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Abstract

We classify 3D aerial LiDAR scattered height data into
buildings, trees, roads, and grass using the Support Vector
Machine (SVM) algorithm. To do so we use five features:
height, height variation, normal variation, LiDAR return
intensity, and image intensity. We also use only LiDAR-
derived features to organize the data into three classes (the
road and grass classes are merged). We have implemented
and experimented with several variations of the SVM algo-
rithm with soft-margin classification to allow for the noise
in the data. We have applied our results to classify aerial
LiDAR data collected over approximately 8 square miles.
We visualize the classification results along with the associ-
ated confidence using a variation of the SVM algorithm pro-
ducing probabilistic classifications. We observe that the re-
sults are stable and robust. We compare the results against
the ground truth and obtain higher than 90% accuracy and
convincing visual results.

Keywords: LiDAR data, classification, Support Vector
Machine (SVM), terrain, visualization.

1. Introduction

Aerial and ground-based LiDAR data is being used to
create virtual cities [25, 10, 16], terrain models [23], and
classify different vegetation types [3]. Typically, these
datasets are quite large and require some sort of automatic
processing. The standard technique is to first normalize the
height data (subtract a ground model), then use a threshold
to classify data into into low- and high-height data. In rel-
atively flat regions which contain few trees this may yield
reasonable results, e.g. the USC campus [25]; however in
areas which are forested or highly-sloped, labor-intensive
manual input and correction is essential with current meth-
ods in order to obtain an useful classification.

In this work, we have used Support Vector Machines
(SVM) for automatic classification of aerial LiDAR data
registered with aerial imagery into four classes – build-

ings, trees (or high vegetation), roads, and grass. In cases
where aerial imagery is not available, our algorithm clas-
sifies aerial LiDAR data automatically into three classes –
buildings, trees, and road-grass.

We have experimented with a number of parameters as-
sociated with the use of the SVM algorithm that can impact
the results. These parameters include choice of kernel func-
tions, the standard deviation of the Gaussian kernel, relative
weights associated with slack variables to account for the
non-uniform distribution of labeled data, and the number
of training examples. We discuss the algorithm and these
parameters in Section 4. We have also used an extension
of the SVM algorithm to multiclass problems that allows
probabilistic classification. This helps in assigning confi-
dences to the predicted classes. We discuss this extension
in Section 4 as well.

We have used SVM to classify aerial LiDAR data col-
lected over an eight square mile region of the UCSC cam-
pus. We have conducted a large number of tests with vari-
ous parameters and observed that the results are stable and
robust. We present our results in Section 5. We have vi-
sualized the classification results for several different sub-
regions (parts of which are manually labeled for training
and accuracy assessment) as well as for the whole region.
We compare the results against the ground truth and ob-
tain higher than 90% accuracy and convincing visual re-
sults. Furthermore, visualization of the classification pre-
dictions with their associated confidences (or uncertainty)
allows us to investigate and understand the weak spots of
the algorithm or data. Conclusions and future directions are
presented in Section 6.

2. Previous Work

Several algorithms for classifying data into terrain and
non-terrain points have been presented including those by
Kraus and Pfeifer [12] using iterative linear prediction
scheme, by Vosselman et. al. [23] using gradient-based
techniques, and by Axelsson [2] using adaptive irregular
triangular networks. Sithole and Vosselman [19] present a



(a) Height (H) (b) Height Variation
(HV)

(c) Normal Variation
(NV)

(d) LiDAR Return In-
tensity (LRI)

(e) Image Intensity (I)

Figure 1. The five features used in data classification for one of the training regions.

comparison of these algorithms. We have used a variation
of these standard algorithms to create a terrain model from
aerial LiDAR data in order to compute normalized height.

The objective of this work is to perform classification
of aerial LiDAR data into 4 classes using all the 5 features
or 3 classes using only 3 height-derived features. Previous
classification efforts include research by Axelsson [2], Maas
[13], Filin [9], Haala and Brenner [11], and Song et. al.
[20]. Most of these approaches are ad-hoc heuristics. Also,
in most cases results are presented for small regions without
much discussion on the quality of results obtained. Finally,
these approaches often require substantial manual input and
sometimes tweaking of weight parameters.

Anguelov et al. [1] classify ground-based LiDAR scan
points as building, tree, or shrub using a Markov Random
Field model that jointly classifies data points while encour-
aging spatial contiguity. They report an accuracy rate of
93% for their associative Markov networks algorithm, and
68% to 73% accuracy for SVM methods on their data.

Previous work on the same aerial LiDAR data used the
EM (Expectation-Maximization) algorithm with a mixture
of Gaussian models [7] to classify LiDAR data into four cat-
egories. There are several differences between this previous
work and our current work. The previous work required
additional information – DEM data, co-registered with the
LiDAR data. Also, here we use a different feature set: we
introduce normal variation, which we find very useful in
our classification. Finally, as reported in Section 5, we ob-
tain higher accuracy (better than 93%) in comparison to the
66-84% accuracy reported in the previous work.

3. Data Processing
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Our LiDAR dataset covers 8 square miles of the cam-
pus at the University of California at Santa Cruz and was
collected using a 1064 nm laser at a pulse rate of 25 KHz.
The raw data consists of about 36 million points with an
average point spacing of 0.26 meters. We resampled this
irregular LiDAR point cloud onto a regular grid with a cell
size of 0.5m using nearest-neighbor interpolation. In ad-
dition, we used high resolution (0.5ft/pixel) ortho-rectified
grayscale aerial imagery. To match the LiDAR data these
images are downsampled to 0.5m/pixel, then registered us-
ing the NAD83 State Plane Coordinate System, California
Zone III.
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We identified five features to be used for data classifica-
tion purposes: normalized height, height variation, normal
variation, LiDAR return intensity, and image intensity.

. Normalized Height (H): We computed the terrain ele-
vation data automatically from the aerial LiDAR data
using a variation of the standard DEM extraction al-
gorithms [19]. The LiDAR data is normalized by sub-
tracting terrain elevations from the LiDAR data.

. Height Variation (HV): Height variation is measured
within a /'01/ pixel 2436573
8:9<;>= window and is calculated
as the absolute difference between the min and max
values of the normalized height within the window.

. Normal Variation (NV): We first compute the normal at
each grid point using finite differences. Normal vari-
ation is the average dot product of each normal with



other normals within a ��� 0 ��� pixel 2�3
8 9 ; = window.
This value gives a measure of planarity within the win-
dow.

. LiDAR Return Intensity (LRI): Along with height val-
ues, aerial LiDAR data contains the amplitude of the
response reflected back to the laser scanner. We refer
to this amplitude as LRI.

. Image Intensity (I): Image intensity corresponds to the
response of the terrain and non-terrain surfaces to vis-
ible light. This is obtained from the gray-scale aerial
image.

Figure 1 shows images of these five features computed
on the College 8 Region of the UCSC Campus. The fea-
ture values were compressed to byte values (0-255) to ease
storage requirements.
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We classified the dataset into 4 classes: roofs (or build-
ings), trees or high vegetation (includes coniferous and de-
ciduous trees), grass (includes green and dry grass), and
roads (asphalt roads, concrete pathways and soil). When
using only three height-derived features H, HV, and NV, we
classified the data into 3 classes by merging roads and grass
into the same class. Datasets for ten different regions were
segemented and some subregions were manually labeled for
training and validation. The size of these labeled data sets
vary from 100,000 points to 150,000 points. The mix of dif-
ferent classes – trees, grass, roads, and roofs – vary within
these data sets. Roughly 25-30% of these data sets were
labeled to cover these 4 classes adequately.

4. The SVM Algorithm

Support vector machines (SVMs) are a powerful learning
method that is widely used in a variety of domains. Orig-
inally introduced by Boser, Guyon and Vapnik [4], SVMs
and related kernel-based methods are the subject of a large
body of work in classification, regression, and clustering
problems. We give only a cursory summary of the algorithm
and refer the reader to any of the excellent introductions
to the topic for more details (for example, Schölkopf and
Smola [18], Christianini and Shaw-Taylor [8], or Burges
[5]). We first outline the SVM algorithm in the most basic
binary classification setting and then discuss the necessary
extensions for more complex prediction problems, includ-
ing the LiDAR classification problem.
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The problem of binary classification is to use a set of
training data to create a classifier which will correctly pre-

dict the label of future examples that are not present in the
training set. Let ����� 2�������� � =!� 5>5 5"� 2��$#%�&�'# =)(+*-, 0/.
be the 9 -example training set where each ��0 is an 1 dimen-
sional feature vector and ��0 is an integer class label. We
need only consider the case where , �32	4 ; for binary
classification we use the convention that . �5��67� � � ( .

A binary classifier is a function 8�9:2 4<;= ��67� � � ( .
Among the simplest possible such functions are the linear
classifiers 8?>A@ B 2���= � sgn 2�CED
�GFIH = . If there exists C and H
such that 8?>A@ B 2�� 0 = � � 0 for J��<� �>5>5 5"� 9 then the training
set is linearly separable.

The geometric margin measures the distance from exam-
ples to the separating hyperplane of a hypothesis. The geo-
metric margin of example 2��K��� = with respect to hypothesis
8L>A@ B is M >A@ B 2N�K��� = � �	2 >AO P�QRBS > S = .

If � is incorrectly classified, then the margin is negative,
and 6AM >A@ B 2N�K��� = is the distance to the hyperplane. The geo-
metric margin of a sample �T� 2N�U�V���W�>=!�>5 5>5�� 2N�$#X�&�'# = with
respect to some 8Y>A@ B is the minimum margin of any of the
examples: MZ>A@ B 2 � = �\[^]`_ 0 M >A@ B 2N� 0 ��� 0 = 5

Any 8L>A@ B achieving the maximum geometric margin on
a linearly separable training set is called a maximum margin
hypothesis. Statistical learning theory provides evidence
that maximum margin hypotheses are likely to generalize
well to new data.

The problem of finding a maximum margin hypothesis
for a linearly separable data set is equivalent to the con-
strained minimization problem:

minimize>A@ B
a C a ;
3 (1)

subject to � 0 2NC�D"� 0 FbH =�c � for JK�5� �>5 5 5`� 9 5
That is, we minimize the length of C (and thus maximize

the margin) subject to the constraint that all points have dis-
tance at least 1 from the separating hyperplane.

The dual of this optimization problem is

maximizedLe�f?g #h
0ji ��k 0 6

�
3

#h
0 @ l i �?k 0 k l �'0�� l �$0$D"� l � (2)

subject to each k 0 c � � and

#h
0`i � k 0 � 0 ���

The dual form is a quadratic programming problem to
which well known algorithms are applicable. In practice a
specialized algorithm called Sequential Minimal Optimiza-
tion (SMO) algorithm [15] is preferred due to its efficiency.
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The simple maximum margin framework as outlined
above has three significant drawbacks which must be over-
come before it can be applied to difficult classification prob-



lems like ours. First, the decision boundary of the result-
ing classifier, 8 , must be a linear combination of the fea-
tures; second, the training set must be linearly separable;
and third, only binary classification is possible. The SVM
literature contains numerous solutions to these problems.

High-dimensional embedding with kernels:
Even if the data is not linearly separable with the original

features, it may become linearly separable if new non-linear
features are constructed. Thus instead of working directly
with feature vector � as above, we can apply a non-linear
transformation � mapping � to � 2N��= in a (usually much)
higher dimensional space, and attempt to find a maximum
margin separating plane in the higher dimensional space.

Note that the dual form (2) depends on the feature
vectors only through a dot product. Therefore a ker-
nel function � such that � 2�� 0&��� l = � � 2��$0�= D � 2�� l =
can be used to avoid the computational expense of
working in the high dimensional space. Kernel func-
tions operate directly on the original features and only
implicitly represent the transformation to the high-
dimensional space. Two popular kernel functions are:

degree- � polynomial � 2�� 0&��� l = � 2��Y0�D�� l F	�>=�

Gaussian (RBF) � 2�� 0&��� l = ����
�� 2 6 �

;��
a � 6 �$0 a ; =

Soft-margin classification:
Even after transformation to a higher dimensional space,

outliers may prevent the data from being linearly separable.
In the soft-margin technique each example 2N� 0 �&� 0 = has a
slack variable � 0 c � that measures how much the margin
for that example falls below the desired unit distance. The
primal minimization problem (1) is modified to minimize
both the length of C and the sum of the slack variables:

minimize>A@ B�@ �
a C a ;
3 F

�
9

#h
0`i � � 0

subject to � 0 2 � 2N� 0 ��C =RFbH =�c � 6�� 0 � JK�5� �>5 5>5"� 9 �
where

�
trades off the relative importance of slack variable

minimization and margin maximization.
Imbalanced data:
Many classes of geographical data may be important but

rare. A classifier which misses rare classes can have high
accuracy but undesirable behavior. This effect was quite
pronounced in our own data where, for some regions, rare
classes represent only 2% of the labeled data for the region.

We thus consider two different measures of accuracy for
our classifier. The sample-weighted accuracy is simply the
percentage of correctly classified points, this corresponds
directly to the usual use of the term “accuracy”. We also
consider what we term the class-weighted accuracy which
splits the points into classes, computes the percentage of
each class that is correctly classified, and averages these
percentages. For example, consider a region that is 90%
grass and 10% road and a classifier that correctly classifies

90% of the grass points but only 30.0% of the road points.
This classifier has a sample-weighted accuracy of 84% but
a class-weighted accuracy of only 60% on this region.

In our early experiments, we observed that the�#�� #0ji � � 0 term in the objective function tends to maxi-
mize the sample-weighted accuracy at the expense of class-
weighted accuracy. Our solution is to modify the slack
variable term so that the under-represented class is taken
more seriously. We use a set of class-specific parameters� � �>5 5>5�� ��� in the following oprimization problem:

minimize>A@ B�@ �
a C a ;
3 F �

9
#h
0`i �

����� � 0
subject to � 0 2 � 2N� 0 ��C =�F H =�c � 6�� 0 � JU� � �>5 5>5"� 9 5

The special case where
� � � � � 5>5>5 � ���

corresponds
to the previous formulation.

We must now choose each
� 0 . Choosing a single

�
is difficult to do a priori, and Schoelkopf et al. propose a
method to avoid doing so [17]. For our own problem we
found that the the overall parameter

�
(or the sum of all� 0 ) made little difference. The relative weighting between

classes, however, could make a large difference in class-
weighted accuracy for regions in which the proportion of
classes in the training set was different from the test set.
We hold out some data from the training set to estimate
the proportions of the various classes and then set the out-
lier penalty weights

� 0 for each class to be inversely pro-
portional to the frequency of the class in the training set.
This essentially weights the training set so that each class is
equally well represented.

Multiple Classes:
The classifier described thus far distinguishes between

two classes only; however, geographical regions are often
most naturally described by more than two classes. Nu-
merous methods are known for translating SVMs (or other
binary classifiers) into a multiclass setting, including: (a)
training a classifier to distinguish each class from all other
classes, commonly called “One vs. All”, (b) training a clas-
sifier to distinguish between each pair of classes, or (c) us-
ing some extension of the concept of the margin to include
more than two classes, and performing optimization directly
on this quantity. We use a variation on (b) proposed by Wu
et al. [24] which allows us to provide probability estimates
for each class rather than a single hard classification.

Our methodology is as follows: For each pair of classes
we train an SVM on data from only those two classes. Each
of these SVMs is modified so that it predicts a pair of prob-
abilities for its two classes rather than just a single class
label. When predicting the label of a new point, the algo-
rithm takes the pairwise class probabilities from the trained
SVMs and then merges them into a single distribution over
all of the classes using the optimization procedure of Wu



et al. [24]. The class with the highest probability in this
merged distribution is the final prediction.

We use a modification of the technique proposed by Platt
[14] to produce pairwise probability estimates for each of
the trained SVMs. Given a road-tree classifier 8Y>A@ B that
computes �V>A@ B 2N��= and predicts road ( � ) if ��>A@ B 2N��=�� � and
tree ( � ) otherwise, Platt creates a function ���U@ � 2���= estimat-
ing 	 2�� �
��� �K��� �
� or � �
� = by fitting the following
logistic sigmoid to the data

� �U@ � 2N��= � �
� F � 
�� 2�� � >A@ B 2N��=RF�� = 5

The parameters � and � are fit by minimizing the negative
log likelihood of the the road-tree training data:

#h
0`i �

� 2N� 0 =������"2 ���U@ � 2N� 0 = =RF 2 �	6 � 2N� 0 = =������ 2 � 6����U@ � 2N� 0 = =
(3)

where � 2 � = �5� and � 2 � = �o� reflect the class labels.
Platt points out that this method has a bias problem as

the same data is used to both train the SVM and to fit the
sigmoid. We follow his suggestion to regularize, setting� 2 � = ��� � Q �� � Q ; and � 2 � = � �

� ! Q ; where "#� is the num-
ber of road points in the data and "$� is the number of tree
points.

We found that a further modification was needed to pro-
tect the probabilities of rare classes. Therefore we adjust the
likelihood function (3) by multiplying each term in the sum-
mation by

� � �
(recall that

� � �
is inversely proportional to

the frequency of class � 0 in the training data). This correc-
tion essentially causes the likelihood calculation to act as if
the two classes were represented equally in the training set.

5. Results and Discussion

We use a modified version of the freely available
LIBSVM [6] to test the performance of the SVM algorithm
and its probablistic multiclass extensions on our LiDAR
data. Figure 2 presents the accuracy results for the ten train-
ing regions using the leave-one-out test (train on the labeled
subset of nine regions and test on the labeled subset of tenth
region) using a radial basis function (RBF) kernel. Our RBF
kernels typically used % ; � � 5 �L� as the variance of the
Gaussian and

� 0 as inversely proportional to the frequency
of that class in the given training data set as described be-
fore in Section 4.2. We have used both sample-weighted
and class-weighted accuracy (described under “Imbalanced
data” in Section 4.2) to assess the results.

We obtained better than 90% sample-weighted accuracy
for all regions and better than 90% class-weighted accuracy
for 8 out of 10 regions for 5 feature 4-way classification.
The other two regions have a severe data imbalance (very

Region
5 features, 4 classes 3 feature, 3 classes

class-wt sample-wt class-wt sample-wt
accuracy % accuracy % accuracy % accuracy %

Reg. 1 74.26 93.13 86.61 95.40
Reg. 2 92.32 94.82 98.09 97.84
Reg. 3 94.90 95.50 97.14 96.05
Reg. 4 93.90 96.21 96.54 97.95
Reg. 5 94.38 95.27 96.22 96.39
Reg. 6 92.20 90.53 96.25 98.52
Reg. 7 91.68 91.19 95.66 96.92
Reg. 8 92.07 94.94 97.90 96.52
Reg. 9 73.95 90.90 86.17 94.55
Reg. 10 95.10 95.31 98.83 98.91
Average 89.48 93.78 94.94 96.91

Figure 2. Accuracy by region using the RBF (Gaus-
sian) kernel. For each region, training was done
on 150,000 points chosen at random without re-
placement from nine of the regions and testing
was done on all labeled points in the remaining
region.

few road points) that makes good class-weighted accuracy
a challenge. The results for 3 feature 3-way classification
are better than 94%.

Previous work on the same LiDAR data using Gaus-
sian mixture models achieved accuracy rates of 66–84% [7].
Anguelov et al. use SVMs as well as a graph cuts based al-
gorithm to classify ground-based LiDAR terrain data [1].
They report 68% to 73% accuracy using SVM methods
and 93% accuracy for their spatially coherent associative
Markov Networks algorithm. Since their LiDAR data has
very different properties from ours, we are reluctant to draw
conclusions from these accuracy numbers.

Figure 3 reorganizes our accuracy results to identify the
two types of error – misclassified points by correct class
(Error I) and misclassified points by prediction (Error II).
These errors are less than approximately 10% for all classes
for 3-way classification but higher than 10% for road and
grass for 5-way classification. Road and Grass prove to be
the most difficult classes to adequately seperate. This is un-
derstandable as their height information is relatively similar
in many areas.

We have performed extensive testing in order to deter-
mine how robust the algorithm is to changes in parameters.
These include experiments with various kernel functions
and their parameters, as well as more general parameters
such as variations in training data size and

�
, which trades

between margin maximization and slack variables.
Figure 4 reports the results from experiments using var-

ious kernel functions. Although the Gaussian kernel was
our choice and shows marginally superior performance, it
is worth noting that the linear and sigmoid kernels also per-
form well. Indeed, linear kernels can produce far sparser
kernels and thus train and classify much more quickly. This
shows that it is primarily maximizing the margin rather than
the high-dimensional embedding that gives the SVM high



5/4 Tree Grass Road Bldg. Error I
Tree 97.03 0.37 0.65 1.95 2.97
Grass 2.31 78.31 11.91 7.47 21.69
Road 0.87 8.94 89.94 0.25 10.06
Building 4.27 2.53 0.58 92.63 7.38
Error II 7.44 11.83 13.14 9.68

3/3 Tree Road-Grass Bldg. Error I
Tree 96.17 0.77 3.05 3.83
Road-Grass 1.18 92.45 6.37 7.56
Building 3.42 0.38 96.21 3.79
Error II 4.60 1.15 9.42

Figure 3. Confusion matrices for 4 classes/5 fea-
tures and 3 classes/3 features for the results pre-
sented in Figure 2. The vertical axis is the true
class, and the horizontal axis is the predicted
class. Type I errors are points of a given class
misclassified as another; Type II errors are points
misclassified as the given class.

5 features, 4 classes
sample-weighted class-weighted

Kernel Type accuracy (%) accuracy (%)
RBF 93.78 89.48
Linear 90.67 91.56
Sigmoid 90.20 91.18
Polynomial deg. 2 89.03 90.01
Polynomial deg. 3 75.71 80.62
Polynomial deg. 4 49.90 63.66
Polynomial deg. 5 37.47 32.91
Polynomial deg. 6 46.63 28.92

Figure 4. Classification accuracy using different
kernels: Training is done on a 100,000 point ran-
dom sample from all geographical regions and
testing is done on a similarly drawn disjoint sam-
ple of equal size.

accuracy on our data. For our chosen Gaussian kernel, we
also experimented with various values of % , which deter-
mines the kernel width. As shown in the lower plot of Fig-
ure 5, performance is quite stable under variations of % .

The upper diagram of Figure 5 shows that acceptable ac-
curacy is achieved even with relatively small training sets.
Performance also remained quite stable under changes in�

, the relative weighting between margin maximimization
and the slack variables (the top plot in Figure 6) so long as
it remained higher that � 5 � . The stability under variations
in the individual

� 0 values is slightly more complicated. In
most published work only a single value

� � �
�
0ji � � 0 is

used for all classes. Both class- and sample-weighted ac-
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Figure 5. (Top): Sample-weighted accuracy as a
function of training set size. (Bottom): Reason-
able values of % (Gaussian kernel width) all give
comparable results.

curacy suffered when the relative proportions between the
values

� 0 and the class proportions in the test set differed
significantly (see the bottom plot in Figure 6).

We show details of the visualization of classification re-
sults for one of the regions (see Figure 7). This visualization
brings out the buildings (in blue), trees (in green), roads (in
brown), and grass (in yellow). For the purpose of visual-
izing classification confidence we use the ratio of the dif-
ference between the most and next-most probable and the
most probable classification to determine the saturation of
each point. Thus darker points are classified with lower con-
fidence. Areas around the edges of buildings prove to be
difficult to classify. These areas have atypical coloring, and
high height and normal variance, making them easily con-
fused with trees. Cars, shrubs, and other objects for which
we have no fully adequate class also frequently occur. In
general we noticed that the difficulties of the classifier tend
to follow the difficulties of a human classifier. Indeed many
misclassifications represent truly ambiguous regions, e.g.
trees which overhang buildings, or small patches of what
seems to be grass or shrubs in the middle of a forested re-
gion.



Figure 7. (leftmost) Four-way classification: buildings (blue), trees (green), roads (brown), and grass (yellow);
(2nd from left) Four-way confidence rated classification (darker means less confidence); (3rd from left) Three-
way classification (buildings (blue), trees (green), roads and grass (yellow); (rightmost) Three-way confidence
rated classification of the same region. Training for this test was done on a training set of size 150,000 points
drawn randomly from the nine other regions.
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Figure 6. (Top): Sample-weighted accuracy as a
function of overall

� � �
�
0ji � � � � . (Bottom): Ac-

curacy as a function of relative entropy to the sam-
ple distribution. As proportions differ greatly from
the training set accuracy declines.

6. Conclusions and Future Directions

We have applied the SVM algorithm to classify aerial
LiDAR data and established that stable, robust, accurate
classification results are achievable. Still, there are several
areas of improvement worth exploring. First, spatial coher-
ence may be used to improve the results further. One could
perhaps use recently developed large-margin SVM-like al-
gorithms which can be kernelized and work directly with
a statistical model using an extended concept of the mar-
gin [21] [22]. In recent work Zabih and Kolmogorov [26]
propose a segmentation algorithm that simultaneously uses
both feature space and geographic space to cluster pixels
and Anguelov et al. [1] learn a model that jointly classi-
fies data points while encouraging spatial coherency. Al-
though considering the classifications and confidences of
nearby points is a powerful technique to reduce noise and
outliers, this must be done very carefully in our application.
Since we are interested in eventually recovering building
footprints, the ”rounding” of corners could create problems.
Furthermore, important details like thin road segments and
small isolated buildings could be missed if one aggressively
enforced spatial coherency. Second, other machine learning
algorithms such as AdaBoost may also be used to obtain
better or perhaps simpler and more insightful classification
of aerial LiDAR data. We plan to explore these approaches
in our future work.
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