
GPU-BASED LOSSLESS VOLUME DATA COMPRESSION

S. Guthe and M. Goesele

TU Darmstadt, Germany

ABSTRACT

In rendering, textures are usually consuming more graphics
memory than the geometry. This is especially true when render-
ing regular sampled volume data as the geometry is a single box.
In addition, volume rendering suffers from the curse of dimension-
ality. Every time the resolution doubles, the number of projected
pixels is multiplied by four but the amount of data is multiplied
by eight. Data compression is thus mandatory even with the in-
creasing amount of memory available on today’s GPUs. Existing
compression schemes are either lossy or do not allow on-the-fly
random access to the volume data while rendering. Both of these
properties are, however, important for high quality direct volume
rendering. In this paper, we propose a lossless compression and
caching strategy that allows random access and decompression on
the GPU using a compressed volume object.

Index Terms — GPU, volume compression

1. INTRODUCTION

Just like regular images, most volume data sets are uniformly sam-
pled in three dimensions. However, while the number of pixels in
an image increases with a power of two as resolution increases
linearly, the number of samples, so called voxels, in a volume data
set increases with a power of three. Therefore, a volume data set
of 1m3 sampled at a resolution of 1mm3 per voxel, already con-
tains 1 giga-voxel. Even with today’s increase in GPU memory,
larger volume data sets fill most of the video memory, leaving lit-
tle room for additional data to be kept around. However, most data
sets contain large virtually homogeneous regions or redundancy,
making even lossless compression of the data quite efficient. Such
lossless compression has the advantage that it avoids introducing
any compression or blocking artifacts. Most existing compression
schemes are however, fixed bit rate and therefore lossy or do not
allow for random access into the compressed representation. We
propose a combined compression and caching scheme for volume
data that is able to perform lossless compression on volume data
sets while at the same time allowing for efficient random access.
We observe typical lossless compression rates on real benchmark
data sets of 2.3x to 17x.

2. RELATED WORK

Recent surveys such as the Rodrı́guez et al. [1] show that there
is no compression domain volume rendering algorithm that sup-
ports at the same time both lossless compression and high quality
shading.

Volume Compression: While initial compression algorithms
for direct volume rendering [2, 3, 4, 5] mostly favor wavelet-
based transforms in combination with compression domain ren-
dering, more recent approaches use transformations such as the
near-lossless Karhune-Loeve Transform, which can alo be used

for decompression during rendering [6]. Another group of com-
pression algorithms that allow for decompression during render-
ing are the texture compression formats as supported by the hard-
ware (e.g. ASTC [7]). However, since all hardware supported
compression schemes are fixed bit rate, they can never be used for
lossless compression purposes.

Coding: In order to efficiently decompress data on the GPU,
we need a compression scheme that easily supports decompres-
sion in parallel and compresses small values effectively. Fortu-
nately, the Recursive Bottom Up Complete (RBUC) [8] fulfills
both of these needs. RBUC is a hierarchical extension of Elias
gamma codes [9] where more than one positive integer is encoded
at once.

Other efficient compression options include dynamic
Huffman coding [10] and arithmetic coding [11]. Both of these
require, however, sequential coding of large data chunks.

3. COMPRESSED DATA REPRESENTATION

Unfortunately, efficient lossless compression and random access
to individual samples are competing goals so we have to find a
good trade-off between these two. Since both extremes—random
access to individual voxels and decompression of all data up front—
are very impractical, we need to organize the volume in small
blocks (so called bricks) that are compressed, decompressed and
cached individually. Therefore, our compression approach con-
sists of the following steps: First, we split the volume into small
bricks that will be encoded individually. In order to re-create the
original data, we need a down-sized volume that contains refer-
ences to the compressed bricks. For efficiency reasons, multiple
references are allowed to point to the same brick. Second, each
brick is transformed using a predictor function that exploits local
coherence inside the brick as much as possible to produce differ-
ence values close to zero. Third, the difference values are encoded
using a lossless compression scheme.

3.1. Bricking

Splitting volume data into bricks for rendering, so called brick-
ing, is a very common approach. In contrast to hybrid approaches
such as the one proposed by Guthe and Strasser [12], we do not
have to decompress and upload the data required for rendering up
front. Since we store the actual compressed data on the GPU, we
will therefore not be able to use the built-in texture interpolation
functions, so that there is no need for our bricks to overlap.

Regarding the size of individual bricks, there are several con-
siderations we need to take into account. We have to base the
brick size on the fact that compression efficiency goes up with
increasing the brick size but random access becomes more expen-
sive. Since there are 32 cooperating threads within a warp, using
4× 4× 4 = 64 voxel per brick turned out to be the most efficient
choice.

3.2. Offset Volume

c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



In order to randomly access individual voxels, we need an index
volume that stores the starting address of each compressed brick
or an index into an array containing the compressed data at the
granularity of bytes. The most basic approach for storing these
offsets is to simply use a 3D texture that can be indexed using
the raw sample positions. However, due to the limited number of
pixel formats, this approach does not perform optimal. Instead,
we store the offset into the compacted data structure as a bit field
of minimal size for maximum efficiency, e.g. 10 bit per brick if
the maximum offset is 1023.

3.3. Transforms

Similar to the PNG compression scheme [13], the raw data raw (v)
of each voxel v within a brick is transformed prior to the actual
compression. First, we store the range of a brick as two uncom-
pressed values min and max. If min == max, we do not need
to store any additional data since the entire block is constant. Oth-
erwise, there are currently three different transforms implemented
that will be selected on a per brick basis. Note that globally se-
lecting a certain transform reduces the overall compression ratio,
especially when selecting subtract minimum/maximum. Also, the
per brick selection increases the performance compared to glob-
ally picking either gradient prediction or the wavelet transform.

Subtract Minimum/Maximum: For subtract minimum (max-
imum), the predictor for each voxel v is simply the minimum
(maximum) of the entire brick and we only need to store the dif-
ference. Since the predictor is constant for the entire brick, all
voxel can be processed independently. Also, the range of the trans-
formed values is always in the range [0 .. max−min].

Gradient Predictor: For the first voxel of each brick, we use
bmin+max

2
c as a predictor. All other voxel are encoded using a

3D extension of the approach of Paeth [14]. However, the initial
predictor is clamped to the valid range of the brick [min .. max],
instead of using the neighbor closest to the predicted value.

In order to produce transformed values in the same range as
above, we reorder the signed difference values starting with 0,
sorted by the absolute value and alternating between negative and
positive, e.g. for [−5 .. 2]: 0, −1, 1, −2, 2, −3, −4, −5.

Haar Wavelet: Regarding complexity, the integer Haar Trans-
form [15] is right in between the subtract minimum (maximum)
and the gradient predictor schemes. After applying the 3D trans-
form twice, we are left with a single average value of the entire
brick, which we store in the same way as the first voxel above
and 63 (signed) wavelet coefficients. The wavelet coefficients are
stored as unsigned values with the least significant bit denoting
the sign, e.g. 0, −1, 1, ...

3.4. Coding

Once the raw data is transformed to maximize the compression
efficiency, we can encode the resulting data. While most com-
pression algorithms are inherently serial, the RBUCn [8] stores
values in a tree-like structure where all children of a node can be
decompressed in parallel. Since we have to encode 64 values in
each brick, we use a variant of RBUC8 where the number of chil-
dren si at level i of the tree is fixed to 8 rather than increasing as
we move closer to the root of the tree. The actual construction of
the codeword for a single brick is as follows. First, we order all
transformed values according to their Morton code

c0 = [(0, 0, 0) , (1, 0, 0) , (0, 1, 0) , (1, 1, 0) , . . . ,

(3, 2, 3) , (2, 3, 3) , (3, 3, 3)]

Next we compute the maximum number of bits required to repre-
sent each value over each group of 8 values:

c1 (x) = dlog2 (max (c0 (8x) , . . . , c0 (8x+ 7)))e
Each c1 now corresponds to one of the sub-bricks. Finally, we
calculate the number of bits c2 required for representing all c1
values similar to the equation above. The actual codeword is then
constructed as follows:
• One byte containing c2.
• One set of c2 bytes containing the values

[c1 (0) , . . . , c1 (7)] each using c2 bits.
• Eight groups of c1 (i) bytes containing the values

[c0 (8i) , . . . , c0 (8i+ 7)] each using c1 (i) bits.
Note that each of the items in the list above, including each of the
eight groups, is aligned to byte boundaries making decompression
as efficient as possible.

4. DECOMPRESSION AND CACHING

In order to allow fast access, we need to be able to decompress
data efficiently. We furthermore cache decompressed values on a
per brick basis to maximize performance.

4.1. Parallel Decompression

The warp based parallel decompression first needs to expand a
compressed brick into the corresponding encoded values. If the
entire brick is constant, i.e. min = max, the actual decompres-
sion is skipped. Otherwise, we use the following approach:
• All threads read c2.
• The first 8 threads i ∈ [0..7] of a warp read c1 (i) and prop-

agate the values to other threads in the warp accordingly.
• Each thread i ∈ [0..31] reads c0 (i) and c0 (i+ 32).

Note that all communication between threads uses the shuffle in-
trinsic that transfers data within a warp without using shared mem-
ory.

Unless min == max, we still need to do the inverse of the
transform used during encoding. As the decoded values might not
be in the correct thread for the inverse transform, we again need
to use up to two shuffle instructions.

For the Subtract Minimum/Maximum case the inverse trans-
form can easily be done in parallel as the predictor is always con-
stant, i.e. min or max.

The Gradient Predictor is a little more complicated since the
prediction for each voxel depends on the original raw values. Thus
the inverse transform propagates like a wave front through the
brick and requires a total of 10 steps where each thread is ac-
tive twice. More specific, in the first step, only raw (0, 0, 0) can
be recovered by thread 0. In the second step, threads 1, 4 and
16 calculate raw (0, 0, 1), raw (0, 1, 0) and raw (1, 0, 0) respec-
tively. In general the value raw (i0, i1, i2) is recovered in step
i = i0 + i1 + i2 + 1 by thread j = (i0 + 4i1 + 16i2)%32.

In case of the Haar Wavelet, the first inverse transform uses
the first 4 threads of the warp only due to it’s hierarchical nature.
The second inverse transform uses all 32 threads. Once the entire
brick is decompressed, each thread can either access the data using
the shuffle intrinsic or the result can be cached in shared memory.

4.2. Per Warp Caching of Voxel Bricks

We decided to only share cached data inside a warp rather than
across a whole block for the following three reasons: First, for
larger volume data sets, we can assume that the footprint of a voxel
projected onto the screen roughly corresponds to a pixel. Thus, the



data set dimensions bpv size in MB
Carp 256× 256× 512 16 64.00
Bunny 512× 512× 361 16 180.50
Porsche 559× 1023× 347 8 189.24
C. Present 492× 492× 442 16 204.07
C. Tree 512× 499× 512 16 249.50
Stag Beetle 832× 832× 494 16 652.23
Vis. Human 1600× 1600× 1882 32 18,378.91

Table 1: Data set dimensions and raw data sizes.

coherence between rays of different warps is very low. Second,
for small data sets, the amount of decompression that needs to
be done per warp is very small to start with. Third, if threads
only communicate within a warp, there is no need to synchronize
across the entire block. Not having this synchronization overhead
leads to an increased in performance.

Cache Layout: The cache is fully associative, stored in shared
memory and consists of two parts, the tags (the value stored in the
initial offset volume) and the actual decompressed data. Depend-
ing on the size of the indices in the offset volume, the tags can
be stored as 32 or 64 bit each. Storing less than 32 bit does not
increase the performance as these will either be stored in regis-
ters or shared memory. The decompressed data depends on the
number of bit per component and is either 64, 128 or 256 byte per
brick. With up to 32 cache entries per warp, we end up with up to
8.25kB of shared memory per warp.

Replacement Scheme: Ideally, we would like to cache all
bricks that are used for a single sample in the entire warp. Since
this may exceed the number of cache entries available, we use the
following scheme that efficiently implements an LRU replacement
strategy:
• Mark all cached bricks that are being used for the current

sample as active and read all necessary data from those
bricks.

• For each required brick that is not in the cache, replace the
first inactive entry and mark it as active and new. Also read
all the data currently required.

• If there are no more inactive entries, mark all active entries
as inactive and all new entries as active only.

This causes newly decompressed bricks to stay in cache as they are
more likely to be used again than bricks that have been decom-
pressed for prior samples. The total amount of information per
cache entry required for this replacement scheme is just 2 bit and
the first available entry can be found by simply using the count-
leading-zeros (clz) intrinsic.

5. RESULTS

In order to evaluate the whole algorithm, we analyze all parts
of the compression and decompression pipeline using real-world
data and actual volume rendering algorithms. All tests use an
NVIDIA GeForce GTX TITAN X with CUDA 7.5, diver version
355.98, and an extension of the volume rendering example found
in the CUDA SDK.

We tested a variety of data sets, including 8 bit per voxel (bpv)
and 16 bpv scalar data as well as 32 bpv ARGB data (separately
compressed component), ranging from a couple of MB up to 18
GB of raw data, see Figure 1 and Table 1. Note that the volume
data sets do not necessarily contain cubic voxel but usually have
an actual voxel extend as defined by the data set, e.g. 0.33mm×
0.33mm× 1.0mm for the Visible Human 3.

(a) Bunny [16] (b) Porsche [16]

(c) Carp [16] (d) Stag Beetle [17]

(e) Christmas Present [18] (f) Christmas Tree [19]

(g) Visible Human Male (cryosection registered against CT) [20]

Figure 1: Data sets used for evaluation.

Compression: Even though we need to store an additional
index volume (see Table 2), the overall compression rate is very
close to the entropy of the encoded values. However, since our
compression scheme assumes a normal distribution over all val-
ues with a maximum at zero after the transform step, it suffers
from any kind of skewed distribution. In this case the compressed
voxel data is slightly larger than its entropy. Thus our compres-
sion is not only very well suited for parallel decompression but
also outperforms an arithmetic coding of the same data.

Caching: The cache hit rate is very important since decom-



data set
compressed bit per voxel

our entropy
Carp 5.48 (5.08) 6.88
Bunny 5.66 (5.25) 6.55
Porsche8 bpv 1.48 (1.09) 2.79
Christmas Present 6.02 (5.60) 5.33

noise removed 1.61 ∗ (1.25) 1.46
Christmas Tree 4.77 (4.34) 4.95

noise removed 4.11 (3.70) 3.24
Stag Beetle 0.70 ∗ (0.40) 0.66
Visible Human 13.15 (12.64) 22.86
clipped 32 bpv 11.08 (10.56) 20.17

Table 2: Compressed size compared against the entropy in bit per
voxel (with and without offset volume). ∗Offset volume com-
pacted using second level of indirection.

data set
1920× 1080

hit dec. speedup
Carp 99.61% 6.68 190.60
Bunny 99.65% 7.41 142.49
Porsche 99.54% 4.01 107.74
Christmas Present 99.92% 1.37 654.70
Christmas Tree 99.61% 6.68 126.67
Stag Beetle 99.97% 0.22 1668.45
Visible Human 98.93% 0.57 45.57

Table 3: Average cache efficiency during rendering using tri-linear
interpolation. Decompression measured per frame relative to the
size of the data set. Cache size is 23 entries except for Porsche
(32) and Visible Human (11).

pression is a lot slower than just reading values from shared mem-
ory. Without the cache, we would spend more than 99.9% of the
time just decompressing data. As seen in Table 3, the hit rate
for our cache is always above 98% at HD resolution. This corre-
sponds to a performance increase of at least 40 times compared to
rendering without the cache.

6. CONCLUSION & FUTURE WORK

In this paper, we presented a fast and parallel lossless compres-
sion scheme that can be used in direct volume rendering. It con-
sists of a warp centric decompression and caching scheme. Since
all functionality can be hidden behind a simple function call, it
can easily be deployed into existing rendering algorithms. Our
approach allows us to render volume data sets that would not fit
onto a GPU in uncompressed form while avoiding any artifacts
due to lossy compression. In the future, we would like to explore
possible extensions towards multi-resolution volume rendering for
output sensitive performance.

7. REFERENCES

[1] M. Rodrı́guez, E. Gobbetti, J. Guitián, M. Makhinya, F. Mar-
ton, R. Pajarola, and S. Suter, “A Survey of Compressed
GPU-Based Direct Volume Rendering,” in Proc. Eurograph-
ics, 2013.

[2] T. Kim and Y. Shin, “An Efficient Wavelet-Based Compres-
sion Method for Volume Rendering,” in Proc. Pacific Graph-
ics, 1999.

[3] I. Ihm and S. Park, “Wavelet-Based 3D Compression
Scheme for Very Large Volume Data,” in Graphics Inter-
face, 1998.

[4] K. Nguyen and D. Saupe, “Rapid High Quality Compression
of Volume Data for Visualization,” in Computer Graphics
Forum, 2001, vol. 20.

[5] F. Rodler, “Wavelet Based 3D Compression with Fast Ran-
dom Access for Very Large Volume Data,” in Proc. Pacific
Graphics, 1999.

[6] N. Fout and Kwan-Liu M., “Transform Coding for
Hardware-accelerated Volume Rendering,” Trans. on Visu-
alization and Computer Graphics, vol. 13, no. 6, Nov 2007.

[7] J. Nystad, A. Lassen, A. Pomianowski, S Ellis, and T Olson,
“Adaptive Scalable Texture Compression,” in Proc. ACM
SIGGRAPH/Eurographics Symposium on High Performance
Graphics, 2012.

[8] A. Moffat and V. Anh, “Binary Codes for Non-Uniform
Sources,” in Proc. Data Compression Conference, 2005.

[9] P. Elias, “Universal Codeword Sets and Representations of
the Integers,” IEEE Trans. on Information Theory, vol. 21,
no. 2, Mar 1975.

[10] D. Knuth, “Dynamic Huffman Coding,” Journal of Algo-
rithms, vol. 6, no. 2, 1985.

[11] I. Witten, R. Neal, and J. Cleary, “Arithmetic Coding for
Data Compression,” Communications of the ACM, vol. 30,
no. 6, 1987.

[12] S. Guthe and W. Strasser, “Advanced Techniques for High-
Quality Multi-Resolution Volume Rendering,” Computers &
Graphics, vol. 28, no. 1, 2004.

[13] D. Duce, “Portable Network Graphics (PNG) Specification
(Second Edition),” World Wide Web Consortium, Recom-
mendation REC-PNG-20031110, 2003.

[14] A. Paeth, “Image File Compression Made Easy,” in Graph-
ics Gems II, 1994.

[15] A. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo,
“Wavelet Transforms that Map Integers to Integers,” Applied
and Computational Harmonic Analysis, vol. 5, no. 3, 1998.

[16] S. Röttger, “The Volume Library,” http://lgdv.cs.fau.de/
External/vollib/.

[17] E. Gröller, G. Glaeser, and J. Kastner, “Stag Bee-
tle,” http://www.cg.tuwien.ac.at/research/publications/2005/
dataset-stagbeetle/.

[18] C. Heinzl, “Christmas Present,” http://www.cg.tuwien.ac.at/
research/publications/2006/dataset-present/.

[19] A. Kanitsar, T. Theußl, L. Mroz, M. Srámek, A. Bartrolı́,
B. Csébfalvi, J. Hladuvka, D. Fleischmann, M. Knapp,
R. Wegenkittl, P. Felkel, S. Röttger, S. Guthe, W. Purgath-
ofer, and E. Gröller, “Christmas Tree Case Study: Computed
Tomography As a Tool for Mastering Complex Real World
Objects with Applications in Computer Graphics,” in Proc.
IEEE Visualization, 2002.

[20] M. Ackerman, “The National Library of Medicine: The
Visible Human Project,” http://www.nlm.nih.gov/research/
visible/visible human.html.


