion
compensation changes the direction of the motion parallax
line to ����� ��� ��. The second stage of the method finds
this bowtie axis using a brute force template match.

Although the method performs well on 3D cluttered
scenes, there are limitations. The method requires many



image frames (� � ��) in order to achieve sufficient res-
olution in the temporal frequency direction. In particular,
for two frames only, the method is not even well defined.
Second, it requires that the camera translation and rotation
parameters be constant over this long sequence of image
frames. This need not be the case, in general, and indeed it
is not even the case in a typical situation such as tracking.

These limitations motivated us to develop a two-frame
method by using phase information in addition to power.
This is exactly analogous to how frequency based meth-
ods in estimating local image velocities first used the power
spectrum only [10] and then used both power and phase
[21, 9, 8]. (Recall Sec. 2.2.)

3 New method

The general idea is as follows. As in [12, 17], the new
method first performs motion compensation to get a resid-
ual flow. The motion parallax direction is then estimated
from this residual flow using the new two-frame frequency
method which uses phase information.

In this section, we first review the motion compensation
step. We then introduce a frequency domain model which
shows explicitly where the information about parallax lies
in the frequency domain. The main difference between the
new model and the previous frequency domain model is that
the new model is expressed in the 2D spatial frequency do-
main ���� ��� only, whereas the model of [17] is expressed
in the 3D spatio-temporal frequency domain. After intro-
ducing the model, we explain how to estimate the motion
parallax direction ���� ��� in local image regions.

��� ������ �������	����

A local region is first motion compensated to bring its
mean velocity to zero. This removes all effects of camera
rotation as well as the mean of the translation component.
For an � � � region in frame �, we find a corresponding
� �� region in frame ��� such that the average velocity
from frame � to frame ��� is minimised. We then shift the
region by this average velocity.

We estimate this average velocity using the Lucas-
Kanade algorithm1 with spatial derivatives computed using
a (-0.5,0,0.5) filter and temporal derivatives computed using
the filter (-1,1). Prior to computing the spatial derivative, we
blur spatially by convolving each frame with a radially sym-
metric Gaussian filter of 1.5 pixel deviation. No blurring is
applied temporally because we are using two-frames only.

We will assume from now on that motion compensation
has been pre-computed, and focus our attention on what is
done after motion compensation.

1Here we use only a simple version of Lucas-Kanade. For a discussion
of more general versions of Lucas-Kanade, see [2].

��� �����
	�� �
������� ����� �� ������
�	
	��	�

We model the image intensities in a region of frame ���
(which has already been motion compensated) as a set of
local shifts of the same region in intensities of frame �,


��� �� �� �� � 
�� � ���� � � ��� � �� � (4)

where � depends on ��� ��. The velocities ����� ���� stand
for the residual velocity, after motion compensation.2 We
rewrite the above equation as a sum of layers having differ-
ent �’s,


��� �� �� �� �
�
�


��� � ���� � � ��� � �� (5)

where 
� is an image “layer” whose pixels are moving with
a velocity that corresponds to a particular� value in Eq. (5).

Taking the 2D Fourier transform over variables �� � with
� fixed, we get:

	
���� ��� �� �� �
�
�

	
����� ��� �� �
� ��
�
����������������

(6)
The exponent represents the phase change. Note the units.
Since ���� ��� is in pixels per frame, we need to divide by
the number of pixels per image region width � to convert
velocity to “image region widths” per frame. �� and �� are
in cycles per image region. For example, if �� � ��� �� pixel
per frame and ���� ��� � ��� ��, then the phase changes by
��
	

radians per frame i.e. from � to �� ��
From frame � to the motion compensated frame ���, the

Fourier transform changes as follows:

�	
���� ��� �� � 	
���� ��� �� ��� 	
���� ��� �� � (7)

Applying Eq. (6) gives:

�	
���� ��� �� �
�
�

	
����� ��� �� � �
� ��
�
�������������������

(8)
When ���� ��� ����� ��� is small, we can take a Taylor series
approximation,

��
��
�
���������������� � � � �

�
�

�
���� ��� � ���� ���

which yields

�	
���� ��� �� � ���� ��� � ���� ���
�
�

�

�
�

� 	
����� ��� ��

The key observation is that ���� ��� � ���� ��� � � for
spatial frequencies that are orthogonal to the direction of

2This model does not explicitly account for occlusion, namely surfaces
that appear in frame � or �� � but not both. Such pixels are considered as
noise.



Figure 3. Phase change for a diagonal camera
motion. Whiter pixels correspond to larger
phase changes. The tiles are disk-shaped
because frequencies above the Nyquist limit
(	� ) are removed.

motion parallax. This is illustrated in Fig. 3 which shows
the phase change when the motion parallax direction is di-
agonal, and nearly no phase change occurs near the diago-
nal. (See Sec. 4 for further description of the sequences.)
The above observation suggests that the phase component
can be used to estimate the direction of the ���� ��� vector
[6]. We next describe a new method for doing so.

��� ������ ��
 �����	���� �	
	��	� ��
���
����

Given an ��� region in frame � and the corresponding
motion compensated region in frame ���, namely 
��� �� ��
and 
��� �� ���� respectively, we apply a 2D Hanning win-
dow (raised cosine) to both regions to reduce windowing
effects. The 2D Fourier transforms are then computed, giv-
ing 	
���� ��� �� and 	
���� ��� �� ��.

The phase change is defined as

����� ��� ��� ����� ��� �� ��

where

����� ��� �� � 
��

��

��	
���� ��� ���

���	
���� ��� ���
�

and

����� ��� �� �� � 
��

��

��	
���� ��� �� ���

���	
���� ��� �� ���
��

As we argued above, we expect the phase change to be
small for spatial frequencies perpendicular to the direction
of parallax and large in the direction of ���� ���. With this
in mind, we perform a principal components analysis on the
set of spatial frequencies ���� ���, such that we weight each
spatial frequency by the phase change,

������ ��� ��� ����� ��� �� �� � � ���� ��� � (9)

We only use spatial frequencies ����� ���� � 	
� where���

is the Nyquist frequency of the local region (see disks in
Fig. 3). The estimated direction of motion parallax ���� ���
is the direction of the principal component with the larger
eigenvalue.

The phase changes ������ ��� �� � ����� ��� � � �� � in
(9) can be unstable if either 	
���� ��� � � �� or 	
���� ��� ��
(or both) is small. As a first attempt to discard unstable
phase changes, we considered alternative weights that re-
place the change in phase by the magnitude of the change
of the Fourier coefficients, namely

��	
���� ��� �� � � ���� ��� � (10)

Following similar reasoning used after Eq. 7, we note that
�	
���� ��� tends to be small when ���� ��� � ���� ��� � �
and so the new weights tend to be small in this case as well.

In Sec. 4.2, we refer to the method using ������ ��� �� �
����� ��� � � �� � weights as the phase method, and to the
method using � �	
���� ��� �� � weights as the phase & am-
plitude method.

4 Experiments

The new method was tested on synthetic sequences as
well as a real sequence. These are described next.

��� ��	�� ���������

The synthetic data we present are image sequences that
we rendered in OpenGL. The scenes are composed of
fronto-parallel squares uniformly distributed in space. With
the camera initially located at the world origin, the squares
were placed at depths ranging from 2 to 10 units, with ran-
dom fronto-parallel orientations but fixed size.

Each frame has a ��� � ��� pixel resolution. To avoid
spatial and temporal aliasing in the rendering, each se-
quence was rendered at three times its desired size (i.e.
���� ���), then blurred with a Gaussian filter of standard
�
 � ���, and finally subsampled by a factor of three. A
field of view of ��� was used and noise with standard devi-
ation of ��� was added.

We tested two camera motions: first, a diagonal lateral
translation motion with translation � � ����� ���� ���� and



rotation � � ����� ���� ����; second, a horizontal lateral
camera motion � � ����� ���� ���� with a rotation around
a diagonal image axis � � ����������� ����. The true mo-
tion parallax directions are (1,1) and (1,0) respectively.

Two types of textures were used. First, constant inten-
sity “textures” were used with values chosen independently
from ��� ���� for each object. In this case, the motion esti-
mate is driven entirely by the intensity edges at the square
boundaries. Second, 2D textures ( �

�
noise patterns) were

mapped having a 256 intensity range and all having the
same mean of 128. Figure 4(a,b) shows a frame for both
cases.

The real sequence was shot with a Canon XL2 video
camera. We used a set of indoor plants which were shot un-
der a purely lateral motion, so the motion parallax direction
is (1,0) everywhere. The scale of the leaves corresponds
roughly to the size of our synthetic squares. Figure 1 shows
a single frame.

Both real and synthetic sequences are composed of 12
frames and the range of image speeds did not exceed 2 pix-
els per frame. Results presented in the next section have
been computed on every pair of neighboring frames. The
first frame of each pair is divided in a � � � grid of tiles,
each tile corresponding to a ��� �� region over which mo-
tion parallax direction ���� ��� is estimated. This amounts
to ��� motion parallax direction estimations per sequence
(36 estimations for each of the 11 pairs of frames). Here,
we use � � �� but in general the region size should be
large enough to contain sufficiently varying scene depths,
but small enough to respect the local approximation of Eq.
1.

���  ������

In Tables 1 and 2, we show the mean (absolute value)
error of the motion parallax directions for all scenes. These
errors are defined as the 2D angle between the true motion
parallax direction �� and the estimated direction ��:

������
���� � 
������
�� � ��

��������
��

In general, we observe that the phase method usually
performs better than the phase & amplitude method. This
was somewhat surprising since the latter was used to reduce
the ill-effects of unstable phase changes. One explanation is
that the amplitude spectrum depends highly on scene con-
tent (edges, gradients, contrast) and is dominated by a small
set of orientations in each local region. These dominant ori-
entations can bias the estimates.

(a)

(b)

Figure 4. A frame example from the synthetic
sequences with (a) flat (0D) textures. (b) 2D
textures.



SYNTHETIC SEQUENCES
Diagonal translation

� � ����� ���� ��� � � ��� �� ��
2D textures

Phase Method Phase & Amplitude Method
��� ���

0D (flat) textures
Phase Method Phase & Amplitude Method

��� ����
Translation and rotation

� � ����� �� ��, � � ����������� ��
2D textures

Phase Method Phase & Amplitude Method
��� ����

0D (flat) textures
Phase Method Phase & Amplitude Method

���� ����

Table 1. Average absolute errors (degrees) in
motion parallax direction ���� ��� for both two-
frame frequency methods applied to the syn-
thetic sequences.

REAL SEQUENCE

Lateral translation only
Phase Method Phase & Amplitude Method

���� ����

Table 2. Average absolute errors (degrees) in
motion parallax direction ���� ��� for both two-
frame frequency methods applied to the real
sequence.

5 Conclusion

A new frequency method is presented to estimate the
motion parallax direction for local regions. By using both
phase and power information, it extends Mann and Langer’s
method and can be applied to two frames only. As opposed
to many classical methods for motion estimation, the new
method does not assume that the velocity field is locally
smooth nor that the camera motion is constant for many
frames. The method performed well on the challenging
3D cluttered scenes we tested. Finally, this new method
could be extended, following a scheme similar to [12] for
instance, to estimate the full 3D camera motion using two
frames only.
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