Reconstructing a 3D Line from a Single Catadioptric Image
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Abstract

This paper demonstrates that, for axial non-central op-
tical systems, the equation of a 3D line can be estimated
using only four points extracted from a single image of the
line. This result, which is a direct consequence of the lack
of vantage point, follows from a classic result in enumera-
tive geometry: there are exactly two lines in 3-space which
intersect four given lines in general position. We present a
simple algorithm to reconstruct the equation of a 3D line
from four image points. This algorithm is based on comput-
ing the Singular Value Decomposition (SVD) of the matrix
of Pliicker coordinates of the four corresponding rays. We Figure 1: Images formed by a spherical catadioptric camera.
evaluate the conditions for which the reconstruction fails,
such as when the four rays are nearly coplanar. Preliminary
experimental results using a spherical catadioptric camera
are presented. We conclude by discussing the limitations
imposed by poor calibration and numerical errors on the
proposed reconstruction algorithm.

not containing the pinhole, projects onto a straight line con-
tained in the image plane called the image line. The straight
line in 3D and the pinhole span a plane. The intersection
of this plane with the image plane is the image line. Note
that two points on the image line determine the plane con-
taining the 3D line, but the 3D line cannot be uniquely de-
i ] ~_ termined from the information provided by the two image
In this paper we study the process of image formation in points. Two degrees of freedom remain undetermined and,

axial non-central optical systems. While lacking a unique g g result, more points on the image line do not provide any
vantage point, these systems possess an axis of symmetryygitional information.

which every 3D ray associated with an image pixel inter- ) , i

sects. One such system is a catadioptric camera composed A Stéreo algorithmwhich uses two images taken from
of a pinhole camera and a convex spherical mirror. Typi- different viewpoints, is required to fully reconstruct a 3D
cal images captured with such a system are shown in FigurdiN€- In addition, a stereo algorithm requires establishing
1. Even though the implementation presented in this paperporre§pondence b_etween the two image lines, which usually
uses a spherical catadioptric system, the analytic results and® @ ime-consuming and error-prone process, even when

algorithm apply to any axial non-central catadioptric system doné manually. In contrast with this situation, we show in
for which the mapping from pixel coordinates to rays in 3D this paper that an axial non-central catadioptric system can
is known. fully reconstruct a 3D line from a single image without the

The simplest model for image formation is thmhole need to establish correspondences. This is a direct conse-
model In its most abstract form, it consists of anage ~ duence of the lack of a single vantage point. However, there
planewhere images are formed and an external point called@'® SOmMe intrinsic limitations due to rays in singular con-
the pinhole The image of a point in space is defined by figurations and numerical conditioning issues. These prob-

the intersection of the line determined by the 3D point and lems correspond to the poor reconstruction results obtained
the pinhole with the image plane. A straight line in 3D in short baseline stereo systems. We analyze these cases and

present simulations to determine the minimum acceptable
*{douglaslanman, taubip@brown.edu calibration tolerances to produce reliable reconstructions.

1 Introduction




2 Related Work e
Swaminiathan et al. [20] study catadioptric cameras ormatvesior "\
without a unique vantage point. These authors describe the
benefits of multiple-viewpoint systems, where the multiple
viewpoints are described by a caustic surface. Nayar [14]
describes a stereo reconstruction algorithm using two re-
flective spheres and an orthographic camera. Nene and Ng
yar [15] describe four catadioptric systems with planar, el- image plane
lipsoidal, hyperboloidal, and paraboloidal mirrors. They
use two mirrors to do depth mapping and 3D reconstruc-
tion. Geyer and Daniilidis [6] use a paraboloid mirror and
an orthographic lens. They show that projections of two sets
of parallel lines suffice for intrinsic calibration. Kang [11]
studies a catadioptric camera with a parabolic mirror to cap-
ture video sequences. Geyer and Daniilidis [7] describe
a unifying model for central catadioptric cameras (with a
single unifying viewpoint). Geyer and Daniilidis [8] again
use a parabolic catadioptric device and study the geome
try of two uncalibrated views. Here Euclidean reconstruc-
tion from two views is possible. Barreto and Araujo [1]
study catadioptric projection of lines in central catadiop-
tric systems (with a single effective viewpoint). Ying and
Hu [22] use the projections of spheres with an orthographic-
parabolic system to calibrate a catadioptric system (as Op+jected off of the spherical mirror, as illustrated in Figure
posed to the projections of lines). Hicks and Perline [10] 2(a). Here we denote the pinhole,c the center of the
design catadioptric sensors for rectifying images. Finally, in spherical mirrord the distance between the pinhole and the
a closely related paper, Caglioti [3] also addresses the probenter of the sphere,the radius of the spherical mirror, and
lem of reconstructing a 3D line from one image in an axial- ,; the vector fromp to ¢ normalized to unit length, so that
symmetric catadioptric system, and presents an algorithm,. _ , _ ;. |nstead of an image plane, we use a spherical
analysis, and experimental results restricted to a catadiopyetina. Image points are unit-length vectarsThe origin of
tric camera with a conical mirror. In this paper we present e world coordinate system is placed at the pinhole.
a more general approach for 3D line reconstruction in axial Because of the coplanarity of incident ray, reflected ray,

non-central optical systems. and optical axis, the reflected ray intersects the optical axis.
But not all these rays intersect the axis at the same point.

3 Spherical Catadioptric Ray Equations This is illustrated in Figure 2(b). If two image poinis and
ug are not congruent modulo a rotation around the optical

In this section we review the analytic mapping from im- axis, the corresponding reflected rays awested i.e., the
age points to 3D rays for a spherical catadioptric system.two supporting lines are not coplanar. This property makes
Our analysis and line reconstruction algorithm are valid, the reconstruction of a 3D line from a single image possible.
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Figure 2: The geometry of a reflected ray. The incident ray,
normal vector, and reflected ray are coplanar.

however, for more general cameras [9, 19]. Let u be an arbitrary unit length vector and let
The reflection of rays on the spherical mirror is governed
by the classical law of reflection: the incident ray, the nor- I.={¢g=¢u:¢>0}

mal vector to the mirror surface at the point of incidence,
and the reflected ray are coplanar. In addition, the incidentbe theincident raythat goes through the pinhole in the di-
and reflected rays are symmetric with respect to the normalrection ofw. It hits the mirror surface at the poigt= g(u),
vector, as shown in Figure 2. This means that the optical and reflects off according to the reflection law along a vector
system has cylindrical symmetry with respect to the line v = v(u). Thereflected rayR,, can be written in paramet-
joining the pinhole and the center of the spherical mirror. ric form as
We call this line theoptical axisof the system.

To analyze the process of image formation in this system R,={p=qu) +tv(u):t>0}, 1)
we consider rays traveling in the opposite direction, from
the camera through the pinhole to space, after they are rewherev = v(u) is its direction.



For a spherical mirror we have

(d(utw) Y I (utw)2)) u. ()

and we define the vectar as the mirror image of the in-
cident vectoru with respect to tangent plane to the mirror
surface ay [14]:

q(u)

v(u)= (I —2nn")u, 3

(q(u) — ¢)/r. A detailed derivation is

wheren = n(u)
presented in [13].

4 The lmage of a 3D Line

We determine in this section the implicit equation of the
image of a 3D lineL. This is an implicit equation in a unit
length pixel vector. This derivation is valid not only for

spherical catadioptric cameras, but for general cameras [9]

[19] where the mapping from pixels to rays is available.
We first take care of some special cases. Lgbe the
optical axis of the system, and |etbe another 3D line. IL
contains a reflected ray the projectionlofs a single point.
The converse of this fact is also true. IifintersectsL, or
if L is parallel toL, there is a plane containingand L.

In this case, since the projection is contained in the same

plane, it must be contained in the straight line defined by

the containing plane and the image plane. This line contains

the image of the center of the spherical mirror.

The general case is whénand L are twisted, i.e., when
they are not coplanar. In this case the imagd.a$ not a
straight line. In this case, for every poiptin L there is a
unique vectown, and¢ > 0 such thap = ¢(u) + tv(u). For
this particular value ofi, the rayR,, intersects the lind,,
and the intersection point js The implicit equation of the
image ofL is a function ofu which is zero if and only if the
ray R, intersects the lind..

{u:R,NL#0} ={u:¢r(u) =0}, (4)

wheregy, includes the intrinsic calibration parameters.

To get an explicit expression fafy, it is better to work
in projective space. A point in 3-dimensional projective
space B is represented by its homogeneous coordinates
T (w1, 72,73, 74)". The homogeneous coordinates of
a finite three-dimensional poiptare(py, p2, p3, 1)t, which
we also denote. A line in IP? is represented by 4 x 2
matrix L of rank 2 (we use the same symbol for the line and
its representing matrix) so that a poinbelongs tal if and
only if Ltz = 0. This representation is not unique: two ma-
tricesL and K represent the same lineiif= K A for some
non-singular x 2 matrix A. This is an equivalence relation
in the space of x 2 rank2 matrices. The Grassman mani-
fold G(1, 3) is the space of all the lines in*Pi.e., the space
of all the4 x 2 rank2 matrices modulo this equivalence.

To find the implicit equation we replace the parametric
representation aR,, in the implicit equations of. and elim-
inate the variable. Let

loy
l22
la3
l24

I
l12
l13
l14

L =

be the matrix defining the ling in implicit form. Replacing
the parametric representationofn the implicit equations
of L we obtain

{

Whereh = (111, l12, llg)t andlz = (1217 l99, lgg)t. Then we
eliminatet from these two equations and obtain

() (59) — (50) (1) ) + ((Gv)las — (1v)la ) =0,

which can be written in matrix form as follows

0
0

B(tv+q)+ 1
IL(tv+q) + lag

o\’ 0 Lo Liz Lyis Zl
V2 —L12 0 Lag Loy q2 =0,
v3 —Li3 —Ly3 0 Lz 12

(®)
whereL;; is the determinant of th x 2 minor of L com-
posed of thei-th and j-th rows. For examplels3 =
l12lo3 — la2l13. The elements of the vector

(L12a L137 L147 L237 L247 L34 )t

are the Ricker coordinates of.. They define an injection
G(1,3) — IP° [12]. It is easy to see that this mapping
is well defined: ifL and K are two representations of the
same line, and. = K A for a2 x 2 matrix A, the Plicker
coordinates of. are equal to the Btker coordinates ok
multiplied by the determinant od.

Note that the expression in Equation 5 is linear and ho-
mogeneous in the Btker coordinates of, and can be ex-
pressed as an inner product

v1g2 — V2q1 Lo
v1q3 — U3q1 L3
v Ly
u) = , 6
or(u) U2q3 — V3(2 La3 ©)
v Loy
U3 L3y

where the left hand side six-dimensional vector whose co-
ordinates are functions af andgq is the vector of Ricker
coordinates of the matrix

U1
U2
U3
0

q1
q2

q2
1



which we will also denot&?,,. Finally, line in P> which we are looking for can be described in
implicit form as the set of points( satisfying R*X = 0.
¢r(u) =R, L. (7) This line can also be defined in parametric formXs=
. X1+ tX,, X1 and X, are two different points satisfying
We have shown here that the necessary and sufﬁmenthX1 — R'X, = 0, andt is a parameter. We use the

condition for a first lineR,, defined in parametric formand  g\/p algorithm to solve this problem¥; and X, are two
a second ling. defined in implicit form to intersect is that |4 singular vectors ofR associated with the two small-

the inner product of their corresponding vectors afdRer  o; singular values, which in this case are both zero. They

coordinates be equal to zero. span the subspace orthogonal to the columm?, difut since
] ] ] they are both associated with the same singular value, they
5 Two Lines Intersect Four Given Lines are not unique, and we can replace what the SVD algorithm

computes with any pair of orthonormal vectors spanning the

In 1874 Schubert published a celebrated treatise on Enusame subspace. In particular, since the vectoriafhir co-
merative Geometry [16] which dealt with finding the num- ordinates of the optical axi&, represented in implicit form
ber of points, lines, planes, etc., satisfying certain geomet-belongs to this subspace, we can take= L, andX, any
ric conditions. These were important problems in Schu- orthogonal unit length vector in the two-dimensional sub-
bert's time. Several authors have explained Schubert cal-space associated with the singular value zero. For example,
culus in contemporary language [5, 12]. One of the sim- of the two smallest singular vectors Bf pick the most or-
plest problems in this field is: how many lines in 3-space, thogonal toL,. Finally, we need to find the two roots of the
in general, intersect four given lines? The answer is two. It equation
has been shown that this result has applications in compu- f(X14+tX2) =0
tational geometry [17, 4, 18] and computer graphics [21].

As shown in Section 7, there is an infinite number of lines but based on what we just discussed, one of these roots is
intersecting three or less lines, and in general none inter-t = 0, and the problem reduces to finding one root of a
secting more than four lines. This is so unless the lines arelinear equation in one variable. For this we expand the pre-
arranged in a special configuration, such as all the reflectedvious expression

rays corresponding to a pixel in the image of a 3D line.

Although algorithms to find the two lines which intersect F(X1+tXo) = f(X1) + tb(X1, Xo) + 2 f(X5)

four given lines have been published [21], here we present . -

a variant which operates on given lines in parametric form WNereb(X,Y) is the bilinear form

and intersecting lines in implicit form, well-adapted to our
problem.

We have introduced Btker coordinates in the previous
section. The 6-dimensional vectBy, of Equation 7 defines
a hyperplane in P, namelyH,, = {X : R}, X = 0}, where
(X12, X13, X14, Xo23, X24, X34)" are the homogeneous co-
prdmates ofapomK in IP°. The set of lined. in IP? yvh|c5h t= —b(X1, X)/q(Xs) ,
intersect a given rayR,, belong to the hyperplang,, in IP°.

Not every point in P is the Plicker coordinate of a  ang the Ricker coordinates of the intersecting line that we
line in P though. Actually the image of the ltker map  \yere looking for is
G(1,3) — IP° forms a quadri@ in IP° [12] defined by the
zeros of the polynomial X = f(Xy) X1 — b(X1, X5) Xy . (9)

X12Y34—X13Yos+X14Yo3+Xo3Y14 — X2 Y13+ X34Y10 .

For the expression above to have two different roots, we
needf(Xs) # 0 andb(X;, X3) # 0. Sincef(X;) = 0 the
non-zero root is

f(X) = X12 Xg4 — X1g Xog + X14 Xog . (8) We finish this section by computing the vectoy = L,

of Plucker coordinates of the optical ray represented in im-
plicit form. We first choose two vectors® andw? orthog-
onal tow so that{w!, w?,w} form an orthonormal frame,
and sow = w! x w?. Since the optical ray contains the
origin, the following matrix represents it in implicit form

Given four different raysR,,,, R.,, Ru.,, andR,, in P3

in general position, the intersection of their corresponding
hyperplanes in Pis a line. In general, the intersection of
this line with the quadric) consists of two points. The two
lines whose Ricker coordinates are these two points ih IP

are the two lines which intersect the original four. w! w?

To compute the two intersection points ir’ e form wl w?
a 6 x 4 matrix concatenating the &tker coordinates of wl w3
the four lines as column® = [R,,|Ruy,|Ru;|Ry,]- The 0 0



The Plicker coordinates of this matrix are To compute the remaining parametimve first compute

1,2 1,2 1 2

wiws — wywy (w x w?)3 w3 X =y X, = —1/(ntX

whd — ol x w? o ne =y X 1o =v X, v =1/(nX)
0 0 0

_ and thend

wiw? — wiw} (wh x w?); w1
0 0 0 dn,=vX, = d=(n.X,)/(niX;).
0 0 0

independently of the choice af! andw?. 7 Four Lines in General Position
It is difficult to describe the necessary and sufficient geo-
metric conditions in I for four rays to be in general posi-
The last step in our algorithm is to invert theiiPker ti_on. In thg_end, what we want is the necessary and suffi-
coordinates of the solution: given a poikitin the Plicker cient copdmon for the m_tersec_tlon of the four hyperplz_anes
quadricQ C IP°, find a4 x 2 matrix L of rank 2 so that  '© be a line and for the line to intersect théiéker quadric
its Pliicker coordinates are equal 1 in P°, i.e., modulo in two points, so that the steps described above result in ex-

a multiplicative factor. Since every line can be represented@ctly two differentlines. This condition is that the matfix
as the intersection of two orthogonal planes, one of which P€ full rank; i.e.,

contains the pinhole (the coordinate system origin), we
seek here a solution in implicit form where the matrix is
written as

6 Inverting Pllicker Coordinates

rank[R,, | Ru, | Rug | Ru,) =4 . (112)

Since we test this condition during the computation, it is

nb; nO; natural to take it as the definition of beinggeneral posi-
L= T3 nog tion. This is justified: the sets of four lines not in general
O

“d 0 position satisfy some algebraic equations and are contained
in a set of measure zero. Small perturbations of coefficients
bring them to the general case.

There are some geometric configurations of four lines
which result in singular positions. The case of the line
intersecting the optical axi§, was mentioned above. In
this case all the rays are contained in the plane defined by
L and Ly and the image of the line is also a straight line

n, andny are two unit length orthogonal vectors, ahe- 0

if and only if the line contains the origin. If a parametric
representation of the line is preferred, it is easy to verify that
the same line can be described as the set of ppiftjs=

tn; + po, Wheren; = n, X n, andpy = dn,. We have to
solve the following system of equations fog andn,

Np1Nos — Mpalor = U X1o (if imaged on an image plane). As in the case of a pinhole
Np1Mos — Mi3Nor = U Xi3 camera, a unique line cannot be determined.
dng; = vXu However, there are non-coplanar configurations of four
NpaMo3 — Mp3Nes = U Xo3 lines which are singular. Given three lines in general posi-
d 7o = vXo tion, such as when they are pairwise twisted, there exists a
dngs = VX3, unique ruled conic in 3D which contains the three lines. In
the case of pairwise twisted lines, this conic is a hyperboloid
wherev is a non-zero constant. L&t, = (X14, X4, X34)" of one sheet. The ruled conic containing the three lines also
andX; = (Xa3, —X13, X12)". If X, = 0 we haved = 0, contains all the members of two one-parameter families of
and so, the line passes through the origin. In this case thdines. Two lines of the same family do not intersect, and
solution is not unique. Since each member of one family intersects all the members of
the other family. If in a set of four twisted lines the fourth
2703 — Mb3Mo2 line belongs to the ruled quadric defined by the first three,
ng =mnp X Ny = | Mp3Nor — o3 | =v Xy, (10)

then R must be rank-deficient, because there are an infinite
number of lines intersecting the given fourpllp) is a poly-

we computer; = X /||X,||, choose any unit length vector nomial inp € R, thenp(q+tv) is a univariate polynomial

Np1Mo2 — Np2T01

n, orthogonal ton;, and sety, = n, x n;. If X, # 0 we int c_)f the same _dggree. For the set of zerop t contain
can computer, = Xo/||Xo|l, ne = X3/||X¢|| andny = the line{p+¢ v}, itis necessary the polynomialirbe iden-
n, x ny. Note thatn, andn, are orthogonal because tlcally zero. That s, all its coeff_lments must be zero. Thesg
belongs to the Ricker quadric conditions are homogeneous linear equations in the coeffi-
cients of p(p). If p(p) is quadratic, it has 10 coefficients,
dning =1?X!X; = f(X)=0. and we have 3 linear equations for each line. From 3 lines



rors and a single, high-resolution perspective camera. A
1/4" thick anodized aluminum plate was used to hold 31
spherical mirrors within the field of view of an Olympus C-
8080 8 megapixel digital camera. Typical images acquired
by this system are shown in Figures 1, 3, and 5.

To obtain precise intrinsic and extrinsic model parame-
ters, athree stage calibration procedure was used: (1) intrin-
sic calibration of the camera, (2) estimation of plate pose
with respect to the camera, and (3) calibration of the spher-
ical mirrors with respect to the plate. The last step includes
estimating the location of the sphere centers, their radii, and

y (pixels)

1800 1900 2000 2100 2200 2300

x (pixels) the pose of a calibration object using an iterative bundle-
(a) Catadioptric image example. Points used for reconstruction are indi-adjustment algorithm. The construction of our array, its cal-

cated by crosshairs. ibration, and additional experimental results are presented

in [13].
8.2 Single Image Reconstruction Results

In this section we discuss the implementation of our sin-
gle image 3D line reconstruction algorithm using the spher-
ical mirror array. First, as shown in Figure 3, we manually
select four collinear points in a single image of the planar
checkerboard pattern. A sub-pixel corner detection algo-
rithm [2] is used to refine the manually-selected corners.
Following the method outlined in Sections 5 and 6, we ob-
- XZTQZZ:ZQ tain an estimate of the equation of the 3D line.

Tnelne A typical r_econstruc’Fion is shown in Figure 3 Sinc_e

ground truth is not available, we compare the single mir-
ror reconstruction (shown in red) to that obtained using all
31 mirrors (shown in green). For this example, we find a
translational error of 0.29 mm and an orientation error of
32.0°. As will be explained in Section 8.3, the accuracy of
our reconstruction is currently limited by the calibration and
physical construction of the mirror array and digital cam-
we get 9 homogeneous linear equations in 10 variables. Inera. We will determine the necessary calibration precision,
general, there is a unique non-zero solution. by simulation, in the following section.

In practice, due to measurement noise, the mdgriis
always full rank, and a tolerance must be chosen to deter-8.3 Calibration Requirements
mine thenumerical rank In Section 8 we explore this issue

(b) 3D reconstruction of labeled points.

Figure 3: Single image reconstruction results. The mirror
shown in (@) is represented by a gray sphere in (b). The
checkerboard is placed at its optimized position.

through simulation. As presented in [13], the proposed calibration algorithm
is sufficient for reconstruction using multiple mirrors, how-
8 Implementation and Results ever reconstruction from a single mirror requires higher pre-

cision. For the previous example, we believe reconstruction

In this section we present experimental results which val- €ITors stem from three key limitations of our current system:
idate the proposed reconstruction algorithm. A novel cata- (1) the distortion model used for the camera, (2) possible
dioptric mirror array is introduced and used for laboratory a@sphericity of the mirrors, and (3) limitations of the current
data collection. In addition, the sensitivity of the proposed calibration procedure for single mirror reconstruction. In

method to calibration errors is explored via simulation. order to guide the design of a future experimental system,
we explore these issues via simulation.
8.1 Spherical Catadioptric Mirror Array To evaluate the necessary calibration accuracy for our

proposed algorithm, we simulate the effect of random per-
In order to experimentally confirm our proposed recon- turbations of the reflected rayson the reconstruction. The
struction algorithm, we designed and built a novel catadiop- mean radius of the errors is determined by measuring the
tric imaging system consisting of an array of spherical mir- average distance of the reflected raysyan lines) from the



best-estimate line (green line) as shown in Figure 3. Exper-
imentally, we find that the estimated reflected raysund

in the previous example do not approach closer than 0.4 mm
(on average) to the best-estimate line.

As shown in Figure 4 we add random perturbations
(distributed on a sphere of radius 0.4 mm) to the best-
estimate checkerboard positions. Using the experimentally-
determined points of intersection with the optical axis
we construct the set of ideal reflected raysApplying our
SVD-based reconstruction algorithm, we obtain an estimate
of the equation of the intersecting line (shown in red). Note
that this result is similar to that obtained experimentally. ;

In general, improvements in calibration should cause the X (mm)
reflected rays to pass closer to the best-estimate line. In
simulation, we consider this effect by simply decreasing the
perturbation radius until we achieve a reliable reconstruc-
tion of the checkerboard line. As shown in Figure 4 a per- -
turbation radius of 4um leads to reliable reconstructions. 7004
For this example, the translation error was /458 and the
orientation error was 0.51

400 -600

(a) Simulation results for 0.4 mm error radius.

8.4 Optical Axis Baseline Requirements E 400y

£ o}
= 3004
N

As discussed in Section 7, there exist classes of 3D lines
which cannot be reconstructed by our system, regardless
of the calibration precision. Experimentally, we find that
calibration errors and certain viewing geometries result in 400
nearly-coplanar lines — preventing a unigue reconstruction.

As shown in Figure 3, the reflected rays when ex-
tended backwards, intersect the optical axest four unique (b) Simulation results for 4m error radius.
points (as discussed in Section 3). This is demonstrated
graphically in the figure by the intersection of the yellow
backwards viewing rays with the black optical axis. Note
that, for this example, the intersections along the optical

axis are nearly coincident — resulting in a small optical axis mirrors. This approach is similar to that presented by Nayar
“baseline”, _ . [14]. As shown in Figure 5, we manually select four points,
For this example, we find that the per-point average er-i, 5 neighboring mirror, that correspond to those used in the
ror of 0.4 mm is comparable to the optical axis baseline, revious example. These image points are used to estimate
measured to be 2.9 mm. In this situation, the four viewing the reflected rays and the point of intersectiapwith each
rayswv effectively intersect in a single point along the opti- sphere . We use each corresponding pair of rays to triangu-
cal axisw. As a result, a correct reconstruction of the line |5te the 3D position of each point on the line. Afterward, a
is prevented, since, numerically, the four viewing raye jine s fit to these points using linear least-squares (shown in
coplanar. _ o red in the figure). For this specific example, we find that the
From this example we can conclude that calibration re- reqiting estimate deviates in translation by only&dand
quirements are coupled to the specific viewing geometry; iy grientation by 3.1. This confirms that, given a sufficient
larger optical axis baselines will gllow Ia}rger megsurement baseline, our array can be used successfully for 3D point re-
errors, since the reflected rays will remain numerically non- qnstruction — highlighting the greater calibration require-

coplanar and, as a result, allow a unique reconstruction.  yents necessitated by the proposed single image method.

~ 200

-200

. 0
0
x -400
(mm) 2 5 500 N R

Figure 4: Simulation results for calibration sensitivity.

8.5 Reconstruction using Two Mirrors .
9 Conclusion

Although the focus of this paper is on reconstructing a
3D line using asinglecatadioptric image, we verify our ex- In this paper we have shown that the equation of a 3D
perimental configuration by reconstructing a line using two line can be estimated using only four points extracted from
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(a) Two neighboring mirrors and the points used for reconstruction.

——= Viewing Ray (Mirror 1)
Reflected Ray (Mirror 1)
———= Viewing Ray (Mirror 2)
- Reflected Ray (Mirror 2)
True Line

Reconstructed Line

(b) 3D reconstruction of labeled points.

Figure 5: 3D reconstruction using two catadioptric images.

(4]
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(11]

(12]
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The mirrors shown in (a) are represented by gray spheres in[15]

(b). The checkerboard is placed at its optimized position.

a single image acquired with an axial non-central optical

(16]

system. A general algorithm based on computing the Sin- [17]

gular Value Decomposition of the matrix ofifeker coordi-

nates was presented. Preliminary experiments and simula-

tions validate the proposed method and highlight the neces-
sity of high-precision calibration for reliable reconstruction.
Future studies will focus on developing more robust acqui-

sition platforms and calibration procedures.
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