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Abstract

We propose a new method, 3DGiC, for evaluating the
performances of various multiview surface reconstruction
methods. It does not need a complete ground truth model,
providing a much wider range of applications. More impor-
tantly, most existing methods only measure the quality of re-
construction in a global manner but local surface details are
not involved. In contrast, 3DGiC depends on both global

consistency and local accuracy of reconstruction in order
to deliver a more comprehensive evaluation. The key idea is
to compute a cumulative distribution of the joint probability
of two local surface descriptors. We also designed experi-
ments based on both synthetic and real data to demonstrate
the advantages as well as the effectiveness of 3DGiC.

1. Introduction
3D surface reconstruction from multiview datasets is a

classical problem and remains active. Its goal is to recon-

struct a complete surface model from multiple datasets cap-

tured from different viewpoints. Fig. 1 shows the recon-

structions of the Bird, Teletubby and Frog datasets (multi-

view range images) using various algorithms. Through a

visual comparison, it might be reasonable to claim that the

reconstructions shown in the last three columns outperform

other ones. However, for these three competing methods, it

is not convincing to compare their reconstruction results but

visually because they all look reasonable but have different

flaws. In this case, a quantitative evaluation is needed.

1.1. Existing evaluation methods

We categorise existing methods into two groups accord-

ing to whether a complete ground truth is required.

It is difficult to do evaluation without a complete ground

truth model. In this case, the evaluation usually focuses

on how much the reconstruction is consistent with the in-

put datasets (viewed as a set of partial ground truth mod-

els). Reconstruction error [1] is computed as the average

Euclidean distance from input points to the reconstructed

surface. Similarly, integration error [19, 20] calculates the

average of the Euclidean distances between the points in

the final reconstructed surface and their closest points in the

input data source. [18] quantifies the accuracy of the recon-

struction by measuring an average per-point distance of the

range data to the reconstruction.

Once a complete ground truth is available, a direct evalu-

ation is readily implemented. [17] employs the mean square

errors of different reconstructions against the known ground

truth for comparisons. [5] measures the standard deviations

of reconstructions to the ground truth under different lev-

els of noise. shape error [6, 12] is calculated by the ratio

between the volume of the symmetric difference between

the estimated surface and the ground truth and the volume

of the ground truth. To measure the accuracy of a recon-

struction, [13] calculates the signed distances between the

points in the reconstructed model and their closest points

on the ground truth model. The output is a single distance

value such that 90% (as suggested by the authors) of the re-

construction is within this distance threshold of the ground

truth model. [2] proposed a three-step method to evaluate

reconstruction methods where the ground truth models were

produced via a commerical optical laser scanner.

A major weakness of the existing methods is that they

mostly estimate global accuracy of reconstructions but ne-

glect local accuracy. Global accuracy is used to give us a

sense of whether a reconstruction tends to over- or under-

estimate the true shape. Local accuracy measures how con-

sistent a local surface of the reconstruction is with its cor-

responding local surface on the true shape. For example,

in Fig. 2, the reconstruction in (a) has a better accuracy
according to [13]. But we believe that in most applica-

tions, the reconstruction in (b) is viewed more successful.

Also, in [20], the reconstructed Bird model with a signifi-

cant oversmoothing effect yielded a small integration error
[20] while other better reconstructed models with more lo-

cal surface details produce larger integration errors. The

similar phenomenon also lies in the Frog model where the

result of the quantitative evaluation via integration error was

inconsistent with the qualitative comparison.
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Figure 1. Rows: Reconstructions using 17 Bird range images, 17 Frog range images and 17 Teletubby range images respectively. From left

to right: one single range image used as partial ground truth, volumetric method [3], mesh-based method [15], SFK method [20], k-means

clustering-based method [19], pairwise MRF-based method [11], higher-order CRF-based method [14]

1.2. Requirements for a good measure

An evaluation method for multiview surface reconstruc-

tion is a specific measure of shape dissimilarity. Therefore,

a good measure should satisfy some general requirements

[10] desirable for a shape dissimilarity method and some

specific properties beneficial to this particular application:

(1) Invariance: a good measure should be invariant to

rigid transformation. Clearly, if the reconstructed surface

is precisely superimposed with the ground truth after a cer-

tain rigid transformation, it should be viewed as a perfect

reconstruction. The point here is that in such an evaluation,

we always try to measure the surface error/difference rather

than the pose error/difference.

(2) Robustness: a good measure should be robust to

small perturbations. This property provides insensitivity

(but not invariance) to noise and outliers. A simple method

to achieve robustness is to use a strategy introducing a ra-

tio between the measured difference and the ground truth

or the input data as the output of the evaluation. Robust-

ness is essentially a dynamic representation relying on the

relative magnitude of the perturbation. Because we usually

compare the magnitude of the perturbation to the size of the

surface model to see whether it is ‘small’ or not, it is natural

to use a ratio as the form of the assessment to achieve the

robustness requirement.

(3) Generality: a good measure should be independent

of the representation of the surface models. It is desired

to be able to cope with input data in a variety of represen-

tations such as 3D unstructured point cloud, range scans,

polygon soup, meshes, 2.5D slice and voxels, etc. We re-

quire that the measure can handle the input data of a surface

model with or without connectivity information in both im-

plicit and explicit representations.

(4) Applicability: a good measure should have a wide

range of applications. Usually, an evaluation method which

does not require a complete ground truth model is easy to

use in most applications.

1.3. The proposed methodology

The proposed methodology for evaluating multiview sur-

face reconstruction algorithms, namely 3D Gini Coefficient

or 3DGiC for short, is inspired by Gini Coefficient, a well-

known measure of statistical dispersion in economics and

sociology. As illustrated in Fig. 3(a), the Gini Coefficient

measures the inequality of a distribution by applying a ratio

of the difference between such a distribution and the distri-

bution representing sheer equality over the one representing

sheer equality. The key idea to adapt Gini Coefficient into

our work is to construct a parameterised probability distri-

bution corresponding to an arbitrary surface model discrim-

inatively. Then we can use the idea of Gini Coefficient to

measure the difference between pairs of distributions.

We briefly summarise the advantages of our method in

terms of the requirements listed in Section 1.2. Firstly,

we develop two local surface descriptors invariant to rigid

transformations and the following computation is com-

pletely based on them. Consequently, 3DGiC is invariant

to rigid transformations. In contrast, most existing mea-

sures used for evaluating multiview surface reconstruction

approaches [19, 1, 6, 13] do not have such invariance. Sec-

ondly, 3DGiC is robust to small perturbations while the ex-

isting methods relying only on distances do not have such

robustness because the proposed local surface descriptors

are not over-sensitive to noise, as demonstrated in Section

2.3. Thirdly, the proposed evaluation method can cope with

different types of input data such as 3D unstructured point

clouds and range images. However, the shape error [6] is
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Figure 2. The accuracy methodology [13] neglects local surface

details, leading to unfair comparison and evaluation. Here the blue

circles are the reconstructed surface and the green circles represent

the ground truth. Globally, the reconstruction in (a) is more accu-

rate; locally, the reconstruction in (b) is more accurate. Please note

that figure (a) is directly taken from Figure 3(a) of [13].

designed to compute the volume difference between two

surfaces, which thus requires the connectivity information

from the input data. Finally, a complete ground truth is not

necessary for our method while its presence can make the

evaluation more efficient.

In general, the key idea is to compute the cumulative

distribution of a joint probability of local surface descrip-

tors. The a cumulative distribution represents global statis-

tics while the local surface descriptors are used for evaluat-

ing local accuracy. In this way, both global and local con-

siderations are incorporated, which leads to a more compre-

hensive evaluation.

2. Algorithmic details
There are three stages to the estimation of 3DGiC: (1)

detecting overlapping areas; (2) calculating 3D Lorenz sur-

faces; (3) computing the volume ratio.

2.1. Overlapping area detection

We assume that there is no complete ground truth model

available. The only objective and reliable data that can be

used for the evaluation are the input data. The first step is to

calculate the overlapping area between an input point cloud

(or range image, mesh, etc) and the reconstructed surface.

Let I = {Im|m = 1, 2, ...n} be the multiview input

point clouds. After registration via [7], we obtain a collec-

tion of registered point clouds {I ′m|m = 1, 2, ...n}. These

point clouds and R, the set of vertices on the reconstructed

surface, are in the same coordinate system. We then find the

3 nearest neighbours for each point in I ′m from R. Next, we

collect all the nearest neighbours as the overlapping point

set Rm from R. The surface area covered by Rm is viewed

as the overlapping area between R and the input point cloud

Im. This scheme is very simple but functional and fast when

using a k-D tree speedup. A more advanced overlapping

area detection method can be found in [19]. Usually, Rm

and Im contain different number of points. The process of

overlapping area detection is illustrated by Fig. 4.

Figure 3. (a) The diagonal represents perfect equality of incomes.

Gini Coefficient can then be thought of as the ratio of the area that

lies between the line of equality and the Lorenz curve (marked ‘A’)

over the total area under the line of equality (marked ‘A’ and ‘B’);

i.e., G = A/(A + B). (b) The zigzag order of an 8 × 8 matrix

2.2. 3D Lorenz surface

In this paper, we propose the concept of 3D Lorenz sur-

face. It is inspired by the Lorenz curve [9]. Lorenz curve

is often used to describe the cumulative probability distri-

bution of income graphically. By comparing one Lorenz

curve with the line of equality (as shown in Fig. 3 (a)), we

can calculate the Gini Coefficient measuring how dispersive

the income of different groups of people in the society is.

The proposed 3D Lorenz surface is an extension of the

idea of Lorenz curve in a 3D space. It is a cumulative dis-

tribution function of the joint probability distribution of two

transformed curvatures. We develop a three-step scheme to

compute the 3D Lorenz surface of a surface.

(1) Transformed curvatures. We use two transformed

curvatures to calculate the Lorenz surface because both of

them are invariant to rotation and translation. It means that

ideally, after registration, the transformed curvatures should

remain unchanged. They represent the local accuracy as it

is only related to local surface details.

Given a surface, we employ a simple but fast method

[16] to compute the principal curvatures k1 and k2 for each

vertex. Then we compute the two transformed curvatures

d1 =
2
π

arctan k1, d2 =
2
π

arctan k2. (1)

The colour maps of d1 and d2 are shown in Fig. 5. The

reason that we do not directly use k1 and k2 in this algo-

rithm will be explained in Section 2.3.

Then we use N1 and N2 bins for computing the his-

tograms of d1 and d2 over all the vertices on the surface

respectively (as shown in Fig. 6). The quantization pa-

rameters N1 and N2 are important for the performance

of 3DGiC. First, the histograms will probably remain the

same if the transformed curvatures of every point slightly

change. The quantization thus makes the measure not over-

sensitive to globally-distributed noise as it tolerates small

errors on the transformed curvatures. The larger the quanti-

zation parameters, the more tolerant (insensitive) the mea-
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Figure 4. Overlapping area detection: (a) The reconstructed surface (b) One single view of the input (c) They are overlapped after registra-

tion (d) The surface area in yellow is detected as the overlapping area (e) They usually contain different number of points

Figure 5. The two transformed curvatures of an elephant model.

Left: Transformed curvature d1; Right: Transformed curvature d2

sure to errors and noise. Second, N1 and N2 largely decide

whether the Lorenz surface is smooth or not, and further af-

fect the final value of 3DGiC. Third, the computational time

of 3DGiC is also related to the two parameters.

(2) Lorenz surface estimation. The joint probability

distribution of d1 and d2 of all vertices on a surface can be

calculated via:

pij =
xij

N
, i = 1, 2, ..., N1 and j = 1, 2, ..., N2 (2)

where xij indicates the number of the vertices whose trans-

formed curvatures lie in the ith bin out of N1 bins and the

jth bin out of N2 bins respectively. N is the number of

vertices on the surface and

N =
∑

i,j

xij , i = 1, 2, ..., N1 and j = 1, 2, ..., N2 (3)

We then reorder P = {pij |i = 1, ..., N1; j = 1, ..., N2}
using the following procedure. We first calculate the zigzag

order for the N1 × N2 array of P as illustrated in Fig. 3

(b). Then we sort the N1×N2 pijs in P in ascending order.

We do this reordering to make sure that the Lorenz surface

is always under the diagonal plane, which complies with

the nature of the Lorenz curve (as shown in Fig. 3 (a), the

Lorenz curve is always under the line of equality). Fig. 7

shows the Lorenz surfaces produced with and without this

reordering scheme for comparison. A Lorenz surface parti-

tions the unit cube into two parts. One has a volume larger

than 0.5 and the volume of the other one is smaller than 0.5.

The reordering actually makes sure that the algorithm uses

the smaller one to calculate the 3DGiC, leading to mean-

ingful result. Once we obtained the reordered P , written

as P ′ = {p′ij |i = 1, ..., N1; j = 1, .., N2}, the cumulative

distribution S of the joint probability can be calculated as:

S = {suv|u = 1, ..., N1; v = 1, ..., N2} (4)

where

suv =
i=u,j=v∑

i=1,j=1

p′ij u = 1, ..., N1 and v = 1, ..., N2. (5)

Here, the order of summation is also the zigzag order.

The Lorenz surface L is the surface represented by the

3D point set {cuv|cuv = ( u
N1

, v
N2

, suv)}. It can be seen that

any two Lorenz surfaces must intersect at point ( 1
N1

, 1
N2

, 0)
(as the smallest pij is always equal to 0) and point (1, 1, 1).

(3) 3DGiC computation. Gini coefficient reflects how

different a Lorenz curve is from the line of equality. In

this paper, we extend this idea and propose the concept of

3DGiC. First, it measures how different one Lorenz surface

is from the other one. Second, it is defined as the ratio

of the volume that lies between the two Lorenz surfaces

over the volume under the Lorenz surface on the top. Note

that two Lorenz surfaces are possibly intersected. Thus, in

Eq. 6, the denominator is chosen as the larger one between

V (L(Rm)) and V (L(Im).
Let the Lorenz surfaces of Rm and Im be L(Rm) and

L(Im) respectively. V (L(Rm)) and V (L(Im)) denote the

volumes under the two Lorenz surfaces respectively, the

3DGiC of R and Im can be calculated as

G(R, Im) =
|V (L(Rm))− V (L(Im))|

max(V (L(Rm)), V (L(Im)))
. (6)

To measure the overall consistency between R and all

of the multiple input point clouds I , we can calculate the

mean 3DGiC G(R, I) = 1
n

∑m=n
m=1 G(R, Im). The evalua-

tion based on the 3DGiC is thus very intuitive: the smaller

the mean 3DGiC, the better the reconstruction.

2.3. Transformed curvatures vs. curvatures

We use transformed curvatures instead of principal cur-

vatures to compute the Lorenz surfaces. The reason is that
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Figure 6. Left: The surface model of a teapot; Middle: The histogram of d1; Right: The histogram of d2. Please note that here the

transformed curvatures d1 and d2 have been quantized with the quantization parameters N1 = N2 = 100.

Figure 7. (a) The surface model of a foot; (b) the Lorenz surface

generated without the reordering scheme intersects with the diag-

onal plane; (c) the Lorenz surface generated with the reordering

scheme is always under the diagonal plane.

the principal curvatures tend to produce a Lorenz surface

quite close to the bottom right corner as shown in Fig. 8 (a)

and (b). If the volume under the Lorenz surface is exces-

sively small, the 3DGiC will be over-sensitive to the change

of the numerator in Eq. (6). In this case, even if the differ-

ence between two surfaces are small, their 3DGiC will still

be close to 1. This is not desired because the 3DGiC will

mostly distribute in a narrow interval.

In addition, if one surface contains plenty of noise, its

Lorenz surface tends to bend towards the bottom right cor-

ner as shown in Fig. 8 (c) and (d). The noise makes the

distributions of transformed curvatures more discontinuous

because it usually produces a bumpy surface. Therefore the

transformed curvatures fall into a smaller number of bins

after quantisation. Eventually, the joint probability distribu-

tion pij becomes more concentrated.

3. Experiments

We conducted two experiments to examine the validity

of the proposed method for objective assessment. In Ex-

periment 1, noise was added to the test datasets. We em-

ployed the proposed 3DGiC and the accuracy [13] measure

for evaluations respectively. In Experiment 2, we ran differ-

ent multiview surface reconstruction methods and compute

3DGiCs for quantitatively comparing these reconstruction

methods. We set N1 = N2 = 100 to balance the speed of

implementation and the smoothness of the Lorenz surface.

All experiments were implemented on a Pentium due core

2.4GHz, 3.25GB RAM computer.

3.1. Experiment 1

Test data and procedure. We used the Skull and Hippo

models as shown in Fig. 9. We added zero-mean Gaussian

noise to the ground truth models and generated two noisy

models. Then we computed their 3DGiC and accuracy [13].

We also generated two test surface models by simply in-

troducing a 0.3mm translation along the x direction to the

ground truth surface models. We computed the 3DGiC and

the accuracy [13] for the displaced surface models.

Results and discussion. The results are shown in Fig. 9

and Table. 1. With a value of 0.4665, the 3DGiC of the

noisy skull sufficiently reflects how different it is from the

ground truth. Although 3DGiC is not over-sensitive to small

perturbations, it has the ability to recognise different levels

of ‘wrongness’ as illustrated in Fig. 10 where we added dif-

ferent levels of Gaussian noise into the Stanford Bunny.

As shown in Table. 1, the 3DGiC of the displaced Skull

and Hippo models is 0. This is desired as the displaced

model is in fact a perfect reconstruction. In contrast, the

accuracy of the test models is misleading. For the noisy

Skull, with 90% of its points being within 0.1114mm of the

ground truth model cannot give us a convincing sense of

whether the reconstruction is accurate or not. For instance,

the noisy Skull was clearly not better reconstructed than the

one with displacement although that is what the accuracy

measure indicated.

3.2. Experiment 2

Test data. In this experiment, we used three sets of real

multiview range images from the Minolta database [4] to

reconstruct complete 3D surface models. The thumbnails

of these range images are shown in Table. 2-4.

Procedure. Since each range image can only cover par-

tial surface of the object and is posed in their individual

coordinate system, we employed an automatic registration

method [7] to align them in a global coordinate system.

Registration errors are shown in Table. 2-4. For each input

set of range images, we used the three most successful mul-

tiview reconstruction methods [19, 11, 14] demonstrated in

Fig. 1 to produce three different surface models (shown in

the 4th, 5th and 6th columns in Fig. 1) respectively.

Results and discussion. The last three columns of each
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Figure 8. (a) The Lorenz surface of the foot produced by directly using principal curvatures for quantisation and the volume under the

Lorenz surface is 0.0011 (b) The Lorenz surface of the foot produced by using transformed curvatures and the volume under the Lorenz

surface is 0.0603 (c) The foot model with some zero-mean Gaussian noise (d) The Lorenz surface of the noisy foot tends to bend towards

the bottom right corner where both Lorenz surfaces are produced using the proposed transformed curvatures.

Figure 9. From left to right: The ground truth skull; The skull with Gaussian noise; The Lorenz surfaces of the the ground truth skull and

the noisy skull; The ground truth hippo; The hippo with Gaussian noise; The Lorenz surfaces of the ground truth hippo and the noisy hippo

Table 1. The 3DGiC and the accuracy [13] of different test models

of Table. 2-4 show the 3DGiCs of the three surface models

produced by the three reconstruction methods. We can see

that 3DGiC is very informative. First, according to the aver-

age 3DGiC, in general, the higher-order CRF-based method

[14] (corresponding to Model 1 in Table. 2-4) produced the

best reconstructions. The k-means clustering-based method

[19] (corresponding to Model 3 in Table. 2-4) had a worse

performance while the pairwise MRF-based method [11]

(corresponding to Model 2 in Table. 2-4) was the worst.

Second, it is possible that a reconstruction is generally poor

but has a small patch of local surface region better recon-

structed. For example, for the 7th input scan of the Frog

(Table. 4), the pairwise MRF-based method achieved the

lowest 3DGiC. Third, the 3DGiC of each individual input

range image gives us a clue that whether some parts of the

output complete surface model are well or poorly recon-

structed. In Table. 2, for Model 1 of the Bird, the 3DGiC

of the 8th range scan is as high as 0.2223. Considering that

the average 3DGiC of the whole dataset is merely 0.0812,

we know that some parts of the surface covered by the 8th

range scan are not well reconstructed. Similarly, in Table. 4,

for Model 1 of the Frog, from the 3DGiC corresponding to

the 12th input range scan, we know that some parts of the

surface covering the back of the Frog are not well recon-

structed. This is very useful in practice. For example, the

improvement of the surface quality can only focus on the

partial surface poorly reconstructed, which makes the pro-

cess more efficient.

If we compare the 3DGiCs calculated in Experiment 1

with those calculated in Experiment 2, we can have the

sense that in most of the cases, some noise distributed

throughout the surface tends to have more significant im-

pact than registration error on 3DGiC. This is reasonable

as such noise directly destroys local surface geometry and

human perception is quite sensitive to it. For example, a

bumpy surface is tended to be viewed as a poorer recon-

struction than one surface under- or over-estimated to the

ground true shape as we cannot easily distinguish the lat-

ter one from the true shape. Such kind of bumpy surface

caused by a particular noise usually cannot be reflected and

further recognised by existing evaluation methods such as

accuracy (see Fig. 2 for a better understanding). In con-

trast, the proposed 3DGiC carries out a quantitative evalua-

tion which complies more with human’s habit of visual per-

ception while sometimes it is indeed very difficult to judge

which reconstruction is better visually.

Table. 5 shows the computational time of 3DGiC over

different datasets. The algorithm needs more computational

time when the quantisation parameters increase, but not

significantly. This is easy to understand because we need

more time to calculate the joint probability distribution of

the quantised transformed curvatures as the joint probabil-

ity P = {pij} has more elements. In Table. 5, besides the

3 datasets of multiview range images, we also use four syn-

thetic datasets with ground truth. We produce a new sur-

face model by adding some Gaussian noise into the ground
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Figure 10. 3DGiCs of Bunny models with different levels of noise. From left to right: the first model is the original Bunny; The 3DGiCs

of the 4 Bunny models with different levels of noise are 0.2093, 0.4370, 0.6457 and 0.8262 respectively.

Table 2. The Bird dataset in Experiment 2 and the resultant 3DG-

iCs of the three reconstructed surface models (listed in the columns

of Model 1, Model 2 and Model 3). ARE: Average registration er-

ror [8]. SDRE: Standard deviation of registration errors [8].

truth model and the new surface model is used as the recon-

structed surface model. The Foot, Skull and Hippo models

have been shown in Fig. 8(a)(d) and Fig. 9 respectively. The

Stanford Bunny is shown in Fig. 10. Please note that in Ta-

ble. 5, the number of points denotes the number of all points

involved in the estimation of 3DGiC. For the Foot, Skull,

Hippo and Bunny models, it is the total number of points in

the ground truth model as well as the reconstructed model.

For the Bird, Frog and Teletubby datasets, it is equal to the

total number of points in all of the input range images and

the reconstructed model.

4. Conclusions
In this paper, a novel evaluation method, 3DGiC for as-

sessing the quality of multiview surface reconstruction al-

gorithms is proposed. We first develop the two transformed

curvatures which describe the local surface geometry and

then compute a joint probability distribution to obtain a

Table 3. The Teletubby dataset used in Experiment 2 and the 3DG-

iCs of the three reconstructed surface models (listed in the columns

of Model 1, Model 2 and Model 3). ARE: Average registration er-

ror [8]. SDRE: Standard deviation of registration errors [8].

global statistic of the surface. The global statistic is then

converted into a Lorenz surface through reordering in or-

der to generate an intuitive representation. Eventually, the

3DGiC is calculated based on the volumes under the Lorenz

surfaces. For multiview surface reconstruction, we usually

take the mean of a collection of 3DGiCs as the final evalu-

ation outcome. Therefore, different from existing distance-

based evaluation methods, 3DGiC incorporates local sur-

face geometry into its global evaluation scheme. Exper-

iments demonstrated that (1) the evaluation using 3DGiC

does not require a complete ground truth model, (2) com-

pared to existing evaluation methods, 3DGiC reflects both

global and local accuracy of a reconstruction and (3) the as-

sessment made by 3DGiC is intuitive and consistent with

human perception.

We do not claim that 3DGiC should be employed

exclusively for the evaluation of reconstruction methods. In

practice, we can always use different measurements to more
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Table 4. The Frog dataset in Experiment 2 and the resultant 3DG-

iCs of the three reconstructed surface models (listed in the columns

of Model 1, Model 2 and Model 3). ARE: Average registration er-

ror [8]. SDRE: Standard deviation of registration errors [8].

Table 5. The computational time of estimating the 3DGiCs using

various datasets and quantisation parameters

comprehensively evaluate a reconstruction. Also, in this

work, we show that the proposed transformed curvatures

are better than principal curvatures. Nevertheless, in exper-

iments, we still find its drawbacks. It seems over-sensitive

to global noise. As a result, the output 3DGiC is somewhat

unproportionally large if the reconstructed surface suffers

from some global noise. Future work will thus focus on

testing different descriptors of local surface geometry.
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