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Abstract

This paper presents a method for obtaining accurate dense
elevation and appearance models of terrain using a single
camera on-board an aerial platform, which has many appli-
cations including geographical information systems, robot
path planning, immersion and visualization, and surveying
for scientific purposes such as watershed analysis. When
given geo-registered images, the method can compute ter-
rain maps on-line in real time. This algorithm, called the
Recursive Multi-frame Planar Parallax algorithm, is a re-
cursive extension of Irani et al.’s multi-frame planar parallax
framework and in theory, with perfectly registered imagery,
it will produce range data with error expected to increase
between linearly and with the square root of the range, de-
pending on image properties and whether other constants
such as framerate and vehicle velocity are held constant.
This is an improvement over stereo systems whose expected
errors are proportional to the square of the range. We show
experimental evidence on synthetic imagery and on a real
video sequence taken in an experiment for autonomous he-
licopter landing.

1 Introduction

In this paper we address the problem of recovering an ac-
curate digital elevation map (DEM) with a passive sensor
such as a camera, and doing so at close to framerate. Digital
terrain models have applications ranging from visualization
(e.g. Google Earth and NASA’s World Wind [1]) and hy-
drological analysis [2], to robot path planning [3]. Though
active technologies such as radar and LIDAR are available
and tend to have very high accuracy, passive sensors are
cheaper, usually have a smaller form factor, consume less
power, and being emissionless are more difficult to detect.
For a small platform such as a micro air vehicle (MAV) [4],
passive sensors may be the only viable option.

We plan to use DEMs to evaluate landing sites for an un-
manned aerial vehicle, such as a helicopter. Therefore the
DEM needs to be accurate. A suitable area is a clearing at
least 200ft in diameter, clear of obstacles larger than a soc-
cer ball, and having a slope no greater than 4 degrees. In
addition, we must usually perform this selection task from
an altitute of at least 300ft above ground level (AGL). We
present an algorithm for accurately estimating a digital el-

evation map using the parallax present in multiple images
taken from a moving vehicle whose egomotion has been
previously obtained.

A common method for passive range estimation is the
use of a stereo camera pair [5, 6]. Stereo systems, however,
cannot attain the desired accuracy given constraints on reso-
lution and platform space. For a stereo system the variance
of depth estimates (̂z) growquarticallywith depth—that is,
the variance of expected differences between the true depth
and the estimateE[(z − ẑ)2] = O(z4)—which in our case
is unacceptable.1

In a rigid scene, however, we can treat multiple images—
obtained as the vehicle moves through space—as a multiple
camera system. We describe here a recursive method based
on multi-frame planar parallax framework [7, 8] that uses
multiple image pairs, which have baselines larger than that
physically attainable on the platform, to reduce variance.
We show that in theory we can recover range with a variance
that is asymptotically quadratic in the depth.

The novelty of this result is a method which is (i) re-
cursivein the sense that the cost of incorporating measure-
ments from a new image is proportional only to the number
of pixels in the image and doesnotdepend on the number of
frames already seen; (ii ) it is dense, in the sense that it pro-
vides estimates of depth for any sufficiently textured region;
(iii ) it is more accurate than instantaneous stereo; and (iv) it
is direct (see the discussion, pro: [9], con: [10]), by which
we mean that the algorithm does not depend on the match-
ing of features, but rather expresses a cost function directly
in terms of the image, and the gradients of the cost function
are computed by linearization of the brightness constancy
constraint.

Other methods feature some, but not all, of these ele-
ments. For example, bundle adjustment [11] is the optimal
estimator for determining structure and motion from mul-
tiple views when correspondences are known and correct.
However, it provides neither dense structure, nor the ability
to recover structure recursively. Stereo and multi-baseline
methods are the most favored methods for recovering dense
structure, e.g. [12, 13]. Regarding stereo error, Matthies
and Shafer [6], and later Xiong and Matthies [14], investi-
gate sources of error in stereo. The primary drawback of
stereo is its inaccuracy as discussed above. Planar parallax

1At a range of100 meters, a baseline of1 meter, and focal lengthf =
500, standard deviation of̂z is approximately20 meters.
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is a related framework based on registration using a plane in
the scene [7]. Irani et al. [8] propose a method for estimat-
ing planar parallax, and from it the depth, using more than
two views, though it is not recursive. Their work is the clos-
est in spirit to ours. We improve on this method in that we
present a Recursive Multi-Frame Planar Parallax (RMFPP)
algorithm. Other closely related works are Zucchelli et al.
[15], in which they sparsely estimate structure and motion
and update a dense structure map; and Matthies et al. [16],
in which they propose a Kalman filter for updating dispari-
ties.

Here we employ a direct method that takes advantage
of the observation that for a smoothly moving camera, the
initial small-baseline disparity estimates may lead to inac-
curate range estimates, they are nevertheless accurate dis-
parity measurements. Furthermore, later improvement in
the range estimates will not drastically change the refined
small-baseline disparities. Therefore, in the cost function
described in [8], the image need not be rewarped and relin-
earized. Instead the linearized terms are kept and encoded
in sufficient statistics (mean and variance) and a 1D Kalman
filter is run for each pixel.

The method described here is subject to several assump-
tions. We reiterate that this method updates estimates of
structure only; we assume that the positions and orienta-
tions of the cameras have been previously determined. We
havenot found a method to recursively estimate structure
and motion which is both dense and direct—its possibility
seems unlikely but remains open. We also rely on the usual
assumptions: validity of the brightness constancy constraint
within some regions, rigidity of the scene, and the presence
of sufficient texture. Finally, the motions between the cam-
era positions should be sufficiently small—though this con-
straint can be lessened by the use of image pyramids.

2 Analysis of Depth Errors

In this section we model range errors in a stereo pair and in
an idealized multiple-baseline system. For a fixed-baseline
stereo pair, the predicted standard deviation is quadratic in
the range, i.e.E[(ẑ − z)2]1/2 = O(z2). Using the simple
case of a camera moving in a straight line at constant ve-
locity, we show that by appropriately weighting pair-wise
estimates we can theoretically attain errors betweenO(z)
andO(z1/2), depending on the correlation between dispar-
ity estimates.

Fixed-baseline stereo.Consider a rectified stereo pair
separated by a baselineb, observing a point at depthz. The
relationship between disparity and depth is given byz =
f b/δ, whereδ is the disparity andf is the focal length.
Ignoring quantization errors and mismatches, we can obtain
an approximation of the variance of the depth estimate at

any single pixel, namely:

var(ẑ) = E
[
(z − ẑ)2

]
= E

[(
f b

δ
− f b

δ + ε

)2
]

≈ z4

f2 b2
var(ε), (1)

whereε is the error in the disparity estimate, and where we
have taken the first-order Taylor series approximation inε
about0 in the second equation. Generally var(ε) depends
on the image derivatives along the scanline. Using a sin-
gle stereo measurement would be ill-advised at distances
greater thanf · b—corresponding to a disparity equal to one
pixel—above which the predicted standard deviation would
become larger than the range.

Can we achieve greater accuracy in range using only pas-
sive means? We can fight uncertainty by increasingb, or by
utilizing the independence in the measurements, if there is
any. Often it is not practical to increase the baseline between
two vehicle-mounted cameras beyond some fixed limit, but
on a moving aerial vehicle we can get wider baselines for
free. If the camera’s motion can be recovered (either by
structure-from-motion methods or by some combination of
inertial and GPS systems) then we can use multiple mea-
surements to reduce error. If the measurements are to some
degree independent, then we can drive down uncertainty.

Figure 1: Idealized flight for purposes of analyzing range
accuracy.

Monocular camera at constant velocity and framerate.
We consider the following situation, depicted in Figure 1:
an aerial vehicle flying at constant altitude above a terrain
with average relative heightz meters, at constant horizontal
velocityv. Assume that the position of the vehicle is known
without error at all times, and that a downward pointing on-
board camera with field of viewθ captures an image every
t seconds. The baseline between the first andk-th frame is
bk = kvt and the number of times a point a distancez from
the camera is seen is at mostn = 2z tan θ

2 /vt ≈ θz/v .
Let us use a single pair of frames separated by a wider

baseline and determine the resulting range error. Choose
the first frame and thec · n-th frame, wherec < 1—
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that is, a frame a constant fraction in between the first and
the last frame in which there is overlap in the two views
of the ground. Then the predicted accuracy (variance) is
z2 var(ε)/c2f2θ2.2 This is a significant improvement over
the fixed baseline case. Instead of being quadratic in the
range, here the predicted standard deviation is proportional
to the range.

Can we do better than error linear in range by using mul-
tiple measurements? We can get the most out of multi-
ple measurements when they are known to be independent.
However, in simulated experiments with1/f noise, we find
that errors in disparity estimates are correlated with corre-
lation coefficient up to0.6; i.e. if εi,j is the error in the
estimate of disparity between framesi andj, then we find
there to be correlation between errorsε1,2 andε1,3. Let us
construct a linear estimator which is blind to the generally
unknown correlation coefficient, and then evaluate the es-
timator’s squared error while assuming a non-zero correla-
tion.

Let ẑk be the measurement of depth using thek-th es-
timated disparity,̂δk = δk + εk, between frames1 andk.
If σ2

k = z4 var(ε)/f2k2T 2v2 is ẑk ’s variance, which we
have calculated using formula (1), then the minimum vari-
ance linear estimate ofz usingm = c · n estimateŝzk is
ẑ =

∑m
k=1 wkẑk, wherewk = σ−2

k /
∑m

j=1 σ−2
j . Since

the first image does not change it is reasonable to assume
that, for any fixed pixel in the first image, var(εk) does not
change withk. However, as we have discussed, we cannot
guarantee statistical independence of theεk.

Predicted error. It is difficult, if not impossible, to em-
pirically determine the correlation amongεk for real im-
ages. However, if we have evidence that the correlation
is bounded, then we can gauge the effect of correlation on
the accuracy of the linear estimator. Assume that, for some
0 ≤ ρ ≤ 1, E[εjεk] < ρ var(ε) for all j andk. The expected
squared error, as a function ofρ, for the linear estimator de-
fined above is:

E[(ẑ − z)2] =
z4 var(ε)

f2

( ∑

1≤k≤m

w2
k

b2
k

+ ρ
∑

1≤j<k≤m

wjwk

bjbk

)

≈ (
c1 z + c2 ρ z2

) · var(ε) (2)

for z >> vt, and wherec1 andc2 depend ont, v, θ, andc,
and are given in formula (??) of the appendix. If there is no
correlation, i.e.ρ = 0, then the resulting estimator has range
error proportional to the square root of the range. When
there is non-zero correlation, then the variance is asymp-
totically linear. In Figure 2 we plot formula (2) using the
following values: t = 3.75−1 s, v = 14 m s−1, θ = 50◦,
c = 1/4, andρ = 0, 1/3, 2/3 and1, andz ranging be-
tween20 and200 m; note that atz = 17.11 m the number

2Note thatf andθ are usually coupled with the resolution of the cam-
era, but are constant for a fixed camera.

of measurements ism = 1.
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Figure 2: Predicted standard deviations for stereo and multi-
baseline as a function of range. The single curve shows
range error for stereo when using the smallest baseline (the
first two frames in the idealized aerial image sequence) for
the values reported in the text. The (red) shaded area shows
the range of errors of a multiple-baseline linear estimator
for ρ ranging between0 and1.

To summarize, by combining multiple measurements
and wider baselines we can conceivably obtain between lin-
ear and quadratic variance in range estimates as a function
of true range, a vast improvement over quartic variance ob-
tained with a stereo pair. In the rest of the paper we describe
a recursive algorithm for densely reconstructing terrain, in
which we try to achieve this performance.

3 Multi-Frame Planar Parallax

The multi-frame planar parallax (MFPP) method is a gener-
alization of stereo rectification to more than two frames that
was first described by Sawhney [7], and was later extended
by Irani et al. [8]. Whereas stereo rectification yields images
where the disparity (or optical flow) is parallel to scanlines
and is inversely proportional to range, MFPP registration
yields images such that the ratio of disparities along epipo-
lar lines can be expressed in terms of a view-independent
shape parameter that encodes depth.

Suppose a camera takes imagesi = 1, . . . ,m of a rigid
scene. Let the rotation and translation taking the first coor-
dinate system to thei-th one be given by(Ri,Ti), so that
R1 = I andT1 = 0. We choose a virtual reference plane
in the scene and then construct the homographiesHi which
transform thei-th frame such that points on the reference
plane have zero disparity, and such thatH1 = I so that the
first frame acts as a reference frame. LetN be the unit nor-
mal of the reference plane in the coordinate system of the
first camera, and letdi be the perpendicular distance of the
i-th viewpoint from the virtual plane. The homographiesHi

which transfer thei-th view to the reference view via the
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reference plane are given by:

Hi = K

(
Ri − 1

d1
TiN

T

)−1

K−1 , (3)

whereK is the constant intrinsic calibration matrix of the
camera. LetEi = (e(i)

x , e
(i)
y , e

(i)
z )T = −KRi

T Ti be the
image of thei-th viewpoint in the first view, i.e. one of the
epipoles in the stereo pair defined by the first andi-th views.

Suppose thatX ∈ R3 is a point in space in the coor-
dinate system of the first camera. Letpi = (xi, yi) for
i = 1, ..,m be X ’s projection into each image, and de-
fine p = p1. Let π(x, y, z) = (x/z, y/z) andπ∗(x, y) =
(x, y, 1). If X lies on the reference plane, then:

p = π ( Hi π
∗(pi ))︸ ︷︷ ︸

pi
′

. (4)

In general,X does not have to lie on the reference plane,
so this equation is not necessarily satisfied. Nevertheless,
the difference betweenp and pi

′ must be parallel to the
epipolar line throughp andπ(Ei). Sawhney [7] proves that
if p = (x, y), then:

δi(p, γ) = p− pi
′ =

−γ

di − γ e
(i)
z

[
e
(i)
z x− e

(i)
x

e
(i)
z y − e

(i)
y

]
(5)

whereγ = G(p) is a view-independent scalar defined at
each point in the first image. The differenceδi(p, γ) is
called theparallax. In this formulation the set of par-
allax vectors at a single pointp are expressed in terms
of the knownEi’s and di’s, and the unknown but view-
independentγ. Furthermore, one can show thatγ = h/z,
where z is the depth ofX in the first view andh =
NT X + d1 is the signed perpendicular distance ofX from
the reference plane. We can recoverz from γ using the fact
thatX = z K−1 π∗( p ) (see appendix).

4 Non-recursive Cost Function

The geometric model given in equation (5) gives us an im-
age model, an analog to the brightness constancy constraint.
We will try to satisfy this constraint by optimizing over the
space of functionsγ(p). The brightness constancy con-
straint is of the form:

Ir
i (q) − I1

(
q + δi(p,G(p))) = 0, (6)

whereδi(p, γ) is the parallax generator defined in (5),G(p)
is the function giving a value ofγ for each pixel, andI r

i is
the plane-registered image obtained by warpingIi by Hi:

Ir
i (q) = Ii

[
π

(
Hi
−1 π∗(q)

)]
, (7)

where functionsπ andπ∗ are defined above.

Given the imagesIi and parallax generatorsδi, the goal
is to find a functionG such that (6) is true for all values
of p. Irani et al. [8] proposed to minimize the residual of
the brightness constancy constraint over all images and all
pixels, as in the following expression:

ε(G)=
∑

i

∫

p

∫

q ∈
win(p)

[
I r

i (q)−I1

(
q + δi(p,G(p))

)]2

dq dp, (8)

where integrals are a convenient notation for sums and
win(p) is a k × k window centered atp. They minimize
the functional in an iterative fashion, alternating between
optimzation over the space of shape functionsG and opti-
mization over the set of epipoles, until convergence. They
compute gradients by linearizing the image about an initial
estimate.

5 Recursive Cost Function

Estimating parallax in real-time necessitates a recursive al-
gorithm, by which we mean an algorithm which has a con-
stant time (per pixel) update, such as the linear Kalman fil-
ter. In the formulation above, after every new estimateγ̂k

during gradient descent, we need to re-warp all previous im-
ages. Furthermore, with each additional frame, we need to
perform an additional rewarping at every iteration. We can-
not afford such a computation, which grows linearly with
the number of frames.

A recursive algorithm is possible because of the follow-
ing observation. Consider the example from Section 2 of
images taken uniformly along a line. For a single point in
the scene we have the disparities from the reference image
to thek-th image: δk(z) = kvt/z. At baselines that are
small relative toz, depth estimates are very inaccurate be-
causeδ′k(z) is small. Conversely, large changes toz induce
relatively little variation inδk. Though the truez may be far
from initial estimates, re-warping is not necessary because
it will not result in a “large” change. Said another way,
though the depth may be inaccurate, the flow will generally
always have the same relatively low error, and the warping
will generally be accurate (have low residual compared with
the reference image) at a majority of the pixels. However,
we count on small changes to effect depth estimates, and so
linearizations (intensities and local derivatives) of the past
images are maintained in a second order approximation of
the cost function. The condition for this working, then, is
that updates to the disparity must not exceed the range of
the linear approximation of the image at each point. Thus
regions of images which aretoo “textured” will pose prob-
lems.

The goal is to turn the minimization of the batch func-
tional ε into a recursive procedure, where the addition of

4



frames results in a warping procedure which iterates only
over the new frame, with as little loss of accuracy as possi-
ble. To do this, first we decomposeε as defined in (8) into a
set of individual pixel cost functions as follows:

ci(p, γ) =
∫

q ∈win(p)

ri(p, γ(p))2 dq

whereri is the residual:

ri(p, γ) = I r
i (q)−I1

(
q + δi(p, γ))

)
.

The total non-recursive cost functional is then the sum over
all images and all pixels:ε(G) =

∑
i

∫
p

ci(p,G(p)).
In the recursive formulation we propose a cost function

which is linearized in past terms but iterated until conver-
gence on the latest image. We denote byG(i) the final esti-
mate ofG after the last iteration on thei-th frame. Then, for
example after thei-th frame has arrived, we definec(i) to be
the per-pixel cost up to and including thei-th frame (not to
be confused with the image-specific termci):

c(i)(p, γ) =
∑

j≤i

cj(p, γ)

= ci(p, γ) +
∑

j<i

ci

[
p,G(j)(p) + (G(j)(p)− γ)

]

︸ ︷︷ ︸
compute 2nd order Taylor series inγ atG(j)(p)

≈ ci(p,γ) + ΣA(i−1)(p) γ2 + ΣB(i−1)(p) γ + ΣC(i−1)(p)

whereΣA(i), ΣB(i), andΣC(i) are respectively the coeffi-
cients ofγ2, γ and1 in the Taylor series expansion. Their
expressions, except forΣC(i) which has no bearing on the
gradient, are given below:

ΣA(i)(p) = ΣA(i−1)(p) +
∫

q∈win(p)

[
r′i

(
q,G(i−1)(p)

)]2
dq (9)

ΣB(i)(p) = ΣB(i−1)(p) +
∫

q∈win(p)

[
2 r′i

(
q,G(i−1)(p)

) ·

(
ri

(
q,G(i−1)(p)

)− G(i−1)(p)r′i
(
q,G(i−1)(p)

)) ]2

dq(10)

werer′i = ∂ri/∂γ, both ofΣA(0) andΣB(0) are zero, and
we ignore second-order terms ofri. Note that the last term
in ΣA, for example, is the result of a linearization (ofri)
about a different point from the terms before it, namely
whichever was the latest estimate ofγ atp.

The final result is the following cost functional for the
frames up to and including thei-th one:

ε(i)(G) =
∫

p

c(i)(G(p)) dp

which, very roughly, is linear in some sufficient statistics
in the firsti − 1 frames, and remains non-linear in thei-th

frame. In this sense, the algorithm is implicitly an iterated
extended Kalman filter, where the meanγ at each pixel is
the minima of the cost function given by−ΣB(i)/ΣA(i)

(pixel-wise), and the variances given by1/ΣA(i) (again,
pixel-wise).

The procedure, to be fully outlined in Section 7 is this:
with G(i−1) we iteratively minimizeε(i), in the j-th step
arriving at a new intermediate estimateG(i;j). Upon con-
vergence the lastG(i;j) becomesG(i).

6 Computation of γ and Flows

Now that we have a cost function to minimize and have
found and linearized its gradient, we discuss the recursive
computation of the cost coefficientsΣA(i),ΣB(i). Given
the current estimate of the shape parameterγ for a pixel
p = (x, y) in the reference image:

γ = −ΣB(i)(p)
ΣA(i)(p)

, (11)

the current estimates of the flows at that pixel are deter-
mined as in equation (5), i.e.(u, v) = δi(p, γ). We warp
Ir

i (as definined in equation (7)) using these flows, e.g.
Iw (x, y) = Ir

i (x− u, y − v); if the flow estimates are per-
fect and the brightness constancy constraint holds, thenIw

will be indistinguishable fromI1. Using this warped image
and the derivativesIx andIy of the reference image, we can
calculate the addend terms of equations (9)-(10), denotedA
andB, by:

A(p) = 2
di a

b

(
Iτ (p)− e

(i)
z a γ2

b

)
, B(p) = 2

d2
i a2

b2
(12)

where

Iτ (p) = Iw(p)− I1(p)− Ix(p) u− Iy(p) v

a =
(
e(i)
z x− e(i)

x

)
Ix(p) +

(
e(i)
z y − e(i)

y

)
Iy(p)

b =
(
e(i)
z γ − di

)2

andIx andIy are thex andy derivatives ofI1, respectively.

7 Complete Algorithm

We are now ready to give the complete Recursive Multi-
Frame Planar Parallax algorithm. The state variablesΣA,
ΣB, residual, andnumValid, each the same dimensions as
the imagesIi, are initialized to0. Every imageIi utilizing
the reference imageI1 is processed as follows:

process_image( Ii, Ri, Ti, I1, ΣA, ΣB, residual,
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numValid):
1: ∀ x, y, valid (x, y) = 1
2: Ir

i computed using eq. (7), clear valid
for mappings outside of image; erode
valid by 2 pixels

3: ∀ x, y s.t. valid (x, y) == 1, estimate γ as
in eq. (11) using {ΣA, ΣB}

4: for up to niter iterations
5: {ΣAIter, ΣBIter} = {ΣA, ΣB}
6: calculate flows as in eq. (5)
7: Iw warped from Ir

i using flows
8: calculate {A, B} as in eq. (12)
9: ∀ x, y s.t. valid (x, y) == 1,

ΣAIter + = average window filter (A)
ΣBIter + = average window filter (B)

10: ∀ x, y s.t. valid (x, y) == 1, estimate γ
as in eq. (11) using {ΣAIter, ΣBIter}

11: if average change in valid region of
G was small, then break

12: end for
13: calculate flows as in eqn (5)
14: Iw warped from Ir

i using flows
15: ∀ x, y s.t. valid (x, y) == 1,

residual (x, y) + = |I1 (x, y) − Iw (x, y) |
numValid (x, y) + +

16: {ΣA, ΣB} + = last averaged {A, B} from
line 9 (only for valid pixels)

We mention several specific implementation issues be-
low, which are: (1) how to prevent changes to points that
go out of view; (2) how to decide whether a pixel is an out-
lier; (3) how to integrate measurements from multiple runs
into a single coherent map; and (4) when to choose a new
reference image.

First, thevalid matrix prevents changes to the state vari-
ables for points that go out of view. A pixel inI1 is set
to invalid for the current image when the homographyHi

maps the corresponding pixel inIr
i to a pixel outside ofIi.

The matrixnumValid counts the number of images in which
each pixel inI1 is valid.

Second, we combine several heuristics to choose when a
pixel is an outlier:

1. Flows may not extend past the edge of the image.

2. All generated points must be valid in at least5
images since the last reference change (encoded in
numValid); they must have an average absolute resid-
ual (residual/numValid) no larger than a fixed con-
stant; and they must be no closer than2 pixels from
the edge of the image.

3. The remaining points are then iteratively filtered for
outliers, on each iteration rejecting points that are
too many standard deviations above the mean in their
world x or y coordinates. This is followed by itera-
tively discarding all points with(x, y) coordinates in
any 25th (5x5 equal-sized blocks) of the portion of

the x, y plane spanned by the data that contains less
than 0.1% of the points. Finally, points are again itera-
tively rejected based on being too many standard devi-
ations above the mean in their worldz coordinates, or
in Var(z).

Third, using the recovered depths each pixel in the ref-
erence image is back-projected into world coordinates (see
Appendix), resulting in a space point which is integrated
into a modular fixed-grid elevation and appearance map. By
modular we mean that we store fixed resolution, e.g.16×16,
cells, and fill in cells only when data is available in that loca-
tion. All values contained in the same grid square (not cell)
are optimally combined using their estimated variances.

Fourth, and finally, a new reference imageI1 is set when:
(i) the percentage of pixels that are valid after aligning the
next image is below a given threshold (we use 50%); or (ii )
after a set maximum number of images since the last refer-
ence change to reduce mapping latency (we use 20). Space
points are generated upon every change in reference image.
To reduce the movement due to parallax, we use a horizon-
tal reference plane (in world coordinates) at the height of
the mean terrain elevation in the reference image, an ap-
proximation of which is available from a separate motion
filter.

8 Results

We tested this algorithm on both synthetic and real image
sequences. For the synthetic tests, we developed a closed-
loop simulation system for a simple aerial vehicle that in-
cludes a simple vehicle dynamics simulator, a trajectory
planner for executing a simple search pattern, and a syn-
thetic view generator that renders images from DTED el-
evation data and Terraserver satellite imagery. Using this
framework enables us to compare our reconstructed terrain
to the ground truth and perform error analysis.

First we present a comparison of stereo, wide baseline
stereo, and RMFPP on synthetic data. Figure 3 shows er-
ror results for a single pair of stereo images, or a single
reference image and consecutive frames until the next ref-
erence change, of a 50 meter/sec flight over mountainous
terrain using a camera with a focal length of 251 meters and
240x320 images, alongside ideal standard deviation curves.
The stereo images were chosen to be the first two images of
the RMFPP sequence and the wide baseline stereo images
were chosen to be the first and last images of the RMFPP
sequence. Note that thex-axis is absolute height and that
the terrain is centered around an elevation of 950 meters, so
the relative heights are in the range 550-2350 meters. The
ideal curves are only valid up to a global scale based on
the properties of the images, but it is clear that the algo-
rithms perform as the expected functions of relative height.
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Figure 3: Ideal (solid) and experimental (solid with crosses) error analysis for stereo (red), wide baseline stereo (green), and
RMFPP (blue). Left: Experimental mean absolute error vs height. Right: Ideal error standard deviation (up to scale) and
experimental error median deviation vs height.

In the experimental error distributions we only count points
about which the algorithms are certain (we do not penalize
for holes or for pixels that are removed by filtering prior to
map integration), although we note that RMFPP produced
a result with few holes while the wide baseline stereo only
produced results in about half of the image due to the re-
duced overlap of its views.

Figure 4 shows the result of RMFPP on images rendered
from an outwardly spiraling synthetic flight at 100 me-
ters/sec and 1500 meters absolute elevation (the terrain is in
the range 775-1025 meters) using the same camera param-
eters as in the previous experiment. The reconstructed ap-
pearance is overlayed on the reconstructed elevation. Note
that the black regions in the center of the reconstruction are
invalid regions that are not explored by the trajectory. We
also include a histogram of elevation errors and a plot of the
correlation between elevation errors at neighboring pixels.
The correlation between errors at neighboring pixels shows
that the method captures the relative height of the terrain
even when its absolute estimate has error.

Figure 5 shows the result of RMFPP on images captured
from a real autonomous flight at FIXME meters/sec and
FIXME meters absolute elevation (the terrain is in the range
FIXME meters) using the a camera with a focal length of
FIXME capturing 320x240 images. FIXME: say something
else.

9 Conclusion

This paper has introduced the Recursive Multi-Frame Pla-
nar Parallax algorithm, which is a direct, dense, accurate,
and recursive method for recovering shape from a monoc-
ular sequence of images with known motions. These capa-
balities were desirable from the point of view of an aerial
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Figure 4: Synthetic images experiment: (a) The recon-
structed appearance draped over the reconstructed elevation.
The inset shows the simulated vehicle trajectory. (b) His-
togram of height errors in meters. (c) Correlation between
height errors at adjacent pixels.
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Figure 5: Real images experiment: The reconstructed ap-
pearance draped over the reconstructed elevation.
vehicle requiring on-board real-time terrain analysis. We
have demonstrated the algorithm on both synthetic and real
image sequences, and have shown that its performance is
close to that of the batch method, and to the theoretical per-
formance of linear variance derived for pure translation.
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Appendix: World Coordinates

Combining the equation for height above the reference
plane in the frame of the reference camera and the defini-
tion of γ, the pointp = (x, y) in the reference image hasz
coordinate in the frame of the reference camera

z = − d1

NT X′ − γ
, (13)

where X′ = K−1 π∗ (p). Back-projecting into 3-
dimensional space, the pointX and its covariance in the
frame of the reference camera Cov(X) are given by:

X = − d1

NT X′ − γ
X′

Cov(X) = J Var(γ) JT

where Var(γ) =
1

ΣA

and J =
d1(

NT X′ − γ
)2 X′. (14)

To construct an elevation map over multiple reference
frames, the point and its covariance can be transformed into
the world coordinate system using the known location and
orientation of the reference camera.
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