
Scale Selection for the Analysis of Point-Sampled Curves

Ranjith Unnikrishnan Jean-François Lalonde Nicolas Vandapel Martial Hebert

Robotics Institute, Carnegie Mellon University
{ranjith, jlalonde, vandapel, hebert}@cs.cmu.edu

(a) (b) (c)

Figure 1: Laser scan of a concertina wire having the geometry of two oppositely wound helices of equal diameter: (a) Raw
3-D points color-coded by elevation [axis length =0.5m], (b) DMST graph constructed on manually extracted non-ground
points, (c) Estimated tangents using scale-adaptive PCA.

Abstract

An important task in the analysis and reconstruction of
curvilinear structures from unorganized 3-D point samples
is the estimation of tangent information at each data point.
Its main challenges are in (1) the selection of an appropri-
ate scale of analysis to accommodate noise, density vari-
ation and sparsity in the data, and in (2) the formulation
of a model and associated objective function that correctly
expresses their effects. We pose this problem as one of esti-
mating the neighborhood size for which the principal eigen-
vector of the data scatter matrix is best aligned with the true
tangent of the curve, in a probabilistic sense. We analyze the
perturbation on the direction of the eigenvector due to finite
samples and noise using the expected statistics of the scat-
ter matrix estimators, and employ a simple iterative proce-
dure to choose the optimal neighborhood size. Experiments
on synthetic and real data validate the behavior predicted
by the model, and show competitive performance and im-
proved stability over leading polynomial-fitting alternatives
that require a preset scale.1

1Prepared through collaborative participation in the Robotics Consor-
tium sponsored by the U.S Army Research Laboratory under the Collab-
orative Technology Alliance Program, Cooperative Agreement DAAD19-
01-209912.

1. Introduction
The inference of smooth geometric curves from a set of un-
organized points is a challenging problem in several fields
including computer vision, computational geometry and
computer graphics. Its applications include feature extrac-
tion for indexing and geometric modeling, 3-D reconstruc-
tion of fine structures in medical imaging, skeletonization
operations of handwritten character templates for recogni-
tion, and shape outline encoding for iso-contour predictive
compression algorithms [5].

A popular first step in the analysis for many of these
problems is the computation of first-order or tangent infor-
mation at each point [3, 4, 6, 10]. One objective of this
step is to reasonably capture the underlying curvilinear ge-
ometry of the point set, so as to be amenable to shape re-
construction and feature extraction. A closely related, but
much more studied problem is that of computing surface
normals from a set of unorganized points. There are sev-
eral approaches in the literature, both non-parametric (ten-
sor voting [6], radial basis functions, etc.) and paramet-
ric [5] (moving least-squares approximations [4], implicit
parabolic fitting, b-splines, etc.).

Most practical algorithms achieve robustness by comput-
ing the relevant quantities in a local neighborhood [5, 6, 10].
Such algorithms crucially depend on knowledge of the ra-
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dius of the neighborhood to be considered. The chosen ra-
dius at each point determines thescaleof analysis – too
small a radius would compromise the quality of the estimate
due to the use of smaller number of noisy data points, while
using too large a radius would permit a large number of po-
tentially dissimilar points in the neighborhood to adversely
influence the estimate. Hence the choice of a scale that re-
flects the underlying geometry is crucial to its analysis from
finite samples.

1.1 Related work

There has been a fair amount of theoretical interest in curve
reconstruction in the computational geometry community.
As summarized in [2], the problem has largely been stud-
ied in the noise-free case of a single curve in the scene,
and with the objective of inferring a geometric graph with
an edge connecting points only if they are adjacent on the
curve. The various approaches promise differing extents of
theoretical guarantees varying with assumptions on unifor-
mity in sampling density, smoothness and presence of curve
boundaries. However, their applicability in the presence of
noise is largely unclear.

Most practical curve reconstruction algorithms are based
on local polynomial fitting and its variants. Recent work
by Lewiner et al. [5] computed the coefficients of an arc-
length parameterized 3rd-order approximation to the curve
by solving a weighted-least squares problem at each point
using only the points in its local neighborhood. This proce-
dure gave robust estimates of curvature and torsion, as well
as the tangent as a by-product. The implicit parameter in the
algorithm was the considered neighborhood radius, which
was preset by fixing the number of neighbors considered at
each point.

In the computer vision community, much work has been
done on geometric reconstruction using non-parametric ten-
sor voting [6, 10]. A key step of the framework is a voting
procedure used to aggregate local information at each point
or voxel of interest. The vote is in the form of ad × d ten-
sor, whered is the data dimensionality, indicating preferred
direction of normal/tangent, and the eigen decomposition
of the aggregate tensor at a point gives the desired result.
Again, a crucial parameter is the choice of the size of the
support region for vote collection, usually chosen heuristi-
cally. Work in [10] proposed a fine-to-coarse approach in
which points likely to form curves are linked together at
fine scale to form fragments, and then linked together in-
crementally as the scale is increased using a heuristic in-
spired by perceptual grouping. Work in this paper focuses
on sparser point sets than used in [10], necessitating a study
of the small sample behavior of the tangent estimator.

We also mention the related theoretical work by Mitra et
al. [7] on optimal neighborhood size for normal estimation

in surfaces using PCA. They derived a bound on the angu-
lar error between the estimated normal and true normal, and
proposed the optimal radius as the value that minimized that
bound. An iterative procedure was suggested that first es-
timated the local density and curvature, then computed the
optimal radius for those values, and repeated the procedure
until convergence. However, the closed form expression in-
volved two parameters that relied on knowledge of the ob-
served data distribution and had to be fixed a priori.

In the next section we describe our proposed method and
derive the required analytical results for the case of 2-D and
3-D curves. In Section3, we present experimental evidence
to validate our solution and demonstrate that it matches the
predicted variation of the optimal radius with the perturbing
parameters. We also compare its stability and performance
to the local polynomial fitting algorithm of [5]. Section4
concludes with discussion and directions for future work.

2. Approach

In our proposed method, we exploit the property of local lin-
earity in the curve through local principal component anal-
ysis using an adaptive neighborhood size. Our estimate of
the tangent at a point is the principal eigenvector of the scat-
ter matrix computed in its local neighborhood [3, 6, 10].
We propose that, for spatial curves, the neighborhood size
should be chosen such that the principal eigenvalue of the
scatter matrix is most closely aligned with the true tangent
to the curve. To make this choice, we derive an upper bound
on the expected angular error induced by finite sampling
and sample noise as a function of neighborhood radius. The
optimal radius is then chosen as the value that minimizes
this upper bound on angular error. Our derivation proceeds
as follows:

We first model and state our assumptions of the underly-
ing geometry (Section2.1) and adopt a convenient reference
frame.

We then compute the expected statistics of the estima-
tors (Section2.2) under the chosen geometry model. The
scatter matrix (which we will also refer to as the covari-
ance matrix) computed by the choice of estimators is then
trivially expressed as the sum of the expected value in the
limiting case and a random zero-mean perturbation matrix.
The effect of the perturbation matrix is the combination of
finite sample size as well as noise in the data.

Using bounds on the Frobenius norm of the random ma-
trix, we then compute (Section2.3) an upper bound on the
angular deviation of the eigenvector of the perturbed matrix
as a function of sample noise, sample size, radius as well as
the curvature and torsion of the curve.

We then analyze the cases of 2-D and 3-D curves (Sec-
tion 2.4), make observations from the analytic behavior of
their bounds, and derive the conditions under which the
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Figure 2: Model of local curve geometry

dominant eigenvector of their corresponding expected ma-
trices align with the tangent to the true curve in the canoni-
cal frame.

2.1 Curve model

We assume the existence of a smooth curve (for both 2-D
and 3-D cases) parameterized by distances. Without loss of
generality, we assume a Frenet reference frame (Figure2)
with origin located at the point of interest such that the tan-
gent to the curve is aligned with thex-axis, the curvature
vector in the plane of the osculating circle containing the
point of interest is aligned with they-axis and the normal to
the osculating plane is aligned with thez-axis.

Our available data is a set ofn unordered points
{xi, yi, zi}. Each such point may be thought of as a noisy
observation of a true point lying on a spatial curve, param-
eterized by arc-length, at the (unknown) locationsi along
the curve. The points are assumed to lie within a can-
didate distancer from a point of interest. We may then
adopt the generative model of a set ofn samples fromS ∼
Uniform(−r, r) with additive Gaussian noiseη ∼ N (0, σ2

0)
as:

xi = si + ηx,i

yi =
κ

2
s2

i + ηy,i

zi =
κτ

6
s3

i + ηz,i

(1)

which is valid for moderate slowly changing values of cur-
vature (κ) and torsion (τ ). We assume iid sensor noise that
is zero-mean normally distributed with varianceσ2

0 affect-
ing all three coordinates.

In summary, our assumptions are that :

1. In a local neighborhood around the point of interest,
curvatureκ and torsionτ are bounded and near con-
stant, i.e.κ′(s), τ ′(s) ≈ 0

2. The quantitiesx, y, z are observed with iid zero-mean
Gaussian noise of standard deviationσ0. The noise
is assumed independent of the position on the curve.
In practice, we allow the value ofσ0 to differ across
the scene to account for variation in noise level with
distance from the laser sensor.

3. There is a minimum density of points in the scene. In
the neighborhood of radiusr around the point of in-
terest, there is a minimum point densityρ0, so that
n ≥ 2ρ0r

2.2 The covariance matrix for curves

One technique to estimate the direction of the local tangent
at a given sample point on a curve is to look at the shape of a
scatter matrix computed using points in its neighborhood [3,
6, 10]. If the curve is smooth, it is reasonable to expect that
the scatter matrix will be elongated and that its major axis,
or principal eigenvector, will approximate the direction of
the local tangent for some appropriate (and unknown) range
of neighborhood sizes. In this and the following subsection,
we will derive and analyze the conditions under which this
assumption will hold for both 2-D and 3-D curves.

The random variablesX, Y andZ (denoted in capitals
to distinguish them from the data) are noisy functions of
the random variableS whose distribution is assumed to be
locally uniform. Hence the distribution ofX, Y andZ, as
well as estimators of their 1st and 2nd order statistics will
depend on the coefficients (κ, τ ) and order of the functions
(given in (1)) as well as properties of the uniform (forS)
and Gaussian (forη) distributions.

We start by computing the mean and variance of the esti-
mators used to construct the sample covariance matrixM̂n.
We will denote the true means of random variables byµ
(e.g. µX for X) and standard deviation byσ (e.g. σ2

X for
variance ofX). Then:

M̂n =

M11 M12 M13

M12 M22 M23

M13 M23 M33

 (2)

where

M11 =
∑

i(xi−X̄n)2

n− 1
M12 =

∑
i(xi−X̄n)(yi−Ȳn)

n− 1
(3)

M22 =
∑

i(yi−Ȳn)2

n− 1
M13 =

∑
i(xi−X̄n)(zi−Z̄n)

n− 1
(4)

M33 =
∑

i(zi−Z̄n)2

n− 1
M23 =

∑
i(yi−Ȳn)(zi−Z̄n)

n− 1
(5)

and X̄n = 1
n

∑
i xi is the sample mean estimator forX,

and similarly forȲn andZ̄n.
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Note that the diagonal elements are unbiased estimators
for variance (e.g. M11 is the estimator for varianceσ2

X

of X) and the off-diagonal elements are unbiased estima-
tors of covariance (e.g.M13 is the estimator for covariance
cov(X, Z) of X andZ).

From the distribution ofS ∼ Uniform(−r, r), we can
then compute the expected values of each of the above quan-
tities.

For example, usingX = S + ηX

E(M11) = V(Xi) = V(S + η) = V(Si) + σ2
0

= σ2
X + σ2

0 =
∫ r

−r

s2 1
2r

ds + σ2
0 =

r2

3
+ σ2

0

(6)

Using a similar procedure, we can derive the following
identities under the model defined in (1).

E(M12) = cov(X, Y ) =
κ

2
E(S3) = 0 (7)

E(M13) = cov(X, Z) =
κτ

6
E(S4) =

κτ

30
r4 (8)

E(M22) = V(Y ) =
κ2

4
V(S2) + σ2

0 =
κ2

45
r4 + σ2

0 (9)

E(M23) = cov(Y,Z) =
κ2τ

18
(E(S5)− E(S2)E(S3)) = 0

(10)

E(M33) = V(Z) =
(κτ

6

)2 r6

7
+ σ2

0 (11)

To proceed from here, we must use results on the vari-
ance of the sample variance and sample covariance estima-
tors. We state them without proof [11] below.

Identity 1 (Variance of the sample varianceestimator).

V(σ̂2
X) =

d4(X)
n

− (n− 3)
n(n− 1)

σ4
X (12)

for a random variableX, where

dn(X) , E(X − µX)n (13)

Identity 2 (Variance of the sample covarianceestimator).

V(ŜXY ) =
c2(X, Y )

n
+

σ2
Xσ2

Y

n(n− 1)
− (n− 2)

n(n− 1)
c2
1(X, Y )

(14)
for random variablesX andY , where

cm(X, Y ) , E [(X − µX)(Y − µY )]m (15)

Note that we use the hat symbol (ˆ) to distinguish the
estimator from the true quantity.

Under the curve model defined in (1), we can derive the
expressions ford4(X), d4(Y ) andd4(Z) in a manner simi-
lar to that used for (7)–(11), using the identity:

d4(X + η) = d4(X) + 6σ2d2(X) + 3σ4
0 (16)

for any random variableX affected by normally distributed
independent noiseη ∼ N (o, σ2

0). Note that the simplifica-
tion is because the odd moments ofη vanish andE(η4) =
3σ4

0 . We may also similarly derive the expressions forc1

andc2 for all pairs ofX,Y andZ.
Once we have the required values forci anddi, we can

then substitute them back in (12) and (14) to get the variance
of the individual estimators, which we denote asV(Mij)
with i, j = {1, 2}. The final expressions forV(Mij) were
obtained using MathematicaTM and are listed in [11] due to
space limitations.

Observe that the estimator for sample covariance matrix
may be expressed as the sum of the matrix of its expected
value and a matrix of random variables as:

M̂ = M̃ + Q (17)

Here M̃ = E(M) is a symmetric matrix with elements
given by (7)–(11), andQ is a symmetricperturbation ma-
trix of random variables each with mean0 and variance
given by the expressions listed in [11].

2.3 Perturbation model

In the previous section, we were able to express the scatter
matrix (M̂ ) computed in a local neighborhood as a sum of
an uncorrupted intrinsic quantity (̃M ) and a random matrix
(Q) existing due to finite sampling and noise. In this section
we compute the effect of the perturbationQ on the principal
eigenvector ofM̂ .

We denote the eigenvalues of̃M = E(M) byλ1 ≥ λ2 ≥
λ3. Let the eigenvector corresponding toλ1 bee1. Let ê1

be the eigenvector corresponding to the largest eigenvalue
of the estimatedM̂ . If Q is the symmetric perturbation to
the positive semidefinite matrix̃M , then the application of
the matrix perturbation theorem V.2.8 from [9] yields [8]:

||ê1 − e1|| ≤
4||Q||F

δ −
√

2||Q||F
(18)

whereδ = λ1 − λ2 is the spectral gap of the matrixE(M),
and||Q||F represents Frobenius norm.

Since the matrixQ consists of random variables, we are
confined to making probabilistic statements about||Q||F .
Using Chebyshev’s inequality, the square of the value at-
tained by each elementQij can be upper bounded by:

Q2
ij ≤

V(Mij)
nε

with probability1− ε, whereV(Mij) is the variance of cor-
responding finite sample estimator of covariance (or vari-
ance if i = j). Note that minimizing the RHS of (18) is
equivalent to minimizing the ratio:

B , ||Q||F /δ (19)
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We will analyze the functionB for both 2-D and 3-D curves
in the next section.

2.4 Angular bounds and their behavior

We first analyze the behavior of the perturbation bound to
variation in sampling density, noise and curvature by look-
ing at the slightly simpler case of 2-D curves.

2.4.1 2-D curves

We analyze the 2-D case by working with the same assump-
tions as stated earlier except that we discard the z coordinate
(or equivalently nullify torsion). The scatter matrix in this
case is obtained as the top left2×2 sub-matrix ofQ, which
we will refer to asQ2. From our perturbation model in
Section2.3, we know that Frobenius norm ofQ2 is upper
bounded with probability1− ε by:

||Q2||2F ≤
1
nε

2∑
i=1

2∑
j=1

V(Mij)

=
1
nε

[V(M11) + V(M22) + 2V(M12)]

(20)

The spectral gap of the corresponding top-left2× 2 sub-
matrixM̃2 of E(M) given by:

M̃2 =

[
r2

3 + σ2
0 0

0 κ2

45 r4 + σ2
0

]
(21)

is obtained easily by inspection as

δ2 =
r2

3
− κ2r4

45
(22)

This implies that for the dominant eigenvector ofM̃ to be[
1 0

]
, the value of radiusr must satisfy

0 < r <
√

15/κ (23)

The bound to be minimized then is

B2(r) ,
||Q2||F

δ2
(24)

To study the analytical behavior of this bound, we need
to replace the discrete parametern by a continuous function
of radiusr, and explicitly express their dependency. To do
this, we use the assumption of minimum local point density
ρ and substituten = 2ρr to form the analytical plots that
follow.

Note, however, that in the implementation of the pro-
posed algorithm we directly setn in (24) to equal the num-
ber of points observed in the neighborhood of candidate ra-
diusr and do not ever need to estimateρ. The assumption
of an underlyingρ is usedonly for studying the expected
behavior of the analytic bound in synthetic data and isnot
used at runtime.

Before proceeding, we point out that there are two ex-
pected limitations in the functional analysis of the derived
expressions that will be relevant in their experimental vali-
dation. Firstly, although the bounds are discontinuous func-
tions of high order polynomials inr, our analysis is re-
stricted to the regime where the constraints (23) required
for eigenvector dominance are satisfied. In this regime, the
bound is convex with a unique minimum.

Secondly, and as also observed experimentally in [5, 7],
the predicted error tends to0 asr → 0 for noise-free data.
But for σ0 > 0, the error tends to sharply increase for
the same condition. This behavior is not reflected in our
model as our continuous relaxation ofn as2ρr is invalid
for small r. Hence, we advocate the interpretation of the
function only in terms of the behavior of its minima in the
meaningful regimes of interest, rather than throughout the
domain of the function.

Based on the analytical plots ofB2(r) in Figures4–5,
we make the following qualitative observations:

1. Complexity: Like most closed form expressions en-
countered in real-world problems, the formula in (24)
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is messy. However, it can be easily shown that the
terms with coefficients(n(n− 1))−1 in the numerator
of B2(r) are dominated by the others for integer val-
ues ofn ≥ 2, reducing the expression to the ratio of the
root of a 6th degree polynomial and a 4th degree poly-
nomial ofr, both only containing even powers ofr.

2. Variation with curvatureκ: Figure 3 plots the func-
tion B2 for multiple values ofκ and fixed values of
noise and sampling density. As one would expect, the
optimal radiusr tends to increase with decreasing cur-
vature in order to compensate for noise and sparsity,
without exceeding the bounds in (23) when the eigen-
vector more closely aligned to the x-axis is no longer
dominant.

3. Variation with sampling noiseσ0 : Figure4 plots the
functionB2 for multiple values ofκ and fixed values of
noise and sampling density. It can be seen that as the
noise increases, the point of minima ofB2 increases
but only approaching the required bounds for eigen-
vector dominance in (23).

4. Variation with sampling densityρ : Figure5 plots the
function B2 for multiple values of sampling density
and fixed values of noise and curvature. It is interest-
ing to note that although the value of the bound de-
creases as expected with increased number of points,
the location of the extremum hardly changes. This is
in contrast with the observations in [7] for surfaces
which variesr with ρ−0.5. We validate this later in
Section3.2.

2.4.2 3-D curves

The derivation and behavior of the angular bound for 3-D
curves is fairly similar to the 2-D case. From Section2.3,
the||Q||F is upper bounded with probability1− ε by:

||Q||2F ≤
1
nε

3∑
i=1

3∑
j=1

V(Mij)

=
1
nε

[
V(M11) + V(M22) + V(M33)

+ 2 (V(M12) + V(M13) + V(M23))
]

(25)

Substituting the results from Section2.2gives the required
final expression [11].

The matrix of expected values can be written as:

M̃ = E(M) =

 r2

3 + σ2
0 0 κτ

30 r4

0 κ2

45 r4 + σ2
0 0

κτ
30 r4 0

(
κτ
6

)2 r6

7 + σ2
0


(26)
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Figure 6: Plot of analytic 3D bound for varying curvature

We denote the eigenvalues of̃M asλ1 ≥ λ2 ≥ λ3. The
spectral gap ofM̃ is not as straightforward due to its off-
diagonal terms. However, we can lower bound the spectral
gap using the Gershgorin circle theorem (GCT). This gives
the system of inequalities:

|λ1 −
r2

3
+ σ2

0 | ≤
κτ

30
r4 (27)

λ2 =
κ2

45
r4 + σ2

0 (28)

|λ3 −
(κτ

6

)2 r6

7
+ σ2

0 | ≤
κτ

30
r4 (29)

Under the conditions of (23), this gives the additional con-
straint on radius as:

r ≤
√

28/5τ (30)

and a bound on spectral gap as:

δ3 ≥
r2

3
− κ2r4

45
− κτ

r4

15
(31)

Combining (25) and (31) with the continuous relaxation
n = 2ρr in (19) gives the desired result.

The observations we make on the analytic behavior of
B(r) are analogous to those in the 2-D case. The main ef-
fect of torsion is that due to its presence as an off-diagonal
term inE(M), it always induces a finite angular offset of the
dominant eigenvector in the rectifying plane (see Figure2).

However as the radius is decreased, the off-diagonal term
tends to0 with r4 while the leading eigen-vector decays
with r2. Thus in moving from the 2-D to 3-D analysis, the
overall effect of torsion is to decrease the optimal scale of
analysis with increasingτ . This shift can be verified in Fig-
ure 6 which has the same parameters as the 2-D curve of
Figure3 but with a non-zero torsionτ = 0.3.

3. Experimental Results
In this section, we first outline the proposed algorithm used
in later experimental results. We experimentally study the
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behavior of the choice of neighborhood radius on the error
in tangent estimation. We then establish the utility of the
proposed method for suggesting a radius that minimizes this
error. We also study the effect of different starting points of
radius for the proposed algorithm and different choices of
the radius parameter on polynomial fitting based methods.

3.1 Algorithm and implementation

The analytical behavior of the bound derived in Section2.4
suggests the following iterative algorithm:

At t = 0, for a starting neighborhood sizer(t), we esti-
mate the curvature (κ(t)) and torsion (τ (t)) using [5] and use
a sensor model to obtain the value of sample noise. Then
we perform line-estimation onr to obtain ther(t+1) min-
imizing (24), subject to (23) using values at timet. We
then re-estimateκ(t+1) andτ (t+1) corresponding to the new
value of radiusr and iterate till convergence. To prevent
large changes in estimates ofr between iterations, we use a
damping factorα = 0.5, although no significant difference
in results was observed without it.

To estimateκ and τ at each iteration, we use the pro-
cedure from [5] setting its scale parameter to the current
estimate ofr. Both the technique in [5] and our method
for scale selection approximates distances between points
along the underlying curve by a sum of edge distances in a
graph constructed on the points.

We chose to construct the graph as the sum of disjoint
minimum spanning trees (DMST) as suggested in [1], fol-
lowed by a post-processing step of rejecting edges with
length greater than that determined by our assumed mini-
mum global density (ρ0). Figure1 shows an example of
a construction for points acquired from a concertina wire.
The range sensor used is a SICK LMS-291 attached to a
custom made scanning mount. The angular separation be-
tween laser beams is14

◦
over a100◦ field of view. The

angular separation between laser sweeps is2
3

◦
over a range

of 115◦.
The construction using DMSTs has some desirable prop-

erties over traditionalk-nearest neighbor orε-ball schemes.
In practice, it produces connected graphs without undesir-
able gaps and does not induce edges to clump together in
noisy regions having relatively higher point density. The
only parameter to be chosen is the number of spanning trees
(in our case,= 2) and it has been observed to be robust to
changes in the dataset for our choice.

3.2 Validation

As a first step, we test our model by attempting to vali-
date the behavior predicted by the analytical bounds of Sec-
tion 2.4 for the 2-D case. The test curve is a 2-D parabola
and the error in tangent direction is evaluated at the apex for
various values of curvature and point density. The estima-
tion is done using PCA for various values of neighborhood
radius. The reader is encouraged to compare Figures7-9
with the analytic curves of Figures4-5.

Figure7 shows the observed angular error with varying
curvatureκ of the parabola. It can be seen to show the pre-
dicted systematic decrease in scale for increased curvature.
The variation of estimation error with sample noiseσ2

0 in
Figure8 shows the increase in optimal scale for increased
noise. Figure9 shows the relatively small change in choice
of optimal scale except at a low density. It also shows the
expected decrease in error with increasing sample density.

3.3 Performance and Stability

We choose to compare the proposed method with the poly-
nomial fitting algorithm of [5], as the latter performed
nearly uniformly better experimentally on a variety of syn-
thetic curves against a large family of other fitting ap-
proaches based on Gaussian smoothing, Fourier transforms
and others.
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Figure 10: Plot of observed error on (a) 2-D hypocycloid
and (b) 3-D conical helix dataset. The solid and dashed
lines correspond to the proposed scale-adaptive PCA and
the method of [5] respectively. The shaded region encloses
the lower variation in the more stable PCA method.

Figure10presents results on100 samples from two syn-
thetic curves, a 2-D hypocycloid and a 3-D conical he-
lix (as used in [5]). The hypocycloid has the paramet-
ric form (4 cos(t)− cos(2t), 4 sin(t) + sin(2t)) with t ∈
[0, 2π] and the helix has the form(t cos(t), t sin(t), t) with
t ∈ [π/2, 5π/2]. These two are presented as their constantly
varying curvature violates the assumptions made in both al-
gorithms, and PCA is intuitively not expected to perform
well on them under its simplistic assumption of local linear-
ity. The algorithms were run for30 datasets each for varied
sample noise (σ). A range of values for radiusr0 were used
to fix the scale for polynomial fitting and correspondingly
serve as the starting point of the proposed PCA algorithm.

As seen in Figure10, the scale-adaptive PCA performs
surprisingly well in terms of error rate, and is much more
stable to varying values ofr0. Similar results were observed
on comparison with other 2-D and 3-D curves from [5].

4. Conclusions
Selection of an appropriate scale of analysis is a challenging
problem in several domains. This paper presented a tech-
nique for adaptive scale selection in estimating tangents of
point-sampled curves. We derived analytical bounds for the
perturbation of the leading eigenvector in PCA due to the in-
fluence of finite samples and noise. The predicted behavior
of the change in optimal choice of scale with the perturbing
parameters was validated on synthetic data. We also demon-
strated experimentally that with principled scale selection,
the error in tangent estimation using naı̈ve local PCA is
comparable, somewhat counter-intuitively, to the best fixed-
scale alternative based on local polynomial fitting.

For future work, it would be interesting to study the ef-
fect of differing graph construction on the result of both al-
gorithms. The same theoretical analysis could also be per-
formed for the more robust variant of weighted PCA, for
some fixed family of weighting functions (e.g. Gaussian).
This would make the proposed algorithm more robust over-
all to outliers as well as to poor graph construction.

References
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