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Abstract

In this paper, we address the problem of finding depth from
defocus in a fundamentally new way. Most previous meth-
ods have used an approximate model in which blurring
is shift invariant and pixel area is negligible. Our model
avoids these assumptions. We consider the area in the scene
whose radiance is recorded by a pixel on the sensor, and re-
late the size and shape of that area to the scene’s position
with respect to the plane of focus. This is the notion of re-
verse projection, which allows us to illustrate that, when out
of focus, neighboring pixels will record light from overlap-
ping regions in the scene. This overlap results in a measur-
able change in the correlation between the pixels’ intensity
values. We demonstrate that this relationship can be char-
acterized in such a way as to recover depth from defocused
images. Experimental results show the ability of this rela-
tionship to accurately predict depth from correlation mea-
surements.

1. Introduction
The recovery of 3D scene coordinates from 2D images has
long been an area of significant research within the com-
puter vision community. Many of the methods that have
been proposed are based on cues that humans use for depth
perception. One such cue is blurring or defocus. Studies,
such as [7], have shown that blurring is used by humans to
find relative depth.

Blurring or defocus arises in natural images as a result
of an optical system’s limited depth of field. The locus of
scene points that will be well-focused in an image is re-
ferred to as the plane of focus, and is parallel to the sensor
plane. Other scene points will be blurred in proportion to
their distance from this plane. Thus, one can estimate the
depth to a point in the scene by measuring its defocus and
reversing this relationship. This is the principle underlying
methods of depth from defocus.

This paper introduces a new way to measure defocus
from natural images. This method is based on a new re-
verse projection correlation principle, which states that the

correlation between adjacent pixels increases as the parts of
the scene that they sense overlap. Moreover, this overlap
increases with increasing distance between the scene object
and plane of focus. Based on this principle, we measure
correlations between pixels to estimate defocus, and thus
depth. We motivate this principle by presenting and validat-
ing a camera model that works on the principle of reverse
projection. This model also accounts for the fact that pix-
els are not points on a sensor, but areas of substantial size,
which is an important component of blurring that is ignored
in most previous literature in depth from defocus. Experi-
mental results from this model are shown that demonstrate
the ability of measured correlations to give depth.

2. Basic Depth from Defocus
The use of focus and defocus to reconstruct the 3D struc-
ture of a scene is well established in the field of computer
vision. One class of methods, referred to as depth from fo-
cus, includes techniques that search for lens settings which
produce the sharpest image of each region of a scene. Using
the thin lens equation

1
f

=
1
ds

+
1
do

, (1)

it is possible to derive the depth to each region (do) from
the focal length of the lens (f ) and lens-sensor distance (ds)
that brought it into focus.

Depth from defocus is the name used to denote meth-
ods, including the one introduced in this paper, that use the
amount of blur at a point to infer its depth. The fundamental
relation underpinning these methods is illustrated in Fig. 1
and the following (adapted from [10])

do =
fds

ds − f − Fσ
, (2)

where F is the lens aperture number and σ is the radius of
the blur circle created by a point at distance do from the
lens.

Essentially, if one can measure the blur radius at a point
in the image then we can use Eq. 2 to determine the distance
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Figure 1: The basic relation for depth from defocus.

from the corresponding scene point to the lens. There is an
inherent confusion due to the fact that points at the same
distance from, but on opposite sides of, the plane of focus
have the same blur radius. This is typically resolved by
focusing on the nearest (or furthest) point in the scene.

One of the fundamental problems with depth from de-
focus (DFD) is that we can’t tell whether or not something
is blurred from a single image. An intensity gradient in an
image, for example, could arise from a blurred step edge or
a gradual transition within the plane of focus. Because of
this, we take two pictures of the same scene with different
aperture and measure the change in the blur, which gives
depth by a relation derived from Eq. 2.

DFD methods are also restricted to scenes that contain
some texture, as it is the change in the appearance of the
texture that we use to measure the change in blur radius.
An untextured surface such as a white wall would look the
same regardless of its position relative to the plane of focus,
so it is not possible to derive its depth from defocus.

3. Previous Work
The method introduced in this paper is general purpose,
in that it can measure depth at all textured regions in a
scene. Broadly speaking, previous general DFD methods
can be put into one of two categories: those based on a
shift-invariant linear systems model, and those based on en-
ergy minimization methods. The theory and modeling of
these different approaches is summarized below, along with
a look at some of the more notable examples.

3.1. Shift-Invariant Linear Systems Methods
The most popular way to look at DFD has been to pose it in
terms of a shift-invariant linear system. While not given as
an input, the perfectly-focused image of a region within the
scene is represented by the function i0. Two images (i1 and
i2) are taken of that region with different apertures, and are
modeled as the result of convolving i0 with blur filters h1

and h2. Thus i1 = i0 ∗ h1, and i2 = i0 ∗ h2.
In [10], Pentland uses the convolution theorem to relate

the ratio of i1 and i2’s Fourier representations to the change

in σ which, in turn, gives depth. Nayar and Watanabe [8]
change the focal position instead of aperture number, and
measure the more stable normalized ratio of the two im-
ages’ Fourier representations. Ens and Lawrence [4] search
a set of filters for the one that best explains the difference
between i1 and i2. That filter, h3, minimizes the quantity
‖i1 − i2 ∗ h3‖, and is uniquely related to depth. In [11] and
[9], the authors use active illumination with structured light
and measure the change in Fourier power at the frequency
of the structured light.

While the shift-invariant linear systems interpretation is
straightforward and results in elegant solutions, it is prob-
lematic for a number of reasons. The biggest problem is
that it requires that scenes adhere to the equifocal assump-
tion, meaning that the scene is comprised of planes parallel
to the sensor.

Methods that relate depth to changes in Fourier power
require large image regions to measure power accurately,
which makes the equifocal assumption that much more ten-
uous. A more detailed analysis of related shortcomings is
presented in [4].

3.2. Iterative Methods
In order to avoid the equifocal assumption, several itera-
tive methods have been developed to recover both a sur-
face (depth) and its radiance. The methods presented in
[5, 6] define an energy functional which is jointly mini-
mized with respect to both shape and radiance. In [5] the
problem is posed as the minimization of an information di-
vergence between blurred images and a solution is devel-
oped for the case of equifocal planes. In [6] a regular-
ized solution is sought and developed using Hilbert space
techniques and SVD. In [3], depth and radiance are both
modeled as Markov Random Fields (MRF) and a maxi-
mum a postiori estimate is found. These approaches have
the advantage that they do not require an equifocal imaging
model, though regularization and MRF models implicitly
assume that depth changes slowly.

4. Camera Model
Most of the methods reviewed above are illustrated with for-
ward projection. That is, they attempt to map points in the
real world to the area of their blurred image on the sensor, as
in Figure 1. Our camera model is based on reverse projec-
tion, where we look for the area of the scene that is recorded
by a certain point on the sensor.

The model begins by finding the point in the 3D scene
that would be recorded by a sensor point through a pinhole
aperture. Then we account for that point’s defocus due to its
displacement from the plane of focus and aperture setting,
which gives the area of the scene whose reflected or emit-
ted light reaches the sensor point. Finally, noting that pixels
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Figure 2: The double cone from which a point on the sensor
records light.

have significant area, we aggregate the areas sensed by indi-
vidual sensor points to determine the part of the scene from
which the pixel records light. Given this, we can determine
the pixel’s value by taking the dot product of this aggregate
with the scene’s radiance. Each of these steps is described
in greater detail in the following sections.

4.1. Reverse Projection

If we restrict ourselves to a camera with a pinhole aperture,
we follow the chief ray that connects a point s on the sensor
with the optical center of the lens. Ignoring transparency,
light scattering and mirror reflections, the point at which
the chief ray intersects the scene is what will be sensed at
s. In the more general case of a non-pinhole aperture, the
area recorded by a particular point on the sensor will be the
intersection of the scene with a double cone1. This is also
described, in the context of occlusion edges, by the reverse
projection blur model of Asada et al [1]. The cone has its
base at the aperture of the lens, and its vertex at the point
where the chief ray intersects the plane of focus. Beyond
the plane of focus, the cone expands without bounds. The
point s will sense all light that is emitted or reflected from
points within the cone as long as that ray remains within
its bounds and it reaches the lens. An illustration of such a
cone is shown in Fig. 2.

We assume that the small bundle of rays that leave a vis-
ible surface point and arrive at the lens has constant radi-
ance, i.e. specularities are not allowed. We can then treat
the problem geometrically, in that we consider those scene
points that are visible at a particular point on the sensor
plane. A visibility map can then be represented as a binary-
valued function defined on scene coordinates. A scene point
carries a value of 1 in the visibility map if it is within the
double cone and is unoccluded, and 0 otherwise.

We define t to be the function that maps points on the
sensor plane to a visibility map in the manner described
above. A value of 1 in t(s) indicates that a scene point is
sensed at point s and a value of 0 indicates that it is not.

1A double cone consists of two cones that share the same vertex and
whose circular cross-sections grow at the same rate.

4.2. Incorporating Pixel Size

One important camera parameter that is often overlooked
in DFD literature is the physical size of a pixel on the im-
age sensor. Previous methods have ignored this despite the
fact that it can have a significant impact on blurring. The
method presented in [9] accounts for the pixel size, but in
a fundamentally different way, since the system uses active
illumination projected through the camera’s optical system.

Since a sensor pixel combines all the light that it senses
from an area of the scene, the effect of a large pixel is a
baseline blurring effect. This is particularly troublesome at
the horizon or around occluding contours of smooth objects,
where the scene is almost perpendicular to the image plane.
In such places the scene area sensed by a pixel is quite large,
and thus the baseline blurring is severe.

Given the area Ap on the sensor occupied by a pixel p,
we can define that pixel’s transfer function as

T (p) =
∫

s∈Ap

t(s)ds . (3)

Conceptually, the transfer function is the sum of the visibil-
ity maps for each point within the pixel’s area; it expresses
the area of sensor points within a pixel that can see each
point in the scene. While our implementation uses the sum-
mation, the continuous formulation presented here requires
the integral. Note that the transfer function is no longer bi-
nary, as scene points can be visible to any fraction of the
pixel’s area. Finally, the transfer function must be normal-
ized so that the sum of its values is equal to one. The trans-
fer function is useful because it allows us to model the ob-
served intensity I of a pixel as the inner product of T with
the scene radiance R. That is,

I(p) = R · T . (4)

While they tend to be fairly small (e.g., 7.8µm square
for the Nikon D100, our test camera), the area sensed by
a pixel increases with the distance of a scene object from
the lens. To get a basic understanding for the impact of a
finite pixel area on our ability to measure DFD, consider a
fronto-parallel plane with a checkerboard radiance pattern.
If the checkerboard is near the lens, the transfer functions
of most pixels will be small and integrate light reflected en-
tirely from either the white or black checks. As the lens and
checkerboard get further apart, the size of the transfer func-
tions will increase. When the area of each pixel’s transfer
function equals 4 times the area of a check, the image will
be a uniform gray even if the checkerboard lies within the
plane of focus. At this point, the image will lack the tex-
ture necessary to measure depth from defocus and all known
methods will fail.
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Figure 3: (Left) The surface area sensed by a pixel. Units
are meters. (Middle) Its discretization. (Right) Its transfer
function, including blur.

4.3. Implementing the Model to Render Scenes

Having defined the model as above, we describe an imple-
mentation made to perform validation (sec. 4.4) and exper-
iments (sec. 7) with defocused images. Since this requires
knowledge of the location of all scene points, we temporar-
ily consider planes slanting away from the observer in the Y
direction. Later, in section 8, we discard slanted planes and
demonstrate the ability to recover depth in a more general
scene using correlation.

By assuming that the scene is a slanted plane we reduce
the scene coordinates to R2, expressed with respect to axes
on this plane. For convenience we take the origin on the
plane to be its intersection with the optical axis. Further-
more, we impose a discretization of the plane to further re-
duce the scene to Z2. This allows us to use an image to
represent the scene’s radiance. We also maintain a scale pa-
rameter that indicates the physical size of each pixel.

Having described how we characterize the scene’s re-
flectance, we turn now to the characterization of a pixel’s
transfer function. With respect to pixel areas, we model the
sensor as a tightly packed array of square pixels of the ap-
propriate size. As a result, the area Ap of a pixel is a square
whose sides have length equal to the pixel pitch specified
by the manufacturer. This is a realistic model for charged-
couple device (CCD) sensors like the one in our test camera,
or any sensor whose fill factor - the percentage of the area
that records light - is at or near 100%.

We derive a pixel’s transfer function by first projecting
each of the real valued coordinates representing the pixel’s
corners to the real valued coordinates of their projections on
the slanted plane. This is done by following the chief ray,
as described above, and gives a trapezoid that represents the
area that would be sensed by that pixel through a pinhole
aperture. Fig. 3 (left) shows, for example, the area of a
plane slanted at 45◦ sensed by a pixel away from the center
of the sensor plane. It is elongated in the vertical direction
as a result of the plane’s slant away from the observer.

Next we discretize the projection on the lattice of scene
coordinates, which gives the pixel’s unblurred transfer func-

tion. Fig. 3 (middle) shows the discretized version of the
projection shown in Fig. 3 (left).

In order to model the blurring, we use the depth to find
the appropriate point spread function (PSF) at each point
in the discretized projection. Note that, since each point is
convolved with a different PSF, this respects the fact that the
plane is not an equifocal surface. As a result, this process is
linear and shift variant. Also, the PSF here is in the sense
of reverse projection; it represents the spread in the scene
of a point on the sensor. We add up the convolution of each
point with its PSF to give the pixel’s transfer function. Fig.
3 (right) shows the result for the previous example.

Finally, the response of the pixel is found by taking the
dot product of the transfer function with the scene radiance
image. Repeating this process for every pixel allows us to
render what the scene would have looked like were it pho-
tographed with the given set of camera parameters.

4.4. Validation of the Camera Model

Figure 4: Rendered (left) and camera (right) 4 megapixel
images of a checkerboard under near identical conditions.

In order to show the validity of this model and the in-
tegrity of the implementation, we compare a rendered im-
age to a camera image taken with the same parameters. The
scene was a checkerboard pattern on a plane sloped away
from the camera at an angle of 45◦. For the camera im-
age, this angle was measured by markings on the tripod’s
axis. The lens had a focal length of 180mm and an aperture
of f/2.8. The focal plane was at a distance of 1.8 meters,
which intersected the scene in the center of the image. The
accuracy of both the viewing angle and distance to the focal
plane is probably quite low for the camera image, given the
physical means used to measure them. The rendered and
camera images are shown in Fig. 4. Note that the rendered
image is tone mapped with a function (determined using the
method of [2]) that approximates the camera’s behavior.

Since the purpose of this model is to study defocus, we
are particularly interested in the differences between the two
images at blurred edges. Fig. 5 shows profiles of the blurred
edge highlighted in Fig. 4. Pixel values are scaled so that
the mean value of the white and black checks are 1 and 0, re-
spectively. The root mean squared error for all of the edges

4



0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

Figure 5: (Right) Profile of the edge highlighted in fig. 4:
(red) camera data, (blue) rendered data.

was 3.8%. Given the presence of noise and lack of preci-
sion in some of the physical measurements this represents a
validation of the camera model.

5. DFD with Reverse Projection
It is important to note that the definition of σ from Fig. 1
does not make sense with respect to reverse projection. The
analogous quantity, which we will call σ̂, is the radius of the
cone at the point where the chief ray intersects the surface.
The key difference between these two values is that σ is a
blur radius within the camera whereas σ̂ is a blur radius in
the scene.
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Figure 6: The value σ̂ is the reverse projection analog of σ.

Fig. 6 shows how σ̂ is related to the lens-object distance
do, the lens-focal plane distance df and the aperture radius
ra. Writing this as an equation and replacing the aperture
radius with the more familiar camera parameters,

σ̂ =
f

2F

‖do − df‖
df

. (5)

where, as before, f is focal length and F is the aperture
f-number.

Now we express the relation between relative depth d =
‖do −df‖ and the change in σ̂ by taking two measurements
and subtracting to give

σ̂1 − σ̂2 =
df

2df

(
1
F1

− 1
F2

)
. (6)

6. Correlation as a Measure of Defocus
Having established the model and a way to measure depth
from the change in σ̂, we look for a way to measure this
defocus. To that end, consider the transfer functions of two
adjacent pixels derived using our model. When the pixels
are in focus, as in Fig. 7 (left), adjacent pixels sense light
reflected from trapezoidal areas adjacent in the plane. As
the plane moves farther out of focus the transfer functions
of the pixels get blurrier, as in Fig. 7 (right). One important
observation is that the transfer functions begin to overlap,
which means that they both record light reflected from the
same part of the scene. In terms of the model, the transfer
functions of the two pixels will both have non-zero entries
at a number of the same scene points. This will result in an
increased correlation between the observed intensity values
at adjacent pixels.

Figure 7: The area sensed by two adjacent pixels (black and
red). (Left) Through pinhole aperture. (Right) Same pixels,
through finite aperture.

Moreover, the width of the overlap between adjacent pix-
els is 2σ̂. This implies that correlation between adjacent
pixels increases as the object moves further from the plane
of focus. This is the Reverse Projection Correlation Prin-
ciple, and is the basis of our new DFD method.

By similar reasoning, the correlation of pixels increases
with σ̂ even if those pixels are separated by some distance.
This is the case for CCD pixels that are non-adjacent, as
well as adjacent pixels on sensors where the fill factor is
significantly less then 100%. The main difference will be
that the correlation of well-focused pixels will decrease as
the distance between the pixels increases.

6.1. Measuring Pixel Correlations
While the notion of correlation is generally well understood,
there are many ways to measure it depending on the form of
the expected relationship. Since we are interested in mea-
suring the correlation between them, we wish to character-
ize the relationship between the intensities of a pixel (I) and
one of its neighbors (I ′).

Intensities of nearby pixels in natural scenes tend to dif-
fer by only a small amount. In the sense of a scatter plot of
(I, I ′) pairs, then, we would expect points to cluster about

5



the line I = I ′. Moreover, as the image becomes blurred
and the transfer functions of neighboring pixels begin to ex-
hibit significant overlap, we would expect the differences
between their intensities to decrease. In the scatter plot,
we would expect points to cluster even more about the line
I = I ′.

In a more concrete sense, then, we wish to measure the
degree to which the line I = I ′ explains the relationship be-
tween the intensities of nearby pixels. Of existing correla-
tion measures, we use the sample correlation coefficient. It
is a standard measure that expresses the fraction of the vari-
ance of one variable that is explained by a linear fit between
the two. Given N observations of I and I ′, the correlation
coefficient (CC) is

CC =

∑N
j=1(Ij − I)(I ′j − I ′)

(N − 1)sIsI′
. (7)

where sI and sI′ are the standard deviations of the right and
left pixel intensities. The value of CC is strictly within the
range [-1,1].

Readers may note that this is quantity is somewhat sim-
ilar to the definition of the autocorrelation function with a
shift of one. Given that the Wiener-Khintchine theorem re-
lates an image’s autocorrelation to its power spectrum, it is
tempting to suggest that the value of the CC can be found
within the power spectrum. The important difference is that
the CC normalizes for contrast, whereas the autocorrelation
does not. As an image becomes more blurred, the corre-
lation between pixels increases (due to overlapping transfer
functions) while the contrast decreases. The autocorrelation
confounds these two effects, giving a decreased value for
increasing blur. On the other hand, because it accounts for
contrast explicitly, the CC increases with increasing blur, as
our intuition would suggest.

6.2. Relating Correlation to Depth
As previously mentioned, it is impossible to know if a
blurred edge in an image is the result of a blurred step edge
or a well-focused gradient. Because we don’t know the
properties of the scene in advance, it would be ill-advised
to try and derive depth from pixel correlations in a single
image. Instead, we measure the change in CC between two
images taken with different apertures. As noted in section
6, the change in correlation (measured by CC) is related to
the change in the scene blur radius σ̂. If that relation is ac-
curately characterized we can find the change in σ̂ and use
Eq. 6 to find depth.

It remains to be shown how to get a large enough sample
size of adjacent pixel pairs at the same depth from which
to compute the CC. In the case of the images rendered by
our model, where the scene is a plane slanted away from
the camera in the Y direction, this can be done by look-
ing at pixels in the same row. We treat the values of the

first/second pixels in the row as one observation of I/I ′

pixel values. The values of the second and third pixels con-
stitute a second observation, etc. Since pixels in the same
row are at the same depth, each of these pairs will have the
same amount of overlap. We get a value of the CC for each
row of an image with a small aperture, as well as for each
row of an image with a large one. The difference between
the CC observed on the same row in the two images is the
value that we will relate to the change in σ̂ and, in turn,
depth.

Fig. 8 (right) shows an example of the change in σ̂ as
a function of the observed change in CC between adjacent
pixels. These are derived from the small and large (f/4.5 -
Fig. 8 left) aperture renderings made by the camera model.
Given a characterization of the relationship shown in Fig. 8
(right), we can relate change in CC to the change in scene
blur radius and, finally, to depth.
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Figure 8: (Left) Large aperture rendering of a pattern on
a slanted plane. (Right) Change in scene blur radius as a
function of change in CC.

7. Experiments on Rendered Images
Plots like those shown in Fig. 8 (right) and others like it sug-
gest that there is a stable relationship between the change in
CC and the change in σ̂. In this section we demonstrate
that this relationship can be characterized in the form of a
lookup table, which can be used to give estimates for the
change in σ̂ from new images. Such an estimate can then
be converted to relative depth by Eq. 6. This demonstrates
the utility of the change in CC as a measure of depth, and
constitutes a new method of deriving depth from defocus
that is not subject to the equifocal assumption.

7.1. Characterization of ∆σ̂ vs ∆CC

In order to characterize the relationship between the change
in CC and the change in σ̂, we use our implementation of
the camera model to render images of a textured plane un-
der a number of different conditions. For the purpose of the
experiments in this section, our training texture is the wood
image from the Brodatz set. We use this as the scene ra-
diance and render its appearance at a number of different
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depths and viewing angles. For each combination of depth
and angle, we render a small (f/29) and large (f/4.5) aperture
image. We measure the CC of pixels in each line of both
images in the manner described in section 6.2, and find the
change in correlation between the two images. Since the
model also computes the value of σ̂ at all points, we can
compute its change between apertures at each row. So, for
each row in the images rendered with each combination of
depth and angle we get an observation of the change in the
CC and the change in σ̂.

We render 25 pairs of images, each with a different com-
bination of depth and viewing angle. This gives 4516 obser-
vations, from which we build our lookup table. We quantize
the change in CC into bins of width 0.005. Within each bin
we use the median observed change in σ̂, and we store the
standard deviation of the changes in σ̂. The standard devi-
ation will be used as an estimate of the quality of the fit for
weighting purposes.

This process is repeated four times. In the first iteration,
CCs are measured between adjacent pixels. In the second,
CCs are measured between pixels that are separated by a
distance of one pixel, etc. In the end, the lookup table con-
sists of four sets of bins for the change in CC. Each bin has
an associated value of the change in σ̂, as well as the stan-
dard deviation of observations within the bin.

In constructing this lookup table, we note that the quality
of the fit, as reflected in the standard deviation of observa-
tions in the same bin, reduces significantly as the depth -
either absolute or relative - increases. This is because, as
the camera model predicts, the scene area sensed by a pixel
increases with respect to the size of the scene’s texture ele-
ments. After a point, the CC of well-focused pixels is close
enough to 1 that additional correlation can not be observed.

7.2. Recovering Depth from Test Images
We test the quality of the characterization by taking new
textures and rendering them with different depths and view-
ing angles. For each combination of texture, depth, and
viewing angle we render images with the same apertures
as used in the characterization phase. Then we measure the
CC of adjacent pixels for each line, as well as the CC of
those separated by one, two, and three pixels.

For each line, then, we have four measures of the change
in CC corresponding to different distances between pixels.
For each measured change, we find the appropriate bin in
the lookup table and note the estimate of the change in σ̂,
si, as well as the standard deviation τi corresponding to that
bin. We combine these different estimates to get our final
estimate of σ̂1 − σ̂2 by weighting each estimate by the in-
verse of its associated standard deviation.

Fig. 9 shows the estimated and actual values of σ̂1 − σ̂2

at each row of the images for different combinations of tex-
ture, depth, and viewing angle. The textures are taken from

Brodatz and are, from left to right, leather (shown in Fig. 8)
and weave. The change in σ̂ is converted to depth using Eq.
6, and is compared to ground truth. The root mean squared
errors (RMSE) in depth for the three examples are 0.014
and 0.009 meters. These correspond to RMSE of 0.8% and
0.4% in absolute depth. In terms of relative depth, as de-
fined in section 5, the RMSE are 8.0% and 7.9%. As we
can see, our characterization of the relationship between the
change in σ̂ and the change in CC was accurate, though
noisy.
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Figure 9: ∆σ̂: (blue) ground truth, and (black) using change
in CC. Inset pictures show the test textures which are:
leather (left) and grass (right).

8. Recovering Depth from Real Images
While the recovery of depth by observing changes in corre-
lation is best done along equifocal contours in the image, it
is also possible to find the relative depth of scenes without
a priori knowledge of equifocal contours. Within an n × n
window, one can observe 2n2 − 2n pairs of adjacent pixel
intensities; n2 − n are horizontally adjacent and n2 − n are
vertically adjacent. For a separation of k pixels, the same
window provides 2n2−2(k+1)n observations. We can use
equation 7 to measure the correlation coefficient from this
set of observations. Given two images taken with different
apertures, we can measure the change in the CC of pixels
within a window centered at each pixel. This is analogous
to classical DFD methods based on square windows.

In Fig. 10, we show the results of this method on a
real scene from the windowed measurement scheme just
described. The scene consists of a cylindrical can tex-
tured with a white noise pattern lying on a (roughly fronto-
parallel) carpeted floor. Two images were taken with a focal
length of 50mm; the apertures were f/9 and f/16. The large
aperture input image is shown in Fig. 10 (top left). Fig. 10
(top right) shows a grayscale map indicating the change in
the CC of adjacent pixels. As we have shown, this quan-
tity is linearly related to depth. The input image was 1.5
megapixels, and the can was approximately 50cm from the
lens. The window size for this example was 51× 51 pixels.
Fig. 10 (bottom left) shows the normalized ∆CC along a
row of the image, along with the mean over all rows.
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Figure 10: (Top Left) Input image of test scene. (Top Right)
Grayscale map of ∆CC. (Bottom Left) Plot of cross-
section of relative depth (blue) and mean cross-section
(red). (Bottom Right) Depth from equifocal contours.

Given this initial estimate of the relative depth, one can
compute the direction of the depth gradient and, in turn, find
equifocal contours in the image. This will allow for com-
puting the CC along such contours, which gives numerical
depth that preserves discontinuities. An automatic method
for the computation of the initial depth estimate and refine-
ment to numerical depth is the subject of ongoing research.
For the purpose of illustration only, Fig. 10 (bottom right)
shows the change in CC observed along equifocal contours
(columns of the image, in this case). While the measure is
noisy, it better preserves the depth discontinuity at the oc-
cluding boundary between the object and background.

9. Concluding Remarks
As these experiments have shown, the change in correla-
tion between nearby pixels can be used to measure of depth
from defocus. This relationship is a consequence of a new
reverse projection correlation principle, which we have mo-
tivated with a new camera model. This represents an ad-
vancement over existing DFD methods in the linear sys-
tems framework, which assume that the scene is comprised
of equifocal planes. One of the important aspects of this
model - accounting for the area of a pixel on the sensor -
has generally been ignored in DFD literature despite its im-
pact on the ability to measure defocus. Our implementation
of the model was validated by comparing its output to a real
camera image, and was used to characterize the relationship
between the change in correlation coefficient and defocus.

The main point of this paper has been the introduc-
tion of the reverse projection correlation principle, the re-
verse projection camera model, and the relationship be-
tween the change in correlation coefficient and depth. We
have shown that this relationship can provide depth infor-
mation for scenes of unknown geometry. Future research
will use an initial estimate of depth - obtained by measure-
ments from square windows - to determine equifocal con-
tours along which the depth can be measured more accu-
rately. As we have shown, this method has the advantage of
preserving depth discontinuities.
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